ISSN: 2355-9365

ANALISIS EFISIENSI DIGITALISASI PT. AMAS ISCINDO UTAMA DILIHAT DARI AKTIVITAS PROSES BISNIS, ROA DAN BIAYA OPERASIONAL DENGAN METODE DATA ENVELOPMENT ANALYSIS

EFFICIENCY DIGITALIZATION ANALYSIS OF PT. AMAS ISCINDO UTAMA VIEWED FROM BUSINESS ACTIVITIES, ROA AND OPERATIONAL COSTS USING ANALYSIS DATA ENVELOPMENT METHOD

Diana Indah Puspitasari¹, Dr.Ir. Endang Chumaidiyah, M.T.², Ir. Farda Hasun, M.Sc.³

^{1,2,3}Prodi S1 Teknik Industri, Fakultas Rekayasa Industri, Universitas Telkom
¹dianaindah@student.telkomuniversity.ac.id, ²endangchumaidiyah@telkomuniveristy.co.id,
³fardahasun@telkomuniversity.co.id

Abstrak

PT. Amas Iscindo Utama merupakan sebuah perusahaan jasa dibidang pelayaran yang bertugas untuk mengantarkan kargo milik klien. Perusahaan ini membeli dua kapal baru yaitu kapal Laut Flores dan kapal Laut Sawu dan menjual kapal yang lama yaitu kapal Laut Arafura dikarenakan kondisi kapal yang sudah tidak layak pa<mark>kai dan tidak memiliki jaringan internet. Adanya digit</mark>alisasi pada dua kapal baru memudahkan proses bisnis dan memberikan manfaat terkait profitabilitas. Oleh karena itu, penelitian ini ditujukan untuk mengukur efisiensi dan efektivitas dari digitalisasi tersebut dengan cara membandingkan efisiensi sebelum dan sesudah digitalisasi. Langkah awal penelitian ini adalah mengukur efisiensi waktu siklus dari aktivitas bisnis dan membandingkan waktu siklus tersebut antara sebelum dan sesudah. Perhitungan efisiensi berdasarkan waktu siklus memberikan hasil peningkatan nilai persentase yaitu dari 62% menjadi 69%. Langkah selanjutnya, digunakan metode Data Envelopment Analysis (DEA) untuk mengukur efisiensi dilihat dari segi biaya operasional yang berhubungan dengan tingkat profitabilitas perusahaan yaitu Return on Asset (ROA). Hasil perhitungan DEA didapatkan peningkatan nilai persentase sebesar 82% menjadi 93%. Tren nilai persentase ROA diukur untuk menentukan apakah terdapat signifikansi menggunakan uji hipotesis, yaitu uji Paired T-Test dan uji Wilcoxon Signed Rank Test. Berdasarkan hasil uji hipotesis diketahui terdapat signifikansi antara ROA sebelum dan ROA sesudah digitalisasi.

Kata kunci: Digitalisasi, Proses Bisnis, Efisiensi Waktu Siklus, Data Envelopment Analysis, Return on Asset

Abstract

PT. Amas Iscindo Utama is a shipping service company whose duty is to deliver client's cargo. The company bought two new ships namely MV. Flores Sea and MV. Sawu Sea and sold their old ship, the Arafura Sea ship, due to the condition of the ship that was not suitable for use and did not have an internet connection. The digitalization of the two vessels purchased, facilitates business processes and provides benefits related to profitability. Therefore, this study aims to measure the efficiency and effectiveness of digitalization by comparing the efficiency before and after digitalization. The initial step in this research is to measure the efficiency of the cycle time of business activities and compare the cycle time between before and after. Calculation of efficiency based on cycle time results in an increase in the percentage value from 62% to 69%. The next step, the Data Envelopment Analysis (DEA) method is used to measure efficiency in terms of operational costs related to the level of profitability of the company, namely Return on Assets (ROA). DEA calculation results obtained an increase in the percentage value of 82% to 93%. The trend value of ROA percentage is measured to determine whether there is significance using the hypothesis test, namely the Paired T-Test and the Wilcoxon Signed Rank Test. Based on the results of hypothesis testing, it is known that there is significance between ROA before and ROA after digitalization.

Keywords: Digitalization, Business Process, Processing Time Efficiency, Data Envelopment Analysis, Return on Asset

Dewasa ini kehadiran revolusi industri 4.0 menjadi perbincangan yang hangat bagi sektor industri, termasuk sektor pelayaran. Diperlukan strategi untuk menyikapi era revolusi industri 4.0, salah satunya dengan memperkuat hubungan pada bidang teknologi dan ekonomi. Dikutip dari website resmi Direktorat Jenderal Perhubungan Laut dengan berita bertema Industri Pelabuhan dan Pelayaran Bersiap Hadapi Revolusi 4.0 pada tanggal 06 Juni 2019, dijelaskan bahwa saat ini Indonesia sedang bersiap menghadapi era Revolusi Industri ke-4 yang bertujuan untuk meningkatkan daya saing dan produktivitas industri nasional.

