
Implementasi Cluster Container dengan Docker
Swarm pada Infrastruktur Microsoft Azure

Angelie Rachmadhani Aulia

Fakultas Ilmu Terapan
Universitas Telkom
Bandung, Indonesia

angellraa@student.telkomuniversity.ac.
id

Muhammad Iqbal
Fakultas Ilmu Terapan

Universitas Telkom
Bandung, Indonesia

miqbal@telkomuniversity.ac.id

 Agus Ganda Permana
Fakultas Ilmu Terapan

Universitas Telkom
Bandung, Indonesia

gandapermana@telkomuniversity.ac.id

Abstrak — Kebutuhan akan layanan web server yang dapat
diskalakan dan memiliki ketersediaan tinggi mendorong
pemanfaatan teknologi orkestrasi container. Penelitian ini
mengimplementasikan cluster container menggunakan Docker
Swarm pada infrastruktur cloud Microsoft Azure dengan
konfigurasi satu node manajer dan tiga node pekerja. Layanan
NGINX dijalankan dalam container dan direplikasi untuk
menguji skalabilitas, kinerja, serta ketersediaan. Pengujian
dilakukan menggunakan Apache JMeter dengan tiga skenario
replika (5, 10, dan 15) serta empat variasi beban permintaan
(50, 100, 150, dan 200 request/detik). Parameter yang diukur
meliputi response time, error rate, dan throughput. Hasil
menunjukkan bahwa peningkatan replika dari 5 menjadi 15
mampu meningkatkan throughput rata-rata dari 93 menjadi
108 request/detik, dengan error rate tetap 0% meskipun beban
mencapai 2000 request/detik. Response time juga relatif stabil
di bawah 160 ms pada sebagian besar variasi beban. Selain itu,
sistem mampu menjaga ketersediaan melalui pemindahan
container otomatis saat terjadi perubahan status node,
menunjukkan keandalan Docker Swarm dalam mengelola
layanan berbasis container pada lingkungan cloud.

Kata kunci— docker, swarm, replika, throughput, response

time

I. PENDAHULUAN

Kemajuan teknologi menuntut infrastruktur jaringan

yang mampu menyediakan skalabilitas dan ketersediaan
tinggi. Cloud Computing menjadi solusi dengan
menyediakan akses data dan aplikasi melalui internet tanpa
instalasi lokal [1]. Microsoft Azure merupakan salah satu
platform cloud yang banyak digunakan karena fleksibilitas
pengelolaan infrastruktur virtual. Namun, lonjakan
permintaan pengguna dapat meningkatkan beban server,
sehingga dibutuhkan solusi efisien untuk mempertahankan
kinerja.

Teknologi container menawarkan lingkungan terisolasi

yang ringan dan konsisten, sehingga proses deployment
layanan web lebih cepat dibandingkan virtual machine [2].
Untuk skala besar, container memerlukan sistem orkestrasi
guna memastikan ketersediaan dan meminimalkan

kesalahan. Docker sebagai platform open source mampu
mengotomatisasi deployment aplikasi [3], sementara Docker
Swarm sebagai pengembangannya memungkinkan
pengelolaan cluster container melalui konsep node manajer
dan node pekerja, serta mendukung penambahan node dalam
jumlah besar untuk pengujian berskala dan kondisi mendekati
nyata [4].

II. KAJIAN TEORI
Kajian teori ini membahas konsep-konsep yang menjadi

dasar penelitian, meliputi teknologi cluster container,
infrastruktur cloud, dan pengujian performa layanan web.

A. Cluster Container dengan Docker Swarm

Artikel Cluster container merupakan sekumpulan
container yang dikelola secara terdistribusi untuk
menjalankan aplikasi beserta dependensinya dalam
lingkungan terisolasi. Platform orkestrasi seperti Kubernetes
dan Docker Swarm digunakan untuk mengatur interaksi,
distribusi beban kerja, serta ketersediaan layanan [2].

