Pelacakan Kerumunan Adaptif: Deteksi Cerdas Berdasarkan Pergerakan Pengunjung Di Area Wisata Menggunakan Yolo
Abstract
Pertumbuhan jumlah pengunjung di kawasan wisata terbuka seperti Kawah Putih mendorong perlunya sistem pemantauan keramaian yang akurat dan efisien untuk mendukung pengambilan keputusan pengelola dalam menjaga kenyamanan dan keamanan pengunjung. Penelitian ini mengembangkan sistem deteksi dan penghitung keramaian berbasis pergerakan (movement counter) secara real-time menggunakan algoritma YOLOv8 untuk deteksi objek dan centroid tracker untuk pelacakan arah gerak. Sistem ini mampu membedakan pergerakan masuk dan keluar pengunjung dengan memanfaatkan metode pendeteksian garis lintas (line crossing). Hasil deteksi diintegrasikan dengan platform web menggunakan framework Flask, sehingga data jumlah pengunjung dapat ditampilkan secara real-time dalam bentuk grafik dan tabel. Pengujian dilakukan pada lokasi dengan tingkat keramaian tinggi. Hasil menunjukkan bahwa sistem mampu mendeteksi pergerakan individu secara akurat, dengan performa yang stabil di berbagai kondisi lingkungan. Penelitian ini membuktikan bahwa sistem crowd monitoring berbasis AI dan computer vision dapat diimplementasikan secara efektif untuk mendukung pengelolaan destinasi wisata secara modern dan non-invasif.
Kata kunci— pendeteksi keramaian, penghitung pergerakan, YOLOv8, centroid tracker, monitoring real-time, area wisata.
References
J. R. Santana, L. Sanchez, P. Sotres, J. Lanza, T. Llorente, dan L. Munoz, “A Privacy-Aware Crowd Management System for Smart Cities and Smart Buildings,” IEEE Access, vol. 8, hlm. 135394–135405, 2020, doi: 10.1109/ACCESS.2020.3010609.
R. Ye. Dobryshev, “Tasks of visual crowd analysis in intelligent video surveillance systems,” Informatics. Culture. Technology, vol. 1, no. 1, hlm. 212–220, Sep 2024, doi: 10.15276/ICT.01.2024.32.
A. Dionis-Ros, J. Vila-Francés, R. Magdalena-Benedicto, F. Mateo, dan A. J. Serrano-López, “Multimodal video analysis for crowd anomaly detection using open access tourism cameras,” Mei 2024, Diakses: 7 Mei 2025. [Daring]. Tersedia pada: https://arxiv.org/pdf/2405.12708
F. Brito E Abreu dkk., “A digital transformation approach to scaffold tourism crowding management: pre-factum, on-factum, and post-factum,” 2024 Joint International Conference on Digital Arts, Media and Technology with ECTI Northern Section Conference on Electrical, Electronics, Computer and Telecommunications Engineering, hlm. 586–591, 2024, doi: 10.1109/ECTIDAMTNCON60518.2024.10480056.
O. Yamada, Y. Matsuda, H. Suwa, dan K. Yasumoto, “Crowd Flow Prediction from Mobile Traces Through Time Series PoI Stay Counts,” Proceedings - 2024 IEEE International Conference on Smart Computing, SMARTCOMP 2024, hlm. 266–271, Jun 2024, doi: 10.1109/SMARTCOMP61445.2024.00066.
G. Indah Hapsari dkk., “MOVING OBJECT ACTIVATOR IN BACKGROUND SUBTRACTION ALGORITHM FOR AUTOMATIC PASSENGER COUNTER SYSTEM IN PUBLIC TRANSPORTATION.”
H. Padrón-ávila dan R. Hernández-Martín, “How can researchers track tourists? A bibliometric content analysis of tourist tracking techniques,” European Journal of Tourism Research, vol. 26, hlm. 2601–2601, Agu 2020, doi: 10.54055/EJTR.V26I.1932.
M. Trépanier, N. Tranchant, dan R. Chapleau, “Individual trip destination estimation in a transit smart card automated fare collection system,” Journal of Intelligent Transportation Systems: Technology, Planning, and Operations, vol. 11, no. 1, hlm. 1–14, Jan 2007, doi: 10.1080/15472450601122256.
H. Q. Vu, G. Li, R. Law, dan Y. Zhang, “Tourist Activity Analysis by Leveraging Mobile Social Media Data,” J Travel Res, vol. 57, no. 7, hlm. 883–898, Sep 2018, doi: 10.1177/0047287517722232/ASSET/00187B81-4799-486C-B09A-85025BDE59FF/ASSETS/IMAGES/LARGE/10.1177_0047287517722232-FIG6.JPG.
J. Redmon dan A. Farhadi, “YOLOv3: An Incremental Improvement,” Apr 2018, Diakses: 30 Januari 2025. [Daring]. Tersedia pada: https://arxiv.org/abs/1804.02767v1
B. D. Lucas dan T. Kanade, “An Iterative Image Registration Technique with an Application to Stereo Vision (IJCAI).” Diakses: 30 Januari 2025. [Daring]. Tersedia pada: https://www.researchgate.net/publication/215458777_An_Iterative_Image_Registration_Technique_with_an_Application_to_Stereo_Vision_IJCAI
Z. Jiang, C. Li, T. Qu, C. He, dan D. Wang, “MSQuant: Efficient Post-Training Quantization for Object Detection via Migration Scale Search,” Electronics 2025, Vol. 14, Page 504, vol. 14, no. 3, hlm. 504, Jan 2025, doi: 10.3390/ELECTRONICS14030504.
Dr. Nithyanandh S, “Object Detection & Analysis with Deep CNN and Yolov8 in Soft Computing Frameworks,” International Journal of Soft Computing and Engineering, vol. 14, no. 6, hlm. 19–27, Jan 2025, doi: 10.35940/IJSCE.E3653.14060125.
H. Guo, Y. Zhang, L. Chen, dan A. A. Khan, “Research on Vehicle Detection Based on Improved YOLOv8 Network,” Applied and Computational Engineering, vol. 116, no. 1, hlm. 161–167, Jan 2025, doi: 10.54254/2755-2721/2025.20568.
M. Hanzla dkk., “UAV Detection using Template Matching and Centroid Tracking,” IEEE Access, hlm. 1–1, Jan 2024, doi: 10.1109/ACCESS.2024.3450580.
S. Becker, R. Hug, W. Hübner, dan M. Arens, “Center point-based feature representation for tracking,” https://doi.org/10.1117/12.2680065, vol. 12742, hlm. 101–109, Okt 2023, doi: 10.1117/12.2680065.
A. Godil, R. Bostelman, W. S. Tsai, dan H. M. Shneier, “Performance Metrics for Evaluating Object and Human Detection and Tracking Systems”, doi: 10.6028/NIST.IR.7972.