Objek pada penelitian ini adalah perusahaan PT. Amas Iscindo Utama yang merupakan salah satu perusahaan pelayaran swasta yang bergerak dalam jasa transportasi angkutan laut. Perusahaan ini memiliki dua kapal yang saat ini masih beroperasi yaitu MV. Flores Sea dan MV. Sawu Sea. Perusahaan ini merupakan perantara dalam bidang transportasi kargo yang bertanggung jawab untuk membawa kargo-kargo milik shipper sampai ke tujuan. Kapalkapal milik PT.Amas Iscindo Utama sudah terikat kontrak oleh shipper yaitu PT. Freeport Indonesia sebagai time charter hingga 2021. Carter kapal menurut pasal 453 KUHD, dibagi menjadi dua yaitu time charter dan voyage charter. Objek penelitian ini menjalankan proses bisnisnya termasuk ke dalam kategori time charter, time charter atau carter menurut waktu menurut pasal 453 KUHD memiliki arti yaitu persetujuan dengan mana pihak yang mencarter-kan, mengikatkan diri untuk, selama waktuwaktu tertentu kepada pihak yang men-charter, dengan maksud untuk memakai kapal tersebut dalam pelayaran dilautan guna keperluan pihak yang terakhir ini, dengan pembayaran suatu harga yang dihitung menurut lamanya waktu. Penandatanganan kontrak biasanya berlaku untuk tujuh tahun kedepan. Saat ini perusahaan sedang menunggu perjanjian kontrak dari PT. Freeport untuk masa waktu sampai tahun 2028. Kapal Laut Flores dan Laut Sawu mengangkut kebutuhan logistik dari pekerja-pekerja tambang Freeport yang ada di Amamapare - Timika, seperti kebutuhan sehari-hari mereka yaitu makanan, minuman, dan kebutuhan pertambangan (semen, besi, dump truck, bus, tractor, ban, mesin, dll.).

Digitalisasi memberikan kemudahan pada perusahaan tersebut seperti, standarisasi laporan dan sistem inspeksi di cabang perusahaan, memperbaiki proses manajemen operasional yang kurang efisien, memungkinkan pembuatan keputusan berdasarkan data yang aktual dan faktual, meminimalisasi kesalahan dalam penginputan data, mencegah pemalsuan data dan penyusutan stok, dan membuat data dapat diakses melalui perangkat digital secara online.

Mengukur efisiensi perusahaan melihat biaya

operasional tidak terlepas dari tujuan utama didirikannya perusahaan, yaitu laba. Kemampuan menghasilkan laba disebut dengan profitabilitas [6]. Dengan memperoleh laba yang maksimal, perusahaan dapat berbuat banyak bagi kesejahteraan pemilik, karyawan, serta meningkatkan mutu produk dan melakukan investasi baru. Rasio profitabilitas merupakan rasio untuk menilai kemampuan perusahaan dalam mencari keuntungan [5]. Rasio ini memberikan ukuran tingkat efisiensi manajemen dari suatu perusahaan. Hal ini ditunjukan oleh laba yang dihasilkan dari penjualan investasi. pendapatan Intinya adalah profitabilitas penggunaan menunjukan rasio efisiensi perusahaan. Salah satu perhitungan profitabilitas yaitu return on asset atau ROA. ROA adalah tingkat profitabilitas yang dikaitkan dengan penggunaan aset [6]. Pada penelitian ini, diketahui bahwa saat sebelum digitalisasi jumlah kapal yang dimiliki perusahaan adalah satu, kemudian, setelah digitalisasi terjadi penambahan aset berupa kapal menjadi dua. Penambahan aset tidak lancar yang terlihat ini, berhubungan dengan proses bisnis perusahaan yang juga mengalami perubahan waktu siklus proses bisnis antara sebelum dan setelah digitalisasi, juga terlihat dari jumlah aktivitas perusahaan yang lebih singkat dan perbedaan jumlah tenaga kerja. Dengan alasan-alasan yang telah dijelaskan, mendorong penulis untuk meneliti lebih jauh mengenai efisiensi dari perusahaan PT. Amas Iscindo Utama dengan membandingkan proses bisnis sebelum dan setelah digitalisasi, juga melihat dampak nyata terhadap laba perusahaan.

2. Dasar Teori

2.1 Proses Bisnis

Proses bisnis adalah serangkaian instrumen untuk mengorganisir suatu kegiatan dan untuk meningkatkan pemahaman atas keterkaitan suatu kegiatan [1]. Adapun pengertian lain dari proses bisnis [8] adalah sekumpulan kegiatan atau aktivitas yang dirancang untuk menghasilkan suatu keluaran tertentu bagi pelanggan tertentu.

2.2 Digitalisasi

Secara teknis definisi dari revolusi industri 4.0 adalah integrasi dari Cyber Physical System (CPS) dan Internet of Things and Service (IoT dan IoS) kedalam proses industri meliputi manufaktur dan logistik serta proses lainnya menurut (Kagermann, 2013) dalam [2].

