ISSN : 2355-9365

e-Proceeding of Engineering : Vol.11, No.4 Agustus 2024 | Page 3993

Implementasi Dan Profiling Layanan Cms
Wordpress Menggunakan Fitur Horizontal Pod
Autoscaler Pada Google Kubernetes Engine
Dengan Metrik Cpu, Pod, Dan Transaction

1t Arya Bimo Bagas Penggalih
Fakultas Rekayasa Industri
Universitas Telkom
Bandung, Indonesia
aryabimo @student.telkomuniverity.ac.i
d

Abstrak— Aspek skalabilitas layanan pada cloud platform
dapat dilakukan dengan container manajemen dengan
Kubernetes Berdasarkan hal tersebut, penggunaan fitur pada
Google Kubernetes Engine yaitu horizontal pod autoscaler dapat
menjadi solusi. Metode yang digunakan pada pengujian ini
menggunakan Load Testing untuk mengukur utilisasi CPU, dan
kemampuan layanan menerima request dari varian jumlah user
tersebut. Pengujian pada layanan disimulasikan menggunakan
platform cloud yaitu Google Cloud Platform dengan service
Google Kubernetes Engine. Pada layanan CMS yang
menggunakan HPA memiliki konfigurasi CPU 70%. Rata-rata
penggunaan CPU dibawah 70% masih termasuk batas aman.
Dari hasil analisis penerimaan request tidak ada perbedaan
yang signifikan pada fotal request dan average response time.
Namun pada parameter persentase failure layanan CMS yang
menggunakan HPA, terdapat perbedaan persentase failure
yang cukup tinggi. Seperti pada varian user 200 layanan CMS
Non-HPA memiliki total request 2161 dengan persentase failure
100% dan layanan CMS dengan HPA memiliki total request
1578 dengan persentase failure 14%. Dengan persentase failure
yang lebih kecil dapat di indikasikan HPA dapat menjadi salah
satu solusi meningkatkan skalabilitas.

Kata kunci: Kubernetes, Load Testing, Horizontal Pod
Autoscaler, skalabilitas

L. PENDAHULUAN

Pada era modern komputasi awan dan teknologi
kontainerisasi, Kubernetes telah menjadi salah satu platform
orkestrasi kontainer paling populer yang digunakan untuk
mengelola aplikasi skala besar. Penggunaan Kubernetes
memungkinkan pengembang layanan untuk dengan mudah
menyebarkan dan mengelola aplikasi di lingkungan yang
kompleks dan dinamis. penggunaan aplikasi berbasis web
cenderung meningkat seiring banyaknya pengguna internet
diseluruh dunia. Dari data statistik pengguna internet secara
individual menurut international Telecomunication Union
(ITU) pada paper 2019 Measuring digital development Facts
and figures 2019, pada tahun tersebut rata-rata pengguna
internet individualnya mencapai 53.6% diseluruh dunia.[1].
Mulai banyaknya permintaan request jumlah pengguna
internet menjadikan penyedia layanan atau perusahaan

2nd - Adityas Widjajarto
Fakultas Rekayasa Industri
Universitas Telkom
Bandung, Indonesia
adtwjrt @telkomuniversity.co.id

3 Avon Budiyono
Fakultas Rekayasa Industri
Universitas Telkom
Bandung, Indonesia
avonbudi @telkomuniversity.ac.id

aplikasi berbasis web harus meningkatkan dari segi aspek
skalabilitas mereka terutama server, semakin meningkat
jumlah permintaan request maka akan mengakibatkan server
down atau down time karena server overload.

Teknologi Cloud computing dibutuhkan sebagai
teknologi komputasi terdistribusi yang mampu
mengabstraksikan kemampuan hardware atau perangkat
keras dalam menjalankan sebuah proses komputasi atau
sistem operasi, efisiensi resource penggunaan perangkat dari
segi hardware dan proses untuk high availability, serta sistem
yang lebih handal untuk menangani sistem kegagalan.[2].

Penerapan auto scaling dapat mengoptimalkan layanan
cloud yang bersifat on-demand service dan rapid elasticy
dengan metode pengelolaan secara otomatis yang dilakukan
oleh sistem. Salah satu metode auto scaling yaitu dengan
memprediksi penggunaan resource di sisi server sehingga
sistem cloud yang dibangun dapat memperkirakan berapa
jumlah resource yang dibutuhkan oleh layanan[3].

