ISSN : 2442-5826

e-Proceeding of Applied Science : Vol.11, No.5 Oktober 2025 | Page 1800

Implementasi Cluster Container dengan Docker
Swarm pada Infrastruktur Microsoft Azure

Angelie Rachmadhani Aulia
Fakultas Ilmu Terapan
Universitas Telkom
Bandung, Indonesia
angellraa@student.telkomuniversity.ac.
id

Abstrak — Kebutuhan akan layanan web server yang dapat
diskalakan dan memiliki ketersediaan tinggi mendorong
pemanfaatan teknologi orkestrasi container. Penelitian ini
mengimplementasikan cluster container menggunakan Docker
Swarm pada infrastruktur cloud Microsoft Azure dengan
konfigurasi satu node manajer dan tiga node pekerja. Layanan
NGINX dijalankan dalam container dan direplikasi untuk
menguji skalabilitas, kinerja, serta ketersediaan. Pengujian
dilakukan menggunakan Apache JMeter dengan tiga skenario
replika (5, 10, dan 15) serta empat variasi beban permintaan
(50, 100, 150, dan 200 request/detik). Parameter yang diukur
meliputi response time, error rate, dan throughput. Hasil
menunjukkan bahwa peningkatan replika dari 5 menjadi 15
mampu meningkatkan throughput rata-rata dari 93 menjadi
108 request/detik, dengan error rate tetap 0% meskipun beban
mencapai 2000 request/detik. Response time juga relatif stabil
di bawah 160 ms pada sebagian besar variasi beban. Selain itu,
sistem mampu menjaga ketersediaan melalui pemindahan
container otomatis saat terjadi perubahan status node,
menunjukkan keandalan Docker Swarm dalam mengelola
layanan berbasis container pada lingkungan cloud.

Kata kunci— docker, swarm, replika, throughput, response
time

I. PENDAHULUAN

Kemajuan teknologi menuntut infrastruktur jaringan
yang mampu menyediakan skalabilitas dan ketersediaan
tinggi. Cloud Computing menjadi solusi dengan
menyediakan akses data dan aplikasi melalui internet tanpa
instalasi lokal [1]. Microsoft Azure merupakan salah satu
platform cloud yang banyak digunakan karena fleksibilitas
pengelolaan infrastruktur virtual. Namun, lonjakan
permintaan pengguna dapat meningkatkan beban server,
sehingga dibutuhkan solusi efisien untuk mempertahankan
kinerja.

Teknologi container menawarkan lingkungan terisolasi
yang ringan dan konsisten, sehingga proses deployment
layanan web lebih cepat dibandingkan virtual machine [2].
Untuk skala besar, container memerlukan sistem orkestrasi
guna memastikan ketersediaan dan meminimalkan

Muhammad Igbal
Fakultas Ilmu Terapan
Universitas Telkom
Bandung, Indonesia
migbal@telkomuniversity.ac.id

Agus Ganda Permana
Fakultas Ilmu Terapan
Universitas Telkom
Bandung, Indonesia
gandapermana@telkomuniversity.ac.id

kesalahan. Docker sebagai platform open source mampu
mengotomatisasi deployment aplikasi [3], sementara Docker
Swarm sebagai pengembangannya memungkinkan
pengelolaan cluster container melalui konsep node manajer
dan node pekerja, serta mendukung penambahan node dalam
jumlah besar untuk pengujian berskala dan kondisi mendekati
nyata [4].

II. KAIJIAN TEORI
Kajian teori ini membahas konsep-konsep yang menjadi
dasar penelitian, meliputi teknologi cluster container,
infrastruktur cloud, dan pengujian performa layanan web.

A. Cluster Container dengan Docker Swarm

Artikel Cluster container merupakan sekumpulan
container yang dikelola secara terdistribusi untuk
menjalankan aplikasi beserta dependensinya dalam

lingkungan terisolasi. Platform orkestrasi seperti Kubernetes
dan Docker Swarm digunakan untuk mengatur interaksi,
distribusi beban kerja, serta ketersediaan layanan [2].