2.3 Efisiensi Waktu Siklus

Formula dari *Cycle Time Efficiency* digunakan untuk mengukur persentase aktivitas yang telah dilakukan dengan menggunakan aktivitas *Real Value-Added* yang digunakan oleh perusahaan untuk menghasilkan nilai bagi klien. Untuk menghitung

Cycle Time Efficiency, rumus yang digunakan adalah sebagai berikut. [3]

 $\textit{Cycle Time Efficiency} = \frac{\textit{Processing Time}}{\textit{Throughput Time}}$

Keterangan:

Throughput Time = Processing Time + Inspection Time + Moving Time + Waiting or Storage Time

Processing Time yang dimaksud merupakan waktu yang diperlukan dalam melakukan aktivitas nilai tambah atau yang disebut dengan Real-Value Added. Pada throughput time, merupakan total waktu dari pelaksanaan seluruh aktivitas atau total -dari aktivitas Real Value-Added, Business Value-Added, dan Non-Value Added.

Aktivitas-aktivitas yang terdapat pada proses bisnis diklasifikasikan menjadi tiga kategori, seperti yang telah disebutkan yaitu RVA (Real-Value Added), BVA (Business Value Added) atau NVA (Non-Value Added), dengan masing-masing kategori tersebut memiliki pengertian sebagai berikut.

- Real-Value Added (RVA), yaitu aktivitas yang benar-benar memberikan nilai tambah nyata secara langsung terhadap pelanggan.
- Business Value Added (BVA), yaitu aktivitas yang hanya memberi manfaat nilai tambah bagi proses bisnis internal sendiri, tidak langsung terhadap klien atau pelanggan.
- Non-Value Added (NVA), yaitu aktivitas yang tidak memberikan nilai tambah bagi perusahaan maupun pelanggan.

Apabila nilai throughput time semakin besar, mengakibatkan turunnya nilai cycle time efficiency yang berarti aktivitas tersebut kurang efisien. Nilai cycle time efficiency yang semakin tinggi menunjukan bahwa perusahaan telah memakai sumber daya yang besar dalam proses bisnisnya, nilai akan semakin efektif jika semakin mendekati 100%. Cycle Time Efficiency dapat dihitung menggunakan persamaan berikut.

$$Tn = \frac{RVA}{T}$$

Keterangan:

Tn = Efisiensi Proses

RVA = Waktu siklus seluruh aktivitas kategori RVA

T = Waktu siklus total, atau T = RVA + BVA +NVA

2.4 Data Envelopment Analysis (DEA)

Hasil perhitungan DEA adalah nilai efisiensi relatif dan tidak memerlukan fungsi produksi. Data Envelopment Analysis dikatakan sebagai metode analisis multifaktor untuk mengukur efisiensi dari sekelompok Decision Making Unit (DMU). Perusahaan atau organisasi yang akan diukur efisiensi relatifnya maka disebut sebagai DMU, diukur dengan cara membandingkan input dan output yang digunakan dengan titik pada garis frontier efisien (efficient frontier)[4].

Simbol pada formulasinya digunakan x dan y untuk mewakili *input* dan *output* tertentu, *i* dan *j* untuk mewakili bobot efisiensi input dan bobot efisiensi *output* tertentu. Sehingga x_i merupakan input ke-i dan y_i merupakan output ke-j pada unit pengambil keputusan atau DMU. Jumlah dari input diwakili I dan jumlah dari *output* diwakili I, dimana I,J > 0. Secara matematis dapat digambarkan sebagai berikut[4]:

$$Virtual\ Input = \sum_{i=1}^{I} vi\ xi \tag{1}$$

Dengan v_i adalah bobot dari input x_i selama proses akumulasi. Untuk output dapat digambarkan sebagai berikut:

Virtual Output =
$$\sum_{i=1}^{J} u_i y_i$$
 (2)

Virtual Output = $\sum_{j=1}^{J} u_j y_j$ (2) Dengan u_j adalah bobot dari input y_j selama proses akumulasi. Dari model virtual input dan output diatas, maka efisiensi dapat didefinisikan sebagai berikut:

$$Efficiency = \frac{Virtual\ Output}{Virtual\ Input} = \frac{\sum_{j=1}^{J} uj\ yj}{\sum_{i=1}^{I} vi\ xi}$$
(3)

Jika ada DMU yang akan dibandingkan tingkat efisiensinya, maka bentuk pecahan linear program DEA adalah sebagai berikut:

Maks
$$E_m = \frac{\sum_{J=1}^{J} \mathbf{u} \ jm \ \mathbf{y} \ jm}{\sum_{l=1}^{I} \mathbf{v} \ im \ \mathbf{x} \ im}$$
 (4)

E_m: Efisiensi DMU ke-m.

y_{im}: Output ke-j untuk DMU ke-m.

u_{im}: Besarnya bobot *output*.

 x_{im} : *Input* ke-i untuk DMU ke-m.

v_{im}: Besarnya bobot *input*.