Horizontal Pod Autoscaling (HPA) adalah fitur penting
dalam Kubernetes yang memungkinkan infrastruktur secara
otomatis menyesuaikan jumlah replika pod berdasarkan
permintaan lalu lintas dan penggunaan sumber daya.
Penggunaan HPA pada Google Kuberntes Engine (GKE)
memungkinkan aplikasi untuk meningkatkan jumlah replika
pod saat beban kerja meningkat dan mengurangi jumlah
replika pod saat beban kerja menurun, secara otomatis

mengoptimalkan ~ penggunaan sumber daya dan
meningkatkan elastisitas aplikasi.[4].
II. DASAR TEORI

A. Central Processing Unit (CPU)

CPU (central processing unit) atau sering disebut juga
dengan istilah processor, adalah bagian dari sebuah sistem
komputer yang melakukan instruksi dari program komputer,
dan merupakan unsur utama yang melaksanakan fungsi
komputer. Processor juga seringkali disebut sebagai otak dari
sebuah komputer.Utilisasi CPU adalah penggunaan sumber
daya komputasi yaitu CPU. Utilisasi CPU memiliki Key

ISSN : 2355-9365

Performance Indicator sebagai standar batas utilisasi dengan
jika penggunaan lebih dari 70% masuk kedalam Warning
threshold, jika penggunaan lebih dari 90% masuk kedalam
Critical Threshold.[5]

B. Skalabilitas

skalabilitas ~ adalah kemampuan sistem untuk
menyesuaikan masalah dalam ruang lingkup masalah
peningkatan, seperti peningkatan jumlah volume pekerjaan
yang dilakukan sistem.[6].

C. Load Testing

Load testing merupakan bentuk pengujian yang bertujuan
untuk mengevaluasi kemampuan suatu sistem, aplikasi, atau
infrastruktur dalam menangani beban kerja yang tinggi atau
volume pengguna yang besar. Tujuan utama dari Load testing
adalah untuk menemukan batas kinerja sistem,
mengidentifikasi bottleneck, dan memastikan bahwa aplikasi
berjalan dengan lancar di bawah tekanan maksimal.

D. Google Cloud Platform

Merupakan produk yang dikembangkan oleh Google
yang dimana berfokus pada layanan cloud computing untuk
membuat, menguji, dan men-deploy dengan menggunakan
infrastruktur dan fitur Google yang dapat diskalakan.

E. Virtual Machine

Virtual machine (VM) adalah suatu teknologi yang
memungkinkan replikasi mesin fisik dalam bentuk mesin
virtual yang dapat menjalankan sistem operasi dan aplikasi
secara terisolasi.

F. Locust

Locust adalah sebuah perangkat lunak (software) open-
source yang digunakan untuk melakukan uji beban (Load
testing) terhadap sistem atau aplikasi. Dalam konteks
tinjauan pustaka, Locust dapat digunakan untuk menguji
performa dan keandalan sebuah aplikasi atau sistem yang
terkait dengan penelitian yang sedang dilakukan.

G. Kubernetes

Kubernetes adalah platform open source untuk mengelola
kumpulan kontainer dalam suatu cluster server. Platform ini
pertama kali dikembangkan oleh Google dan kini dikelola
oleh Cloud Native Computing Foundation (CNCF) sebagai
platform manajemen kontainer yang cukup populer.
Kontainer sendiri adalah environment dengan sumber daya,
CPU, dan sistem file untuk satu aplikasi. Jadi, aplikasi
tersebut akan memiliki sumber daya sendiri. Keuntungannya,
aplikasi jadi tidak mudah mengalami downtime

H. Horizontal Pod Autoscaler

Horizontal Pod Autoscaling (HPA) adalah mekanisme
otomatis dalam Kubernetes yang digunakan untuk
menyesuaikan jumlah replika pod secara horizontal
berdasarkan beban kerja atau tingkat penggunaan sumber
daya. HPA dapat digunakan untuk mengoptimalkan
penggunaan sumber daya.

e-Proceeding of Engineering : Vol.11, No.4 Agustus 2024 | Page 3994

III. METODELOGI PENELITIAN

A. Model Konseptual Penelitian

Model konseptual ini bertujuan untuk memudahkan
dalam melakukan identifikasi permasalahan yang ditemukan
pada penelitian profiling layanan CMS yaitu, sebagai berikut:

Peneiitian Iimu yang
anterapkan

GAMBAR 1
Model Konseptual Penelitian

Dapat diketahui pada Gambar 1 bahwa terdapat tiga ruang
lingkup yaitu kebutuhan, penelitian dan dasar ilmu yang di
terapkan. Pada aspek Kebutuhan terdiri dari 3 bagian
diantaranya aplikasi load testing yaitu platform pengujian
yaitu Google Kubernetes Engine dan aplikasi objek yaitu
layanan CMS. Ilmu yang diterapkan terdiri dari dasar teori
dan metodologi. Dasar Teori yang digunakan diantaranya
Kubernetes, Horizontal Pod Autoscaler, CPU Utilization dan
Load Testing.