Docker Swarm adalah alat orkestrasi open source yang
mengelola dan menghubungkan node dalam sebuah cluster.
Fitur utamanya meliputi keamanan, skalabilitas,
pemeliharaan, dan kemampuan melakukan pemulihan
otomatis jika terjadi kegagalan container. Arsitektur Docker
Swarm terdiri dari manager node yang bertugas mengatur lalu
lintas permintaan klien, serta worker node yang
mengeksekusi layanan. Permintaan klien diarahkan ke
manager node dan didistribusikan secara merata ke worker
node melalui mekanisme internal load balancing [5].

B. Infrastruktur Microsoft Azure

Cloud computing merupakan model komputasi yang
memungkinkan akses jaringan sesuai permintaan terhadap
sumber daya komputasi yang dikelola penyedia layanan [6].
Web server berperan menerima permintaan dari klien,
memprosesnya, dan mengirimkan respons berupa halaman
web atau data melalui protokol HTTP/HTTPS [7].

Microsoft Azure adalah platform cloud yang
menyediakan layanan Platform as a Service (PaaS) untuk
membangun, mengelola, dan menghosting aplikasi web [8].

mailto:angellraa@student.telkomuniversity.ac
mailto:miqbal@telkomuniversity.ac.id
mailto:gandapermana@telkomuniversity.ac.id

ISSN : 2442-5826

Microsoft Azure menawarkan fleksibilitas, skalabilitas, dan
keamanan tinggi tanpa memerlukan pengelolaan perangkat
keras secara langsung.

C. Response Time

Response time adalah waktu yang dibutuhkan server
untuk merespons permintaan klien sejak permintaan dikirim
hingga respons diterima [8].

D. Error Rate

Error rate merupakan persentase kegagalan permintaan
selama pengujian, dihitung dari perbandingan antara jumlah
permintaan gagal dan total permintaan [9].

E. Throughput
Jumlah permintaan yang diproses server per detik, diukur
dalam satuan request per second (rps) atau bits per second

(8

F. Apache JMeter

Apache JMeter adalah sebuah perangkat lunak yang
digunakan untuk melakukan pengujian performa dengan
mensimulasikan beban kerja pada server atau sistem [8].

III. PERANCANGAN SISTEM

Memberikan gambaran rancangan penelitian yang
meliputi prosedur atau langkah-langkah penelitian, waktu
penelitian, sumber data, cara perolehan data dan menjelaskan
metode yang akan digunakan dalam penelitian.

A. Arsitektur Sistem

Gocker swarm |
(oot] |
el |
SwarmManagerfo
+ Nginx
S
* Kibana
:
et wa A Swarmworkerz| | Swarm werker 3
+ Nginx * Nginx * Nginx
+ Filobeat * Filebeat + Filebeat
* Metricbeat * Metricbeat * Metricbeat

Arsitektur Sistem

Sistem penelitian ini dibangun pada infrastruktur cloud
Microsoft Azure dengan konsep cluster container
menggunakan Docker Swarm sebagai orkestrator. Empat
virtual machine dikonfigurasi dalam satu virtual network,
terdiri dari satu manager node dan tiga worker node. Layanan
web server NGINX dijalankan secara terdistribusi melalui
mekanisme replikasi untuk mendukung skalabilitas.
Pengujian dilakukan menggunakan Apache JMeter yang
diarahkan ke manager node untuk mengukur performa
NGINX pada berbagai skenario jumlah replika dan variasi
beban permintaan.

B. Alur Perancangan Sistem

e-Proceeding of Applied Science : Vol.11, No.5 Oktober 2025 | Page 1801

S ®

Pembuatan Virtual Machine di
Microsoft Azure

Validasi
layanan web
server

gagal

Konfigurasi JMeter
Pengujian performa dengan
JMeter

Selesai

GAMBAR 2
Alur Perancangan Sistem

Proses penelitian diawali dengan identifikasi masalah,
penentuan perangkat lunak, dan perancangan arsitektur
sistem. Selanjutnya dibuat empat virtual machine di
Microsoft Azure dalam satu resource group dan virtual
network, terdiri dari satu manager node dan tiga worker node,
disertai konfigurasi network security group. Setelah itu,
Docker diinstal pada seluruh node dan Docker Swarm
diinisialisasi pada manager node.