2.5 Analisis Data Tren

Analisis Tren menurut Munawir [9] adalah suatu metode atau teknik analisis untuk mengetahui tendensi daripada keadaan keuangannya, apakah menunjukkan tendensi tetap, naik atau bahkan turun. Untuk menganalisis laporan keuangan ada dua metode yang dapat digunakan yaitu analisis horizontal dan analisis vertikal. Analisis horizontal adalah analisis dengan membandingkan laporan keuangan untuk beberapa periode, sehingga akan diketahui bagaimana perkembangannya. Sedangkan, analisis vertikal adalah analisis laporan keuangan yang hanya meliputi satu periode saja.

2.6 Return On Asset (ROA)

Menurut Kasmir (2004: 203-204), rasio ini digunakan untuk mengukur kemampuan perusahaan tentang efektivitas manajemen dalam mengelola investasi yang dimiliki atau menghasilkan laba bersih berdasarkan tingkat asset tertentu. Pengertian tersebut dapat dituangkan dalam rumus :

 $Return \ On \ Assets \ (ROA) = \frac{Laba \ Bersih}{Rata-Rata \ Total \ Aset}$

2.7 Uji Normalitas Kolmogorov-Smirnoff

Untuk uji normalitas data, dapat menggunakan uji Sample Kolmogorov-Smirnov dengan ketentuan :

- Jika Asymp.Sig > 0.05, maka data berdistribusi normal.
- Jika Asymp. Sig < 0.05, maka data tidak berdistribusi normal.

2.8 Uji Paired Sample T-Test

Uji beda *paired sample t-test* adalah uji beda parametrik, dimana kedua data yang diuji perbedaannya berasal dari satu kelompok sampel yang sama yang menghasilkan dua distribusi data. Untuk uji beda ini, harus memenuhi syarat uji statistik parametrik yaitu uji normalitas. Uji beda ini menunjukan apakah pasangan data mengalami perubahan yang bermakna, ditentukan dari nilai signifikannya. Untuk ketentuan dalam uji *paired sample t-test*, yaitu:

• Jika nilai Sig. < 0.05, maka H_0 ditolak.

Dengan kesimpulan bahwa terdapat perbedaan yang signifikan antara sebelum dan sesudah digitalisasi.

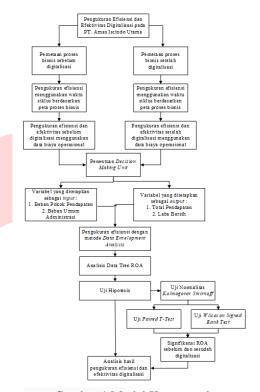
• Jika nilai Sig. > 0.05, maka H₀ diterima.

Dengan kesimpulan bahwa tidak terdapat perbedaan yang signifikan antara sebelum dan sesudah digitalisasi.

2.9 Uji Wilcoxon Signed Rank Test

Uji wilcoxon dilakukan untuk mengukur signifikansi perbedaan antara dua kelompok data berpasangan tetapi berdistribusi tidak normal, dengan fungsi untuk melihat apakah memiliki ratarata secara signifikan berbeda atau tidak. Uji ini merupakan alternatif dari uji paired sample t-test. Uji ini digunakan apabila asumsi dari uji normalitas tidak terpenuhi. Uji wilcoxon juga menghitung nilai perbedaan dan mencari perbedaan. Untuk ketentuan dalam uji Wilcoxon Signed Rank Test, yaitu:

• Jika nilai Sig. < 0.05, maka H₀ ditolak.

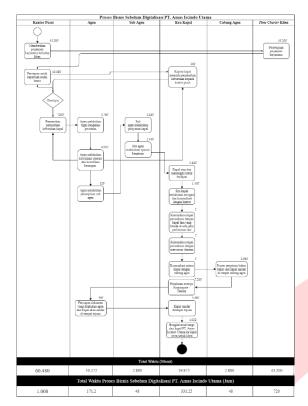

Dengan kesimpulan bahwa terdapat perbedaan yang signifikan antara sebelum dan sesudah digitalisasi.

• Jika nilai Sig. > 0.05, maka H₀ diterima.

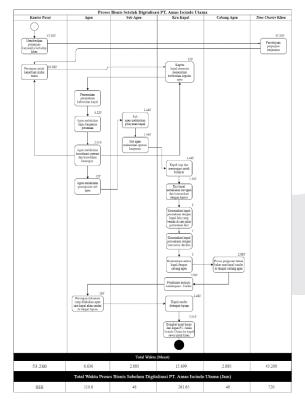
Dengan kesimpulan bahwa tidak terdapat perbedaan yang signifikan antara sebelum dan sesudah digitalisasi.

3. Metodologi Penelitian

Dalam penelitian ini penulis mengimplementasikan model konseptual yang digunakan untuk menggambarkan atau memetakan masalah yang kemudian diolah untuk menjadi informasi bagi perusahaan. Adapun konseptual pengukuran efisiensi digitalisasi PT. Amas Iscindo Utama adalah sebagai berikut.



