
ISSN : 2355-9365 e-Proceeding of Engineering : Vol.10, No.4 Agustus 2023 | Page 3723

Analyzing QoS Performance in Kubernetes-Based

High Scalability Clusters

1st Fathur Alfarisi Julana

School of Electrical Engineering

Telkom University

Bandung, Indonesia

fathuralfa@student.telkomuniver

sity.ac.id

2nd Istikmal

School of Electrical Engineering

Telkom University

Bandung, Indonesia

istikmal@telkomuniversity.ac.id

3rd Arif Indra Irawan

School of Electrical Engineering

Telkom University

Bandung, Indonesia

arifindrairawan@telkomuniversit

y.ac.id

Abstract— This paper proposes a performance analysis of the

auotscaling methods that can be utilized in Kubernetes Clusters

in order to determine cost-efficiency for services. This paper

aims to accommodate the specifications for an analysis by using

Google Kubernetes Engine (GKE) built into Google Cloud

Platform (GCP) as a platform to orchestrate clusters alongside

deployed services. To fulfill the cluster model, customized cluster

settings and NGINX-based services are developed to manage the

website used for load testing in order to determine the behavior

of the autoscaling methods. This paper proposes an experiment

using real-time transmission of Virtual Users (VU) sent from an

application, called k6, used to simulate a number of users

accessing the website within a time frame through a public

network. During the experiment, the quality of service of the

website is measured and analyzed using metrics and events from

GKE and the results made by k6 to determine whether the

autoscaling system works within set parameters and determine

cost efficiency in Kubernetes cluster. The proposed load test is

able to ensure that the number of HTTP requests results in

HTTP Status Code 200 and that 95% of the requests are

completed in less than 2 seconds.

I. INTRODUCTION

Virtualization has recently emerged as a crucial cloud

computing technique. In particular, container-based virtual-

ization is a quick way to build a virtual environment that

operates on the host machine’s software level [1]. Due to

its minimal resource utilization and excellent mobility, it has

been expanding quickly with rotating virtual machines (VMs).

Additionally, the methodologies of application design are

being revolutionized by container-based microservices. The

container-based micro-services enable an application to be

made of several lightweight containers over a large number

of nodes as opposed to the conventional single monolithic

architecture wherein all components are merged into a sin-

gle unit [2]. Multiple containers are scattered throughout

the network in large-scale systems, necessitating the use of

an orchestration tool to deploy the containers and manage

resources. Microservices are small, self-contained modules

of an application that are linked together to function as a

whole. Along with the microservices design, enterprises must

have stable application releases and shorten the time from

development to deployment. This is enabled through the use

of continuous deployment procedures [3]. Software contain-

ers and orchestration tools, such as Kubernetes, have made

microservice deployment and maintenance easier. Kubernetes

is one of many open-source platforms used in the managing

of containerized services, including setup and deployment.

The Kubernetes platform is also used for running highly

available distributed systems. They make up what is known

as Kubernetes Clusters, where clusters contain a master node

and worker nodes. Each worker node hosts Pods that make up

the workload of an application. And each worker in every pod

is managed by the control plane, where commands are given

by scripts to be distributed among the cluster for deployment.

Because of the multitude in pods containing workers in

clusters, this allows for a high availability service. To achieve

high availability, Kubernetes runs clones of various containers,

much like virtual machines. This allows for the service to avoid

numerous failures should in case numerous apps are running

in one single container. To maximize the service’s scalability

and availability, Kubernetes load balancing entails dividing

network traffic among pod replicas in accordance with load

balancing algorithms [4].

This paper proposes a performance analysis of the autoscal-

ing methods used in Kubernetes Cluster to determine cost-

efficiency by simulating Virtual Users (VUs) being load tested

onto a website that is deployed inside the cluster using an

application called k6 developed by Grafana. However, this

paper is limited by several aspects, which are:

1. Clusters are deployed in a Kubernetes environment

hosted using Google Cloud Platform.

2. The QoS data is taken using k6 and the built-in

metrics by Google Cloud Platform.

3. The machine used to host the cluster is limited to

4GB RAM and 2 vCPU.