Tiga worker node ditambahkan ke dalam cluster dan
melakukan validasi koneksi. Layanan web server NGINX
kemudian dideploy secara terdistribusi di seluruh node,
dilanjutkan replikasi untuk menjalankan layanan pada
masing-masing worker node. Validasi dilakukan dengan
mengakses layanan melalui peramban. Apache JMeter
kemudian dikonfigurasi untuk membuat skenario pengujian
dengan variasi beban permintaan, dan pengujian dijalankan
untuk memperoleh parameter response time, throughput, dan
error rate.

IV. HASIL DAN PEMBAHASAN

A. Hasil Swarm

Cluster Container yang berhasil dibuat dapat divalidasi
sehingga dapat terlihat anggota cluster yang terdiri dari satu
manager node dan tiga worker node. Status dan peran dari
seluruh node di dalam cluster dapat terlihat melalui proses
validasi.

g
STATUS ~ AVAILABILITY ~ MANAGER STATUS
Ready Active e

Ready Active
Ready Active
Ready Active

GAMBAR 3
Anggota Swarm Cluster

B. Hasil Deployment dan Replikasi Sistem Layanan Web

Layanan web server NGINX direplikasi sebanyak enam
replika yang tersebar di dalam container yang ada pada
seluruh node berdasarkan distribusi internal Docker Swarm.

GAMBAR 4

Hasil dan Lokasi Replika Layanan Web Server

ISSN : 2442-5826

C. Hasil Pengujian High Availability

Pengujian high availability dilakukan dengan cara
mengubabh status dari salah satu worker node menjadi ‘drain’
sehingga node tidak dapat mengerjakan atau menerima
layanan. Pada pengujian ini, masing-masing node diubah
status menjadi ‘drain’ untuk diuji dengan diaktifkan kembali
setelah selesai dilakukan pengujian.

TABEL 1

Hasil Pengujian Drain Node worker1

Container Node Awal Node Baru
nginx_web.1 workerl DockerManager
nginx_web.2 worker2 worker2
nginx_web.3 worker3 worker3
nginx_web.4 worker3 worker3
nginx_web.5 workerl worker2
nginx_web.6 DockerManager DockerManager

TABEL 2

Hasil Pengujian Drain Node worker2

Container Node Awal Node Baru
nginx_web.1 DockerManager DockerManager
nginx_web.2 worker2 workerl
nginx_web.3 worker3 worker3
nginx_web.4 worker3 worker3
nginx_web.5 worker2 workerl
nginx_web.6 DockerManager DockerManager

TABEL 3

Hasil Pengujian Drain Node worker3

Container Node Awal Node Baru
nginx_web.1 DockerManager DockerManager
nginx_web.2 workerl workerl
nginx_web.3 worker3 worker2
nginx_web.4 worker3 worker2
nginx_web.5 workerl workerl
nginx_web.6 DockerManager DockerManager

TABEL 4

Hasil Pengujian Drain Node DockerManager

Container Node Awal Node Baru
nginx_web.1 DockerManager worker3
nginx_web.2 workerl workerl
nginx_web.3 worker2 worker2
nginx_web.4 worker2 worker2
nginx_web.5 workerl workerl
nginx_web.6 DockerManager worker3

Dari hasil pengujian tersebut dapat diketahui bahwa
container akan secara otomatis berpindah ke node baru
Ketika node Lokasi awal diubah statusnya menjadi ‘drain’.

D. Hasil Pengujian Skalabilitas

e-Proceeding of Applied Science : Vol.11, No.5 Oktober 2025 | Page 1802

Pengujian skalabilitas dilakukan dengan melakukan
simulasi beban melalui Apache Jmeter dengan skenario
variasi pengujian berupa variasi replika (5, 10, 15 replika)
dan variasi beban permintaan per detik (50, 100, 150, 200 per

detik).
TABEL 4
Hasil Response Time
Jumlah Jumlah Replika
Permintaan 5 10 15
50 156.5ms 155.4ms 154.2ms
100 203.4ms 159.6ms 140.8ms
150 178.8ms 141.6ms 123.6ms
200 345.5ms 195.9ms 110.8ms
Grafik Response Time
400
£ 200 I
s, EEN Hum 1§
= 50 100 150 200
é Jumlah permintaan per detik
g
= M 5Replikas ® 10 Replika 15 Replika
GAMBAR 5
Grafik Response Time