Gambar 1 Model Konseptual


4. Hasil dan Pembahasan

4.1 Proses Bisnis PT. Amas Iscindo Utama

Sebelum mengamati proses bisnis perusahaan untuk mengidentifikasi efisiensi waktu siklus, perlu diketahui penyebab dilakukannya digitalisasi pada perusahaan PT. Amas Iscindo Utama, seperti dapat dilihat pada Gambar 4.3 yaitu Diagram Sebab Akibat Lamanya Waktu Siklus.

Gambar 4. 1 Peta Proses Bisnis Sebelum Digitalisasi

Gambar 4. 2 Peta Proses Bisnis Setelah Digitalisasi

Gambar 4. 3 Diagram Sebab Akibat Lamanya Waktu Siklus

Langkah selanjutnya adalah analisis ketersediaan tenaga kerja dan teknologi yang digunakan. Pada analisis teknologi dan fasilitas pendukung yang digunakan dilihat dari kedua kapal baru PT. Amas Iscindo Utama.

No.	Jabatan	Jumlah	Pekerja
		Sebelum	Sesudah
1.	Komisioner	1	1
2.	Direktur	1	1
3.	Sekretaris	2	2
4.	Manajer Operasional	2	2
5.	Manajer Kru Perdanganan Lokal	1	1
6.	Manajer Kru Laut Dalam	1	1
7.	HRD	1	1
8.	Manajer Finansial	1	1
9.	Staf Finansial	1	0
10.	Kapten Pelabuhan	2	2
11.	Petugas Kru	2	2
12.	Kru Kasir	1	1
13.	Operation Support	1	0
14.	Resepsionis	1	1
15.	Pengantar Surat	1	0
16.	Petugas Kebersihan Kantor	1	1
17.	Sopir	2	1
18.	Kru Kapal	12	20
	Total	34	38

Tabel 4. 1 Analisis Tenaga Kerja

No.	Fasilitas	Jum	lah
		Sebelum	Sesudah
1.	Komputer	1	2
2.	Printer	1	2
3.	Mesin Faks	1	2
4. Jaringan Internet		0	2
Total		4	8

Tabel 4. 2 Analisis Teknologi dan Fasilitas Pendukung

4.2 Efisiensi Waktu Siklus

Untuk menghitung efisiensi waktu siklus, perlu analisis dipahami aktivitas diklasifikasikan berdasar karakteristik RVA, BVA dan NVA.

Efisiensi Proses (Tn) RVA

 $= \frac{1}{\text{Waktu Siklus Total (RVA + BVA + NVA)}}$

Efisiensi Proses Sebelum Digitalisasi $= \frac{_{1440}}{_{2326.45}}$

 $= 0.6189 \approx 62\%$

Efisiensi Proses Setelah Digitalisasi

2076.25

 $= 0.693 \approx 69\%$

Proses	Waktu l	Waktu Proses		
	*SB	*SD	Value	
Memberikan	720	720	RVA	
perjanjian	jam	jam		
kerjasama				
terhadap klien				
Persetujuan	720	720	RVA	
perjanjian	jam	jam		
kerjasama				
Persiapan untuk	168	168	BVA	
keperluan	jam	jam		
memulai bisnis				
Kapten kapal	5 jam	-	BVA	
meminta				
pemenuhan				
kebutuhan				
kepada kantor				
pusat				
Kantor pusat	120	-	BVA	
memenuhi	jam			
permintaan				
kebutuhan				
langsung dari				
kapten kapal				
Kapten kapal	-	2 jam	BVA	
meminta				
pemenuhan				

1.1.4.1		1	
kebutuhan			
kepada agen			
Agen	96 jam	72	BVA
melakukan		jam	
tugas keagenan		-	
perizinan			
Agen	67 jam	34	BVA
melakukan	3	jam	
koordinasi		3	
operasi dan			
koordinasi			
keuangan			
Agen	2 jam	2 jam	NVA
melakukan	_ j	_ 5	
penunjukan			
untuk sub agen			
Sub agen	24 jam	24	BVA
melakukan	j	jam	
pelayanan kapal		, 41.21	
Sub agen	24 jam	24	BVA
melakukan	- . Juiii	jam	
operasi		Juli	
keagenan			
Kapal siap dan	24 jam	24	NVA
menunggu	- . Julii	jam	
untuk berlayar		Juli	
Kru kapal	24 jam	24	BVA
melakukan	2 i juiii	jam	
navigasi dan		Juin	
komunikasi			
dengan kantor			
pusat			
Komunikasi	0.0166	0.016	BVA
antar kapal	667	6667	
perusahaan	jam	jam	
dengan kapal	juii	Juli	
lain yang berada			
di satu jalur			
perlintasan laut			
Komunikasi	0.0166	0.016	BVA
antara kapal	667	6667	
perusahaan	jam	jam	
dengan daratan	J	, , , , , ,	
Komunikasi	0.0166	0.016	BVA
antara kapal	667	6667	
dengan cabang	jam	jam	
agen	J	,	
Proses	48 jam	48	BVA
pemuatan bahan		jam	
bakar saat kapal		,	
sandar di tempat			
cabang agen			
Perjalanan	120	120	BVA
menuju	jam	jam	
Amamapare -	J	,	
Timika			
<u> </u>	<u> </u>		