II. THEORITICAL REVIEW

A. Kubernetes

Early on, applications would be run on a physical server

causing resource allocation issues. One of these issues is where

one application would take up most of the resources and as

a result, the other applications would either underperform

or not function. A solution for this would be to run each

application on a different physical server. But this did not

scale as resources were underutilized, and it was expensive for

mailto:fathuralfa@student.telkomuniversity.ac.id
mailto:fathuralfa@student.telkomuniversity.ac.id
mailto:istikmal@telkomuniversity.ac.id
mailto:arifindrairawan@telkomuniversity.ac.id
mailto:arifindrairawan@telkomuniversity.ac.id

ISSN : 2355-9365 e-Proceeding of Engineering : Vol.10, No.4 Agustus 2023 | Page 3724

organizations to maintain many physical servers. A different

solution was introduced and that is virtualization. It allows

the user to run multiple VMs on a single physical server’s

CPU. Virtualization allows applications to be isolated between

VMs and provides a level of security as the information

of one application cannot be freely accessed by another

application. Virtualization allows better utilization of resources

in a physical server and allows better scalability because an

application can be added or updated easily, reduces hardware

costs, and much more. With virtualization you can present

a set of physical resources as a cluster of disposable virtual

machines.

Containers are similar to VMs, but they have relaxed

isolation properties to share the OS among the applications.

Containers have become more popular due to their extra

benefits such as:

1. Continuous development, integration, and deployment:

provides for reliable and frequent container image build

and deployment with quick and easy rollbacks.

2. Environmental consistency across development, testing,

and production.

3. Resource isolation: predictable application performance.

4. Resource utilization: high efficiency and density.

Containers also lower management costs. Because they

share the same operating system, only one operating system

requires attention and feeding for bug fixes, patches, and so

on. This notion is similar to that of hypervisor hosts: fewer

administration points but a slightly larger fault domain. In

short, containers are lighter and more portable than virtual

machines. Conclusion The fundamental distinction between

virtual machines and containers is that containers provide a

means to virtualize an operating system so that numerous

workloads can execute on a single OS instance. The hardware

is virtualized with VMs in order to run multiple OS instances.

Containers, with their speed, agility, and portability, are an-

other tool for helping to expedite software development [5].

Multiple applications can now share the same underlying

operating system. This feature makes containers much more

efficient than full-blown VMs. They are portable across clouds,

different devices, and almost any OS distribution.

B. QoS Parameters

QoS is defined as a process or approach for determining

whether a service or system in a network can achieve its

goal based on its service characteristics. To meet the QoS

requirements for the Kubernetes Cluster platform, load tests,

measurements, and events must be observed in real-time.

Several evaluations, such as network QoS and resource use,

could be utilized to determine whether the Kubernetes Cluster

meets the described QoS.

1. Network QoS Parameters: The network QoS parameters

consists of delay, jitter, throughput, and packet loss that is

measured throughout the test. By use of k6, the parameters that

are going to be measured is the number of HTTP requests that

respond with a code 200, interrupted iterations and the size of

the load that was sent. HTTP Code 200 is a status response

indicating that the request has been successfully fetched and

transmitted. When the test duration is achieved or when scaling

VUs with the stages option, k6 would interrupt any ongoing

iterations leading to some errors in the metrics. [6]

2. Resource Utilization Parameters: The resource utiliza-

tion analysis uses CPU usage and memory usage data to deter-

mine whether an application is using the available computing

and memory resources efficiently. The measure of resource

utilization is the percentage of time that a resource is being

used compared to the time the resource is available. When a

resource becomes overused or highly used compared to other

resources, that resource becomes critical. A critical resource

indicates an inefficient design of the system or the system is

having a peak load.

Various processes use the CPU to perform calculations

and execute certain instructions. The more calculations and

instructions that the CPU executes in a time period, the higher

the throughput of the CPU. Thus, high CPU utilization does

not always indicate a performance problem when the CPU

throughput is also high. However, when the CPU utilization

is high but the throughput is low, there is a process that uses

the CPU inefficiently.

Memory usage is determined by the activity and usage of

small components that make up the memory called pages.

Processes use these pages by locating unused pages and

store them with temporary data. A page scan is a process

where a CPU cycle is used to select unused pages for other

processes. A high rate of page scans indicates that poor

memory utilization is becoming a problem.

III. METHOD

According to [7], the framework for a proper Kubernetes

cluster, it consists of three parts:

1. A Kubernetes cluster is made up of a collection of

machines known as nodes that run containerized apps.