Docker Swarm adalah alat orkestrasi open source yang
mengelola dan menghubungkan node dalam sebuah cluster.
Fitur utamanya meliputi keamanan, skalabilitas,
pemeliharaan, dan kemampuan melakukan pemulihan
otomatis jika terjadi kegagalan container. Arsitektur Docker
Swarm terdiri dari manager node yang bertugas mengatur lalu
lintas permintaan klien, serta worker node yang
mengeksekusi layanan. Permintaan klien diarahkan ke
manager node dan didistribusikan secara merata ke worker
node melalui mekanisme internal load balancing [5].

B. Infrastruktur Microsoft Azure

Cloud computing merupakan model komputasi yang
memungkinkan akses jaringan sesuai permintaan terhadap
sumber daya komputasi yang dikelola penyedia layanan [6].
Web server berperan menerima permintaan dari klien,
memprosesnya, dan mengirimkan respons berupa halaman
web atau data melalui protokol HTTP/HTTPS [7].

Microsoft Azure adalah platform cloud yang

menyediakan layanan Platform as a Service (PaaS) untuk
membangun, mengelola, dan menghosting aplikasi web [8].

ISSN : 2442-5826 e-Proceeding of Applied Science : Vol.11, No.5 Oktober 2025 | Page 1800

mailto:angellraa@student.telkomuniversity.ac
mailto:miqbal@telkomuniversity.ac.id
mailto:gandapermana@telkomuniversity.ac.id

Microsoft Azure menawarkan fleksibilitas, skalabilitas, dan
keamanan tinggi tanpa memerlukan pengelolaan perangkat
keras secara langsung.

C. Response Time

Response time adalah waktu yang dibutuhkan server
untuk merespons permintaan klien sejak permintaan dikirim
hingga respons diterima [8].

D. Error Rate

Error rate merupakan persentase kegagalan permintaan
selama pengujian, dihitung dari perbandingan antara jumlah
permintaan gagal dan total permintaan [9].

E. Throughput

Jumlah permintaan yang diproses server per detik, diukur
dalam satuan request per second (rps) atau bits per second
[9].

F. Apache JMeter

Apache JMeter adalah sebuah perangkat lunak yang
digunakan untuk melakukan pengujian performa dengan
mensimulasikan beban kerja pada server atau sistem [8].

III. PERANCANGAN SISTEM
Memberikan gambaran rancangan penelitian yang

meliputi prosedur atau langkah-langkah penelitian, waktu
penelitian, sumber data, cara perolehan data dan menjelaskan
metode yang akan digunakan dalam penelitian.

A. Arsitektur Sistem

GAMBAR 1
Arsitektur Sistem

Sistem penelitian ini dibangun pada infrastruktur cloud
Microsoft Azure dengan konsep cluster container
menggunakan Docker Swarm sebagai orkestrator. Empat
virtual machine dikonfigurasi dalam satu virtual network,
terdiri dari satu manager node dan tiga worker node. Layanan
web server NGINX dijalankan secara terdistribusi melalui
mekanisme replikasi untuk mendukung skalabilitas.
Pengujian dilakukan menggunakan Apache JMeter yang
diarahkan ke manager node untuk mengukur performa
NGINX pada berbagai skenario jumlah replika dan variasi
beban permintaan.

B. Alur Perancangan Sistem

GAMBAR 2

Alur Perancangan Sistem

Proses penelitian diawali dengan identifikasi masalah,
penentuan perangkat lunak, dan perancangan arsitektur
sistem. Selanjutnya dibuat empat virtual machine di
Microsoft Azure dalam satu resource group dan virtual
network, terdiri dari satu manager node dan tiga worker node,
disertai konfigurasi network security group. Setelah itu,
Docker diinstal pada seluruh node dan Docker Swarm
diinisialisasi pada manager node.

Tiga worker node ditambahkan ke dalam cluster dan
melakukan validasi koneksi. Layanan web server NGINX
kemudian dideploy secara terdistribusi di seluruh node,
dilanjutkan replikasi untuk menjalankan layanan pada
masing-masing worker node. Validasi dilakukan dengan
mengakses layanan melalui peramban. Apache JMeter
kemudian dikonfigurasi untuk membuat skenario pengujian
dengan variasi beban permintaan, dan pengujian dijalankan
untuk memperoleh parameter response time, throughput, dan
error rate.