			5-9	

- ·			DITA
Persiapan	6 jam	3 jam	BVA
dokumen yang			
dilakukan oleh			
agen saat kapal			
akan sandar di			
tempat tujuan			
Kapal sandar	91 jam	58	BVA
ditempat tujuan		jam	
Bongkar muat	67 jam	34	BVA
kargo dari kapal		jam	
PT. Amas			
Iscindo Utama			
ke kapal sewa			
untuk klien			
Total Waktu	2326.45	2076.	
	Jam	25	
		Jam	
RVA	1440	1440	
	Jam	Jam	
BVA	860.45	610.2	
	Jam	5 Jam	
NVA	26 Jam	12	
		Jam	
Efisiensi Proses	0.618 ≈	0.693	
(%)	62%	≈ 69%	

Tabel 4. 3 Perbandingan Analisis Aktivitas Sebelum dan Sesudah Digitalisasi

Keterangan:

*SB = Sebelum Digitalisasi

*SD = Sesudah Digitalisasi

4.3 Data Envelopment Analysis (DEA)

Untuk perhitungan efisiensi menggunakan Data Envelopment Analysis, diperlukan identifikasi DMU beserta input dan output yang akan dihitung. Pada penelitian ini DMUnya adalah sebelum dan sesudah digitalisasi dengan waktu 2015, 2016, 2018 dan 2019. Input yang digunakan adalah X₁ yaitu beban pokok pendapatan dan X₂ beban umum administrasi, kedua input ini merupakan komponen dari biaya operasional perusahaan berdasarkan keuangan. Kemudian, untuk output pada Y₁ yaitu total pendapatan dan Y2 yaitu laba bersih. Penentuan input dan output pada penelitian ini dilakukan karena adanya keterkaitan antara kedua variabel ini yang dapat dilihat pada laporan keuangan perusahaan.

Setelah mengidentifikasi *input* dan *output*, langkah selanjutnya adalah menghitung skor efisiensi untuk tiap DMU. Perhitungan skor efisiensi U dan V menggunakan *solver Ms. Excel* 2016. Nilai skor efisiensi apabila semakin mendekati satu menandakan bahwa semakin efisien.

Keterangan	Sebelum Digitalisasi	Setelah Digitalisasi	Efisiensi Maks (Optimum)
$\mathbf{U_i}$	1	1	1
V_{i}	0.97	1	1
$\mathbf{X}_{\mathbf{i}}$	588.749.547.399	629.567.289.276	721.412.453.029
Y _j	488.909.085.758	511.753.447.792	544.940.897.372

Gambar 4. 4 Nilai yang Akan Digunakan Untuk Perhitungan Rasio Efisiensi

Berdasarkan rumus DEA, maka perhitungan rasio efisiensi adalah sebagai berikut.

• Rasio Optimum = $\frac{Yj \ Optimum \ x \ Uj \ Optimum}{Xi \ Optimum \ x \ Vi \ Optimum}$ $= \frac{1 \ x \ (721.412.453.029)}{1 \ x \ (544.940.897.372)}$

Rasio Optimum = 1.324

• Rasio Sebelum Digitalisasi

 $= \frac{Yj \ Sebelum \ x \ Uj \ Sebelum}{Xi \ Sebelum \ x \ Vi \ Sebelum}$ $= \frac{0.97 \ x \ (588.749.547.399)}{1 \ x \ (488.909.085.758)}$

Rasio Sebelum Digitalisasi = 1.083

• Rasio Setelah $\frac{Yj \ Setelah}{Xi \ Setelah} \times \frac{Uj \ Setelah}{Xi \ Setelah} = \frac{1 \ x \ (629.567.289.276.)}{1 \ x \ (511.753.477.792)}$

Rasio Setelah Digitalisasi = 1.230

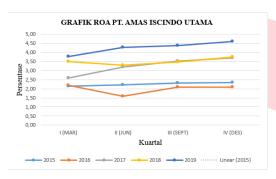
• Efisiensi Sebelum $\frac{\text{Rasio Sebelum Digitalisasi}}{\text{Rasio Optimum}} = \frac{1.083}{1.324}$

Efisiensi Sebelum Digitalisasi = $0.817 \approx 82\%$

• Efisiensi Setelah Digitalisasi = Rasio Setelah Digitalisasi = 1.230 Rasio Optimum = 1.324

Efisiensi Setelah Digitalisasi = $0.929 \approx 93\%$

Hasil perhitungan efisiensi berdasarkan metode *Data Envelopment Analysis* (DEA) menunjukkan efisiensi sebelum digitalisasi adalah sebesar 82% dan efisiensi setelah digitalisasi adalah sebesar 93%.