B. Sistematika Penelitian

Dalam melakukan penelitian ilmiah, sistematika
penelitian diperlukan agar penelitian yang dilaksanakan
berjalan terstruktur dan sistematis. Penelitian diawali dengan
tahap identifikasi masalah, analisis, desain, eksperimen, dan
terakhir evaluasi dan kesimpulan

QMJi Studi Literatur

Tanap Awal

Tahap Perancangan

Tahap implementast

“Tahap Analisis

Tahap Akhir

GAMBAR 2
Sistematika Penyelesaian Masalah

ISSN : 2355-9365

Iv. HASIL DAN PEMBAHASAN

A. Rancangan Sistem

Dalam Melakukan eksperimen load testing pada CMS
dibutuhkannya penracangan sistem untuk melakukan
pengujian dengan menggunakan beberapa instrument
eksperimen. Instrumen yang digunakan berguna untuk
mendukung jalannya eksperimen. Maka dari itu, dilakukan
identifikasi instrument eksperimen yang terdiri dari intriment
fisik dan program. Berikut adalah instrument eksperimen
yang digunakan.
1. Topologi Jaringan

Topologi jaringan digunakan untuk menggambarkan
kegiatan yang akan dilakukan dalam pengujian ini, sebagai
langkah untuk mendapatkan hasil percobaan dalam
melakukan pengujian load testing.

.

N, B Node2
ig. - - iy
,:z§\ ¥ 5
) locust load festing
Noded
(=]

GAMBAR 3
Topologi Jaringan Pengujian

2. Daftar IP Address
IP Address yang digunakan pada
dilampirkan pada Tabel 1 Daftar IP address:

penelitian ini,

TABEL 1
Daftar IP Address
Host IP Address
Laptop 192.168.100.48
Wordpress 34.110.182.68
Pod 10.116.9.62/*
Locust 0.0.0.0:8089

B. Skenario Pengujian

Dalam skenario pengujian ini, locust yang di install pada
cluster local melakukan load test dengan varian simultan user
yaitu 20, 40, 60, 80, 100, 120, 140, 180, dan 200 dengan
waktu uji coba 1 menit untuk setiap varian simultan user
dengan task melakukan request “/” dan Post id kepada
aplikasi objek yang di deploy pada aplikasi Web CMS yang
di deploy platform Kubernetes di Google Cloud Platform.

1. Skenario 1: pengujian layanan CMS non-HPA

Dalam skenario pengujian ini, locust yang di install pada
cluster local melakukan load test dengan varian simultan user
yaitu 20, 40, 60, 80, 100, 120, 140, 180, dan 200 dengan
waktu uji coba 1 menit untuk setiap varian simultan user
kepada aplikasi objek yang di deploy pada platform

e-Proceeding of Engineering : Vol.11, No.4 Agustus 2024 | Page 3995

Kubernetes di Google Cloud Platform tanpa menggunakan
fitur Horinzontal autoscaler

GAMBAR 4
Pengujian Load Test non-HPA

2. Skenario 2: Pengujian layanan CMS HPA

Dalam scenario pengujian ini locust digunakan untuk
mengukur kemampuan layanan CMS yang sudah
menggunakan HorizontalPodAutoscaler dengan konfigurasi
utilisasi CPU 70% untuk menambahkan replika minimal 3
pod dan maksimal 30 pod dengan varian simultan user yang
digunakan untuk pengujian ini yaitu 20, 40, 60, 80, 100, 120,
160, 180, dan 200 dengan waktu uji coba 1 menit untuk setiap
varian simultan user.