IV. HASIL DAN PEMBAHASAN

A. Hasil Swarm
Cluster Container yang berhasil dibuat dapat divalidasi

sehingga dapat terlihat anggota cluster yang terdiri dari satu
manager node dan tiga worker node. Status dan peran dari
seluruh node di dalam cluster dapat terlihat melalui proses
validasi.

GAMBAR 3
Anggota Swarm Cluster

B. Hasil Deployment dan Replikasi Sistem Layanan Web

Layanan web server NGINX direplikasi sebanyak enam
replika yang tersebar di dalam container yang ada pada
seluruh node berdasarkan distribusi internal Docker Swarm.

GAMBAR 4

Hasil dan Lokasi Replika Layanan Web Server

ISSN : 2442-5826 e-Proceeding of Applied Science : Vol.11, No.5 Oktober 2025 | Page 1801

C. Hasil Pengujian High Availability
Pengujian high availability dilakukan dengan cara

mengubah status dari salah satu worker node menjadi ‘drain’
sehingga node tidak dapat mengerjakan atau menerima
layanan. Pada pengujian ini, masing-masing node diubah
status menjadi ‘drain’ untuk diuji dengan diaktifkan kembali
setelah selesai dilakukan pengujian.

TABEL 1

Hasil Pengujian Drain Node worker1

Container Node Awal Node Baru
nginx_web.1 worker1 DockerManager
nginx_web.2 worker2 worker2
nginx_web.3 worker3 worker3
nginx_web.4 worker3 worker3
nginx_web.5 worker1 worker2
nginx_web.6 DockerManager DockerManager

TABEL 2

Hasil Pengujian Drain Node worker2

D. Hasil Pengujian Skalabilitas

Pengujian skalabilitas dilakukan dengan melakukan
simulasi beban melalui Apache Jmeter dengan skenario
variasi pengujian berupa variasi replika (5, 10, 15 replika)
dan variasi beban permintaan per detik (50, 100, 150, 200 per
detik).

TABEL 4

Hasil Response Time

Jumlah
Permintaan

Jumlah Replika
5 10 15

50 156.5ms 155.4ms 154.2ms

100 203.4ms 159.6ms 140.8ms

150 178.8ms 141.6ms 123.6ms

200 345.5ms 195.9ms 110.8ms

Container Node Awal Node Baru
nginx_web.1 DockerManager DockerManager
nginx_web.2 worker2 worker1
nginx_web.3 worker3 worker3
nginx_web.4 worker3 worker3
nginx_web.5 worker2 worker1
nginx_web.6 DockerManager DockerManager

TABEL 3

Hasil Pengujian Drain Node worker3

Container Node Awal Node Baru
nginx_web.1 DockerManager DockerManager
nginx_web.2 worker1 worker1
nginx_web.3 worker3 worker2
nginx_web.4 worker3 worker2
nginx_web.5 worker1 worker1
nginx_web.6 DockerManager DockerManager

TABEL 4

Hasil Pengujian Drain Node DockerManager

Container Node Awal Node Baru
nginx_web.1 DockerManager worker3
nginx_web.2 worker1 worker1
nginx_web.3 worker2 worker2
nginx_web.4 worker2 worker2
nginx_web.5 worker1 worker1
nginx_web.6 DockerManager worker3

Dari hasil pengujian tersebut dapat diketahui bahwa

container akan secara otomatis berpindah ke node baru
Ketika node Lokasi awal diubah statusnya menjadi ‘drain’.

GAMBAR 5

Grafik Response Time

Pada beban 50 permintaan per detik, response time turun
dari 156,5 ms (5 replika) menjadi 155,4 ms (10 replika) dan
154,2 ms (15 replika). Pada beban 100 permintaan per detik,
terjadi penurunan dari 203,4 ms menjadi 140,8 ms. Beban
150 permintaan per detik menghasilkan penurunan dari 178,8
ms menjadi 123,6 ms. Penurunan paling signifikan terjadi
pada beban 200 permintaan per detik, yaitu dari 345,5 ms
menjadi 110,8 ms (15 replika). Hasil ini menunjukkan bahwa
penambahan replika mampu meningkatkan kecepatan respon
sistem, terutama saat beban permintaan tinggi.