4.4 Return on Asset (ROA)

4.4.1 Tren Return on Asset (ROA)

Perhitungan data tren dibutuhkan untuk melihat pengaruh *input* dan *output* yang telah dilakukan pada langkah sebelumnya yaitu perhitungan efisiensi menggunakan metode DEA. Nilai ROA digunakan untuk mengukur kemampuan perusahaan menghasilkan laba dari penggunaan sumber daya atau aset yang dimiliki.

Tahun	ROA				
Kuartal	2015	2016	2017	2018	2019
I	2.14%	2.20%	2.60%	3.50%	3.76%
(Mar)					
II	2.21%	1.60%	3.19%	3.30%	3.27%
(Jun)					
III	2.32%	2.10%	3.52%	3.46%	4.38%
(Sept)					
IV	2.33%	2.10%	3.69%	3.74%	4.59%
(Des)					

Tabel 4. 4 Data ROA Perkuartal

Gambar 4. 5 Grafik ROA PT. Amas Iscindo Utama Tahun 2015-2019

Grafik ROA menunjukkan kecenderungan tren ROA pada perusahaan PT. Amas Iscindo Utama mengalami kecenderungan tren positif (naik) atau kecenderungan tren negatif (turun). Dilihat dari grafik pada Gambar 4.3 dapat diketahui bahwa nilai ROA PT. Amas Iscindo Utama secara garis besar mengalami kecenderungan tren positif atau naik untuk kecenderungan tren negatif terjadi pada tahun 2016 tepatnya pada kuartal 2.

4.5 Uji Hipotesis

Data ROA perkuartal selanjutnya akan diukur menggunakan uji hipotesis untuk mengetahui apakah adanya signifikansi data antara sebelum dan sesudah digitalisasi. Pada penelitian ini dilakukan uji normalitas untuk kedua kelompok data tersebut, lalu digunakan uji *Paired Sample T-Test* dan uji *Wilcoxon Signed Rank Test*.

		ROA_Sb	ROA_St			
N		8	12			
Normal Parameters ^{a,b}	Mean	.2125	.3644			
	Std. Deviation	.02299	.05526			
Most Extreme Differences	Absolute	.332	.172			
	Positive	.186	.172			
	Negative	332	122			
Test Statistic		.332	.172			
Asymp. Sig. (2-tailed)		.010°	.200°.			
a. Test distribution is Norm	ıal.					
b. Calculated from data.						
c. Lilliefors Significance Correction.						
d. This is a lower bound of	the true significan	nco				

Gambar 4. 6 Hasil Uji Normalitas

Pada Gambar menunjukan bahwa, nilai sig. ROA sebelum digitalisasi adalah 0.010 yang berarti nilai sig.(0.010) < 0.05 dengan artian bahwa H_0 ditolak atau dapat diartikan bahwa data tidak berdistribusi dengan normal. Kemudian, nilai signifikansi pada ROA setelah digitalisasi adalah 0.139 yang berarti nilai sig. (0.139) > 0.05 dan dapat diartikan bahwa H_0 diterima atau dapat diartikan data telah berdistribusi dengan normal.

4.5.1 Uji Paired T-Test

	Paired Samples Test								
		Paired Differences							
				Std. Error	95% Confidence Interval of the Difference				
		Mean	Std. Deviation	Mean	Lower	Upper	t	df	Sig. (2-tailed)
Pair 1	ROA_Sb - ROA_St	17163	.06583	.02328	22666	11659	-7.374	7	.000

Gambar 4. 7 Hasil Uji Paired Sample T-Test

Pada uji *paired sample t-test*, dasar pengambilan keputusannya adalah:

- Jika nilai *Sig.*(2-tailed) < 0.05, maka terdapat perbedaan yang signifikan antara sebelum dan sesudah digitalisasi pada data ROA.
- Jika nilai *Sig.*(2-tailed) > 0.05, maka tidak terdapat perbedaan yang signifikan antara sebelum dan sesudah digitalisasi pada data ROA.

Hasil uji *paired sample t-test* memiliki nilai Sig. (2-tailed) sebesar 0.000 < 0.05. Melihat dasar pengambilan keputusan, maka dapat disimpulkan bahwa terdapat perbedaan yang nyata antara sebelum dan sesudah digitalisasi pada data ROA perusahaan.

4.5.2 Uji Wilcoxon Signed Rank Test

Test Statistics^a

	ROA_St - ROA_Sb
Z	-2.521 ^b
Asymp. Sig. (2-tailed)	.012

- a. Wilcoxon Signed Ranks Test
- b. Based on negative ranks.

Gambar 4. 8 Hasil Uji Wilcoxon Signed Rank Test

Untuk menggunakan uji *Wilcoxon Signed Rank Test*, dapat diketahui bahwa hipotesis yang digunakan adalah:

- H₀ = Tidak terdapat pengaruh atau kenaikan yang bermakna antara sebelum dan sesudah digitalisasi pada data ROA.
- H₁ = Terdapat pengaruh atau kenaikan yang bermakna antara sebelum dan sesudah digitalisasi pada data ROA.