Each cluster contains at least one node with a pod.

2. The nodes host resources needed by the Pods which uses

the app that make up the application workload.

3. The control plane manages the cluster’s nodes and Pods.

In the proposed model of the Kubernetes Cluster, this paper

uses a Google Cloud Platform virtual machine (VM) provided

by Google to act as the public cloud server to make Kubernetes

management more efficient using Google Kubernetes Engine

to host the cluster using the machine from a selection that is

also provided.

As shown in Figure 2, the connection between the client,

the NGINX website, and the GCP is available through the

internet. The client accesses the website through the services

provided by the deployment that the admin has setup for the

NGINX application which directly connects to the web server.

The web server is contained in replica pods located inside the

nodes to improve efficiency in the cost of CPU and memory

usage that is allocatable.

ISSN : 2355-9365 e-Proceeding of Engineering : Vol.10, No.4 Agustus 2023 | Page 3725

FIG. 1

THE PROPOSED SYSTEM DESIGN OF THE KUBERNETES

CLUSTER DESIGN.

IV. SYSTEM SPECIFICATIONS

This paper uses Google Cloud Platform cloud services to

provide a virtual private server (VPS) designated as the server

where the proposed IoT platform is installed. The VPS uses

a default Linux node image version 1.23.8-gke.1900 as the

kernel of the virtual machine named e2 medium with 4 GB

of RAM, 100 GB of storage of a standard persistent disk.

V. EXPERIMENT SETUP

To fulfill the performance analysis for Kubernetes Cluster

by load testing the NGINX website, the transmitted VUs by k6

is set in real-time. As such, the analyzed network parameters

from the simulation are the total number of HTTP requests

and the events related to the autoscaling methods that is taken

into effect once the load testing begins. Finally, the analyzed

hardware parameters from the experiment are the CPU and

memory usage from the cluster of each test.

The load testing experiment is done four times to notice

the effect of the autoscaling methods to the cluster made by

the packets received by the Kubernetes cluster. Each trial has

different simulated VUs and time frames to simulate different

scenarios. After all trials are done, the measured parameters

are analyzed and compared with each other according to the

autoscaling method. The analysis results are then concluded

to finish this paper.

VI. EXPERIMENT ANALYSIS

A. Network QoS Analysis

This paper uses the methods described in Chapter 3 to

determine whether the proposed Kubernetes Cluster can be

of use to a web service. Fig. 2 shows the number of VUs

that is simulated within a time frame of 13 minutes, included

with the thresholds to define the passing criteria for the load

testing. Although the capability of the simulated cluster is not

ideal due to machine limitations, the situation may serve as an

approximation for a real working condition when the machines

that the Kubernetes Cluster is hosted on and the autoscaling

FIG. 2

K6 SCRIPT CODE FOR VPA TEST 2.

FIG. 3

THE RESULTS FROM A TRIAL MADE TOWARDS THE KUBERNETES

CLUSTER DENOTING SOME IMPORTANT PARAMETERS TO LOOK

FOR.

methods are implemented correctly. The QoS is calculated by

analyzing the results of HTTP packets made by k6 and by

reviewing the autoscaling events made by GKE.

A total of 4 trials, 2 CA trials and 2 VPA trials, are con-

ducted to account for different scenarios to maintain fairness.

Each trial sends a stream of GET requests in the span of

varying time frame with 2 threshold where one of the thresh-

olds specifies that 95% of the requests happen within 2000

milliseconds and that the other threshold evaluates the rate of

HTTP errors. Each trial is shown to have a different effect

on the cluster metrics. As shown in Fig. 3, the checkmark

signifies a successful threshold while the cross is for a failed

response.

B. Resource Utilization Analysis

The resource utilization analysis describes how effective are

the CPU and memory usage of the VM when the IoT platform

receives streams of images. The CPU usage is measured during

the image transmission experiment with the result as shown

in Fig. 4. All trials are conducted while the CPU usage of

the system was initially at around 0.2% and the CPU usage

increases until 1.75% on average. After 120 seconds, the

CPU usage drastically decreases to the initial value of just

above 0.2% across all trials. The CPU usage is not affected

significantly because the database only creates new documents

for each image to be stored in. Since the writing process does

not require scanning the whole collection of documents, the

ISSN : 2355-9365 e-Proceeding of Engineering : Vol.10, No.4 Agustus 2023 | Page 3726

FIG. 4

THE CPU AND MEMORY USAGE DURING K6 LOAD TESTING FOR

THE CA TRIALS.