TABEL 5

Hasil Error Rate

Jumlah
Permintaan

Jumlah Replika
5 10 15

50 0.00% 0.00% 0.00%
100 0.00% 0.00% 0.00%
150 0.00% 0.00% 0.00%
200 0.00% 0.00% 0.00%

2000 0.00% 0.00% 0.00%
2050 1.56% 0.00% 0.00%
2100 2.13% 0.00% 0.00%
2150 2.38% 1.36% 0.00%
2200 2.91% 2.43% 0.00%

Grafik Response Time
400
200

0
50 100 150 200

5 Replikas 10 Replika 15 Replika re

sp
on

se
 ti

m
e

(m
s)

ISSN : 2442-5826 e-Proceeding of Applied Science : Vol.11, No.5 Oktober 2025 | Page 1802

GAMBAR 6

Grafik Error Rate

Berdasarkan tabel tersebut, dapat diketahui bahwa sistem
stabil dan dapat menangani permintaan dengan baik dengan
beban mencapai 2000 permintaan per detik.

TABEL 6

Hasil Throughput

GAMBAR 7

Grafik Throughput

Hasil pengujian menunjukkan bahwa throughput
meningkat seiring bertambahnya jumlah replika, terutama
pada beban tinggi. Pada 50 permintaan per detik, throughput
relatif sama di kisaran 44 rps. Perbedaan mulai terlihat pada
100 permintaan per detik, dengan peningkatan dari 81,72 rps
(5 replika) menjadi 86,84 rps (15 replika). Pada 150
permintaan/detik, throughput naik dari 114,61 rps menjadi
124,59 rps, dan efek paling signifikan terjadi pada 200
permintaan/detik, yaitu dari 135,43 rps menjadi 177,62 rps.
Hal ini menunjukkan bahwa penambahan replika
meningkatkan kapasitas pemrosesan sistem, khususnya pada
beban permintaan yang tinggi.

GAMBAR 8
Hasil View Results Tree

Error rate 0% berarti semua permintaan berhasil diproses

tanpa kegagalan, namun hal ini tidak secara otomatis
membuat throughput sama persis dengan jumlah permintaan
yang dikirim per detik. Hal ini dapat terjadi karena adanya
delay atau latency dalam pemrosesan, baik di sisi jaringan
maupun aplikasi, sehingga sebagian request yang dikirim
pada detik tertentu baru selesai diproses pada detik
berikutnya. Akibatnya, walaupun semua permintaan
berstatus sukses (terbukti dari View Result Tree yang
seluruhnya hijau), distribusi waktu penyelesaiannya tidak
merata tepat dalam satu detik, sehingga throughput yang
diukur per detik menjadi lebih rendah dari target pengiriman.

V. KESIMPULAN

Berdasarkan hasil perancangan, implementasi, dan
pengujian, sistem cluster container menggunakan Docker
Swarm pada infrastruktur Microsoft Azure berhasil dibangun
dengan konfigurasi satu manager node dan tiga worker node,
yang mampu mendukung pengelolaan layanan secara
terdistribusi dan skalabel. Pengujian dilakukan pada layanan
web server berbasis NGINX dengan variasi jumlah replika (5,
10, dan 15) dan beban permintaan (50, 100, 150, dan 200
permintaan per detik) menggunakan Apache JMeter, dengan
parameter response time, error rate, dan throughput. Hasil
pengujian menunjukkan bahwa Docker Swarm mampu
menjaga ketersediaan layanan melalui konsep replikasi, serta
memberikan peningkatan kinerja seiring penambahan
replika. Rata-rata throughput meningkat dari 93,95 rps
menjadi 108,885 rps, sementara error rate tetap 0% meskipun
beban mencapai 2000 permintaan per detik. Selain itu,
response time cenderung stabil di bawah 160 ms pada
sebagian besar skenario. Dengan demikian, penambahan
replika terbukti dapat meningkatkan kapasitas pemrosesan,
menjaga response time tetap stabil, dan mempertahankan
error rate yang rendah meskipun beban permintaan
meningkat.