Berdasarkan uji statistik Wilcoxon dari nilai ROA, didapatkan nilai Sig. < 0.05 yaitu 0.010 maka dapat dikatakan bahwa H_0 ditolak dan H_1

diterima yang menggambarkan bahwa terdapat pengaruh yang bermakna antara sebelum dan sesudah digitalisasi pada PT. Amas Iscindo Utama.

5. Kesimpulan

Perhitungan efisiensi untuk waktu siklus berdasarkan proses bisnis saat sebelum digitalisasi pada PT. Amas Iscindo Utama diperoleh perhitungan waktu siklus sebesar 2326.45 jam, dengan RVA sebesar 1440 jam. Sehingga, menghasilkan nilai efisiensi proses sebesar 62%. Kemudian, untuk proses bisnis saat sesudah digitalisasi pada PT. Amas Iscindo Utama diperoleh perhitungan waktu siklus sebesar 2076.25 jam, dengan RVA sebesar 1440. Sehingga, menghasilkan nilai efisiensi proses sebesar 69%.

Selanjutnya, pada metode DEA menggunakan biaya operasional sebagai *input* dan pendapatan serta laba bersih sebagai *output*. Perhitungan DEA menghasilkan angka 82% untuk efisiensi sebelum digitalisasi dan 93% untuk nilai persentase setelah digitalisasi, terjadi kenaikan persentase sebesar 11%. Dari kedua perhitungan efisiensi yang telah dilakukan, dapat disimpulkan bahwa adanya nilai peningkatan efisiensi dari sebelum digitalisasi ke sesudah digitalisasi serta tujuan perusahaan dalam mencari laba juga sudah efektif karena dibuktikan dengan nilai persentase yang meningkat.

Perbedaan yang signifikan pada tingkat profitabilitas perusahaan dibuktikan dengan perhitungan uji hipotesis menggunakan data *Return on Asset* (ROA), untuk sebelum dan sesudah digitalisasi. Setelah uji normalitas pada data yang akan diuji signifikansinya, penulis menggunakan uji *Paired T-Test* dan uji *Wilcoxon Signed Rank Test*. Pada uji *Paired T-Test*, didapatkan hasil nilai *Sig.*(2-tailed) < 0.05 yaitu 0.000. Nilai ini menunjukan bahwa adanya perbedaan signifikansi ROA antara sebelum dan sesudah digitalisasi. Kemudian, pada uji *Wilcoxon Signed Rank Test* didapatkan hasil *Asymp.Sig* (2-tailed) < 0.05 yaitu 0.012. Sehingga, dapat disimpulkan bahwa terdapat perngaruh atau kenaikan yang bermakna antara sebelum dan sesudah digitalisasi.

ISSN: 2355-9365

Daftar Pustaka:

- [1] Weske, M. (2007) Business Process Management, Journal of Chemical Information and Modeling. Germany: Springer. doi: 10.1017/CBO9781107415324.004.
- [2] Prasetyo, H. and Sutopo, W. (2018) 'Industri 4.0: Telaah Klasifikasi Aspek Dan Arah Perkembangan Riset', *Jurnal Teknik Industri*, 13(1), p. 17. doi: 10.14710/jati.13.1.17-26.
- [3] Harrington, D. H. (1991) 'Business Process Improvement', *Business Process Improvement*, pp. 57–64. doi: 10.1201/b12270-7.
- [4] Cooper, E. al. (2007) Data envelopment analysis: A comprehensive text with models, applications, references and DEA-solver software: Second edition, Data Envelopment Analysis: A Comprehensive Text with Models, Applications, References and DEA-Solver Software: Second Edition. doi: 10.1007/978-0-387-45283-8.
- [5] Dr, Kasmir. (2014). Analisis Laporan Keuangan. Cetakan Ketiga. Penerbit PT Raja Grafindo Persada,
- [6] Prihadi, Toto. 2014. Analisis Laporan Keuangan (Konsep dan Aplikasi). Jakarta : PT Gramedia Pustaka Utama.
- [7] Shabrina, R. N., Dellarosawati, M. and Hadining, A. F. (2015) 'IMPLEMENTASI PROSES BISNIS SALURAN DISTRIBUSI PRODUK STROBERI FROZEN PADA BAROKAH TANI AGRO FARM DENGAN METODE MODEL- BASED AND INTEGRATED PROCESS IMPROVEMENT Program Studi Teknik Industri, Fakultas Rekayasa Industri, Universitas Telkom', 2(2), pp. 4538–4547.
- [8] System, S. (2004) 'The Business Process Model', *Sparx Systems*, pp. 1–4. Available at:http://www.sparxsystems.com/resources/uml2_tutorial/uml2_classdiagram.html.
- [9] Octaviani, N. I. (2019) 'Analisis Laporan Keuangan Dengan Menggunakan Metode Trend Sebagai Dasar Menilai Kondisi Perusahaan', *Economic, Business and Accounting*, 23(3), p. 2019.