FIG. 5
THE CPU AND MEMORY USAGE PERCENTAGE DURING K6 LOAD

TESTING FOR THE VPA TRIALS.

requests to make new documents are handled without using

the CPU too much.

Meanwhile, Fig. 4 shows that the CPU is affected more

significantly than memory usage during the trial for Cluster

Autoscaling. Each trial has an average memory usage increase

by. The increases in CPU usage between trials are due to

additional CPU used by the pods for processing the requests

towards the web server.

C. K6 Performance Analysis

This paper uses k6 developed by Grafana to simulate and

record load testing performances. Load testing performances

are indicated by the rate of HTTP requests and the number

of packets dropped due to thresholds made for the script.

The Fig. 3 shows that there are HTTP requests that meet the

criteria set in Fig. 2for as thresholds for errors and duration of

a request. By having a large number of VUs, the performance

of a web server will be affected drastically which requires

the Kubernetes Cluster to scale according to the workload and

available allocatable resources a which enables the Kubernetes

Cluster to lessen the impact of heavy traffic.

VII. CONCLUSION

The working process of this paper is concluded in this

section.

A. This paper proposed a Kubernetes cluster as a platform

for a web service. The role of the web server is handled

by NGINX. This paper rented a trial version of Google

Cloud Platform service to host the Kubernetes cluster

while also allowing for the cluster to be able to be

accessed publicly. The QoS parameters as well as the

metrics performance from GKE show that the with

enough resources, the cluster can meet the

requirements for managing applications and scaling

them according to need.

B. The Vertical Pod Autoscaler set resource requests au-

tomatically based on usage while CA is triggered by

pending pods inside the node. In order to maintain

stability, higher cost is put in place in terms of a better

machine, higher memory and CPU capacity to

avoid any downtime but to ensure efficiency, there is

a risk of downtime due to the allocation of resources

being lower to save costs.

C. Should a cluster or application request more than

needed, slack increases, adding extra costs to the

service.

D. The cluster is intended to scale up to account for the

extra workload due to a higher number of VUs in the

given time frame on CA Test 2. However, because

the system is limited in memory and CPU due to

the machine that was used from GCP, scaling up and

establishing new nodes was not viable. As a result,

there were more failures and interrupted iterations in

CA Test 2 than in CA Test 1.

VIII. SUGGESTION

These suggestions are given to help the readers acknowledge

what this paper lacks so improvements can be made for future

research.

A. Due to trial use of Google Cloud Platform, only a

limited amount of CPU and memory was allowed.

Upgrading machines that allows for more RAM and CPU

allows for more room in scalability and stability.

B. Since CA is triggered by pending pods, and sends a

request to scale up the cluster, the time it takes to create

a node could take several minutes causing delay to the

application performance thus degrading any services.

REFERENCES

[1] Kubernetes. (2022-11-24) Virtualization. [Online].

Available: https:

//kubernetes.io/docs/concepts/overview/

[2] IBM. Containerization. [Online]. Available:

https://www.ibm.com/cloud/ learn/containerization

[3] H. Rajavaram, V. Rajula, and B. Thangaraju, Automation

of Microservices Application Deployment Made Easy By

Rundeck and Kubernetes, 2019- 07-26.

http://www.ibm.com/cloud/

ISSN : 2355-9365 e-Proceeding of Engineering : Vol.10, No.4 Agustus 2023 | Page 3727

[4] Y. Pribadi, A. B. PN, and M. A. Irwansyah, <Analysis of
the use of the failover clustering method to achieve high

availability on a web server (case study: Informatics

department building),= 2020-04-02.

[5] D. Jones. (2018-03-16) Containers vs. virtual machines

(vms): What’s the difference? [Online]. Available:

https://www.netapp.com/ blog/containers-vs-vms/

[6] k6. Metrics. [Online]. Available: https://k6.io/docs/using-

k6/metrics/

[7] Kubernetes. (2022-10-24) Kubernetes components.

[Online]. Available:

https://kubernetes.io/docs/concepts/overview/components/

http://www.netapp.com/