REFERENSI

[1] S. N. Putri and M. A. F. Ridha, "IMPLEMENTASI

CLUSTERED CONTAINER DENGAN DOCKER
SWARM," 9th Applied Business and Engineering
Conference, vol. 9, pp. 201-208, 2021.

Jumlah Replika

Grafik Error Rate
5,00%

0,00%
50 100 150 200 20002050210021502200

5 Replikas 10 Replika 15 Replika

Grafik Throughput
200

100

0
50 100 150 200

5 Replikas 10 Replika 15 Replika

Th
ro

ug
hp

ut
 (r

ps
)

er
ro

r r
at

e
(%

)

ISSN : 2442-5826 e-Proceeding of Applied Science : Vol.11, No.5 Oktober 2025 | Page 1803

[2] M. A. Nugroho and C. Subiyantoro, "ANALISIS
CLUSTER CONTAINER PADA KUBERNETES
DENGAN INFRASTRUKTUR GOOGLECLOUD
PLATFORM," JIPI (Jurnal Ilmiah Penelitian dan
Pembelajaran Informatika), vol. 03, no. 02, pp. 84-
93, 2018.

[3] S. E. Prasetyo and Y. Salimin, "Analisis
Perbandingan Performa Web Server Docker Swarm
dengan Kubernetes Cluster," Conference on
Management, Business, Innovation, Education and
Social Science, vol. 1, no. 1, pp. 826-833, 2021.

[4] W. Aldiwidianto and I. G. L. E. Prismana, "Analisis
Perbandingan High Availability Pada Web Server
Menggunakan Orchestration Tool Kubernetes Dan
Docker Swarm," Journal of Informatics and
Computer Science, vol. 05, no. 01, pp. 138-148,
2023.

[5] N. Singh, Y. Hamid, S. Juneja, G. Srivastava, G.
Dhiman, T. R. Gadekallu and M. A. Shah, "Load
balancing and service discovery using Docker Swarm
for microservice based big data applications,"
Journal of Cloud Computing: Advances, System and
Applications, vol. 12, no. 4, pp. 1-9, 2023.

[6] A. S. Manalu, I. M. Siregar, N. J. Panjaitan and H.
Sugara, "RANCANG BANGUN
INFRASTRUKTUR CLOUD COMPUTING
DENGAN," Jurnal TEKINKOM, vol. 4, no. 2, pp.
303-311, 2021.

[7] E. Nurmiati, "ANALISIS DAN PERANCANGAN
WEB SERVER PADA HANDPHONE," STUDIA
INFORMATIKA: JURNAL SISTEM INFORMASI,
vol. 5, no. 2, pp. 1-17, 2012.

[8] A. C. Barus, J. Harungguan and E. Manulu,
"PENGUJIAN API WEBSITE UNTUK
PERBAIKAN PERFORMANSI," Journal of Applied
Technology and Informatics, vol. 1, no. 3, pp. 14-21,
2021.

[9] G. Y. Kusuma and U. Y. Oktiawati, "Perancangan
Sistem Monitoring Performa Aplikasi
Menggunakan," Journal of Internet and Software
Engineering (JISE), vol. 3, no. 1, pp. 26-35, 2022.

.

ISSN : 2442-5826 e-Proceeding of Applied Science : Vol.11, No.5 Oktober 2025 | Page 1804

	I. PENDAHULUAN
	III. PERANCANGAN SISTEM
	IV. HASIL DAN PEMBAHASAN
	GAMBAR 4
	TABEL 1
	TABEL 2
	TABEL 4
	TABEL 3
	TABEL 4
	GAMBAR 5
	TABEL 5
	GAMBAR 6
	TABEL 6
	GAMBAR 7
	GAMBAR 8
	V. KESIMPULAN
	REFERENSI