Pada beban 50 permintaan per detik, response time turun
dari 156,5 ms (5 replika) menjadi 155,4 ms (10 replika) dan
154,2 ms (15 replika). Pada beban 100 permintaan per detik,
terjadi penurunan dari 203,4 ms menjadi 140,8 ms. Beban
150 permintaan per detik menghasilkan penurunan dari 178,8
ms menjadi 123,6 ms. Penurunan paling signifikan terjadi
pada beban 200 permintaan per detik, yaitu dari 345,5 ms
menjadi 110,8 ms (15 replika). Hasil ini menunjukkan bahwa
penambahan replika mampu meningkatkan kecepatan respon
sistem, terutama saat beban permintaan tinggi.

TABEL 5

Hasil Error Rate

Jumlah Jumlah Replika
Permintaan 5 10 15
50 0.00% 0.00% 0.00%
100 0.00% 0.00% 0.00%
150 0.00% 0.00% 0.00%
200 0.00% 0.00% 0.00%
2000 0.00% 0.00% 0.00%
2050 1.56% 0.00% 0.00%
2100 2.13% 0.00% 0.00%
2150 2.38% 1.36% 0.00%
2200 2.91% 2.43% 0.00%

ISSN : 2442-5826

Grafik Error Rate

5,00%

S

(O]

g 50 100 150 200 20002050210021502200

(O] . .
Jumlah permintaan per detik

B 5 Replikas ® 10 Replika 15 Replika
GAMBAR 6

Grafik Error Rate

Berdasarkan tabel tersebut, dapat diketahui bahwa sistem
stabil dan dapat menangani permintaan dengan baik dengan
beban mencapai 2000 permintaan per detik.

TABEL 6
Hasil Throughput
Jumlah Jumlah Replika
Permintaan 5 10 15
50 44.02rps 44.11rps 44.49rps
100 81.72rps 86.09rps 86.84rps
150 114.61rps 121.26rps 124.591ps
200 135.431ps 153.031ps 177.62rps
Grafik Throughput
200
£ m
é_ o HN I I
% 50 100 150 200
o . .
E Jumlah permintaan per detik
B 5 Replikas ® 10 Replika 15 Replika
GAMBAR 7
Grafik Throughput
Hasil pengujian menunjukkan bahwa throughput

meningkat seiring bertambahnya jumlah replika, terutama
pada beban tinggi. Pada 50 permintaan per detik, throughput
relatif sama di kisaran 44 rps. Perbedaan mulai terlihat pada
100 permintaan per detik, dengan peningkatan dari 81,72 rps
(5 replika) menjadi 86,84 rps (15 replika). Pada 150
permintaan/detik, throughput naik dari 114,61 rps menjadi
124,59 rps, dan efek paling signifikan terjadi pada 200
permintaan/detik, yaitu dari 135,43 rps menjadi 177,62 rps.
Hal ini menunjukkan bahwa penambahan replika
meningkatkan kapasitas pemrosesan sistem, khususnya pada
beban permintaan yang tinggi.

e-Proceeding of Applied Science : Vol.11, No.5 Oktober 2025 | Page 1803

GAMBAR 8
Hasil View Results Tree

Error rate 0% berarti semua permintaan berhasil diproses
tanpa kegagalan, namun hal ini tidak secara otomatis
membuat throughput sama persis dengan jumlah permintaan
yang dikirim per detik. Hal ini dapat terjadi karena adanya
delay atau latency dalam pemrosesan, baik di sisi jaringan
maupun aplikasi, sehingga sebagian request yang dikirim
pada detik tertentu baru selesai diproses pada detik
berikutnya. Akibatnya, walaupun semua permintaan
berstatus sukses (terbukti dari View Result Tree yang
seluruhnya hijau), distribusi waktu penyelesaiannya tidak
merata tepat dalam satu detik, sehingga throughput yang
diukur per detik menjadi lebih rendah dari target pengiriman.

V.KESIMPULAN

Berdasarkan hasil perancangan, implementasi, dan
pengujian, sistem cluster container menggunakan Docker
Swarm pada infrastruktur Microsoft Azure berhasil dibangun
dengan konfigurasi satu manager node dan tiga worker node,
yang mampu mendukung pengelolaan layanan secara
terdistribusi dan skalabel. Pengujian dilakukan pada layanan
web server berbasis NGINX dengan variasi jumlah replika (5,
10, dan 15) dan beban permintaan (50, 100, 150, dan 200
permintaan per detik) menggunakan Apache JMeter, dengan
parameter response time, error rate, dan throughput. Hasil
pengujian menunjukkan bahwa Docker Swarm mampu
menjaga ketersediaan layanan melalui konsep replikasi, serta
memberikan peningkatan kinerja seiring penambahan
replika. Rata-rata throughput meningkat dari 93,95 rps
menjadi 108,885 rps, sementara error rate tetap 0% meskipun
beban mencapai 2000 permintaan per detik. Selain itu,
response time cenderung stabil di bawah 160 ms pada
sebagian besar skenario. Dengan demikian, penambahan
replika terbukti dapat meningkatkan kapasitas pemrosesan,
menjaga response time tetap stabil, dan mempertahankan
error rate yang rendah meskipun beban permintaan
meningkat.

REFERENSI

[1] S. N. Putri and M. A. F. Ridha, "IMPLEMENTASI
CLUSTERED CONTAINER DENGAN DOCKER
SWARM," 9th Applied Business and Engineering
Conference, vol. 9, pp. 201-208, 2021.

ISSN : 2442-5826 e-Proceeding of Applied Science : Vol.11, No.5 Oktober 2025 | Page 1804

[2] M. A. Nugroho and C. Subiyantoro, "ANALISIS [6] A. S. Manalu, I. M. Siregar, N. J. Panjaitan and H.
CLUSTER CONTAINER PADA KUBERNETES Sugara, "RANCANG BANGUN
DENGAN INFRASTRUKTUR GOOGLECLOUD INFRASTRUKTUR CLOUD COMPUTING
PLATFORM," JIPI (Jurnal Ilmiah Penelitian dan DENGAN," Jurnal TEKINKOM, vol. 4, no. 2, pp.
Pembelajaran Informatika), vol. 03, no. 02, pp. 84- 303-311, 2021.
93,2018. [7] E. Nurmiati, "ANALISIS DAN PERANCANGAN

[3] S. E. Prasetyo and Y. Salimin, "Analisis WEB SERVER PADA HANDPHONE," STUDIA
Perbandingan Performa Web Server Docker Swarm INFORMATIKA: JURNAL SISTEM INFORMASI,
dengan Kubernetes Cluster," Conference on vol. 5, no. 2, pp. 1-17, 2012.
Management, Business, Innovation, Education and [8] A. C. Barus, J. Harungguan and E. Manulu,
Social Science, vol. 1, no. 1, pp. 826-833, 2021. "PENGUJIAN API WEBSITE UNTUK

[4] W. Aldiwidianto and I. G. L. E. Prismana, "Analisis PERBAIKAN PERFORMANSIL," Journal of Applied
Perbandingan High Availability Pada Web Server Technology and Informatics, vol. 1, no. 3, pp. 14-21,
Menggunakan Orchestration Tool Kubernetes Dan 2021.
Docker Swarm," Journal of Informatics and [9] G. Y. Kusuma and U. Y. Oktiawati, "Perancangan
Computer Science, vol. 05, no. 01, pp. 138-148, Sistem Monitoring Performa Aplikasi
2023. Menggunakan," Journal of Internet and Software

[5] N. Singh, Y. Hamid, S. Juneja, G. Srivastava, G. Engineering (JISE), vol. 3, no. 1, pp. 26-35, 2022.

Dhiman, T. R. Gadekallu and M. A. Shah, "Load
balancing and service discovery using Docker Swarm
for microservice based big data applications,"
Journal of Cloud Computing: Advances, System and
Applications, vol. 12, no. 4, pp. 1-9, 2023.

	I. PENDAHULUAN
	III. PERANCANGAN SISTEM
	IV. HASIL DAN PEMBAHASAN
	GAMBAR 4
	TABEL 1
	TABEL 2
	TABEL 4
	TABEL 3
	TABEL 4
	GAMBAR 5
	TABEL 5
	GAMBAR 6
	TABEL 6
	GAMBAR 7
	GAMBAR 8
	V. KESIMPULAN
	REFERENSI