GAMBAR 5
Pengujian Load test HPA
C. Pengujian

Pada tahapan ini akan dilakukan 2 pengujian dimulai
dengan pengujian load testing pada layanan CMS non-HPA
lalu dilanjutkan dengan pengujian load testing pada layanan
CMS HPA
1. Pengujian Layanan CMS non-HPA

Dalam spengujian ini, menggunakan Locust unutk
melakukan load test dengan varian simultan user yaitu 20, 40,
60, 80, 100, 120, 140, 180, dan 200 dengan waktu uji coba 1
menit untuk setiap varian simultan user kepada aplikasi objek
yang di deploy pada platform Kubernetes di Google Cloud
Platform tanpa menggunakan fitur Horinzontal autoscaler.
a. Setelah aplikasi objek berhasil di deploy kedalam

Google Kubernetes Engine maka perlu mengakses ke
external ip aplikasi objek untuk memastikan bahwa
aplikasi objek sudah berhasil di deploy.

ISSN : 2355-9365 e-Proceeding of Engineering : Vol.11, No.4 Agustus 2024 | Page 3996

b. Menjalankan locust yang sudah terisntall di dalam
cluster local dan membuka locust interface dibrower.

c. Setelah mengakses locust interface, melakukan
konfigurasi dengan memasukan jumlah user, spawnrate,
runtime,dan external ip aplikasi objek.

d. Setelah melakukan konfigurasi dapat langsung
menjalankan Load testing kepada aplikasi objek

e. Setelah Load testing sudah berjalan lakukan monitoring
statistic kegagalan request yang dapat di monitor dengan
locust interface yang sudah di jalankan di cluster local.

f. Setelah loadtesting selesai maka dapat dilanjutkan
memonitor CPU yang dapat di monitor pada fitur google
cloud monitoring.

2. Pengujian Layanan CMS HPA
Dalam pengujian ini, menggunakan Locust unutk

melakukan load test dengan varian simultan user yaitu 20, 40,

60, 80, 100, 120, 140, 180, dan 200 dengan waktu uji coba 1

menit untuk setiap varian simultan user kepada aplikasi objek

yang di deploy pada platform Kubernetes di Google Cloud

Platform yang menggunakan fitur Horinzontal autoscaler.

a. Menjalanlan cluster pada Google Kubernetes engine
yang berfungsi sebagai tempat aplikasi objek yaitu
wordpress di deploy.

b. Setelah aplikasi objek berhasil di deploy kedalam Google
Kubernetes Engine maka perlu mengakses ke external ip
aplikasi objek untuk memastikan bahwa aplikasi objek
sudah berhasil di deploy.

c. Melakukan configurasi Horizontal Pod Autoscaler pada
aplikasi objek yaitu Wordpress yang di deploy di cluster
Google Cloud Platform dengan konfigurasi jumlah
minimal pod 3 dan maksimal pod 30.

d. Menjalankan locust yang sudah terisntall di dalam
cluster local dan membuka Locust interface dibrowser.

e. Setelah mengakses Locust interface, melakukan
konfigurasi dengan memasukan jumlah user, spawnrate,
runtime,dan external ip aplikasi objek.

f. Setelah melakukan konfigurasi dapat langsung
menjalankan load testing kepada aplikasi objek

g. Setelah load testing sudah berjalan lakukan monitoring
statistic kegagalan request yang dapat di monitor dengan
Locust interface yang sudah di jalankan di cluster local.

h. Setelah loadtesting selesai maka dapat dilanjutkan
memonitor CPU yang dapat di monitor pada fitur google
cloud monitoring.

D. Hasil Pengujian

Berikut adalah hasil pengujian load testing menggunakan
Locust pada layanan CMS yang tidak menggunakan
Horizontal Pod Autoscaling dan layanan CMS yang
menggunakan Horizontal Pod Autoscaling Adapun hasil
pengujian berupa parameter aspek skalabilitas seperti CPU
mean, CPU max, average response time, total request, dan
failure.
1. Hasil Pengujian Layanan CMS non-HPA

Berikut adalah hasil pengujian load testing menggunakan
Locust pada layanan CMS yang tidak menggunakan
Horizontal Pod Autoscaling Adapun hasil pengujian berupa
parameter aspek skalabilitas seperti CPU mean, CPU max,
average response time, total request, dan failure.
a. CPU mean

TABEL 2
Hasil Pengujian CPU mean
user Non HPA CPU Mean
value (%)
20 78,23
40 206,30
60 434,85
80 295,90
100 143,20
120 238,79
140 551,59
160 874,40
180 755
200 519,26
b. CPU max
TABEL 3
hasil Pengujian CPU Max
user Non HPA CPU Max
value (%)
20 282,09
40 706,86
60 690,58
80 531,83
100 381,92
120 498,78
140 1211,08
160 967,24
180 1091,74
200 1026,91

C. Average responsetime

TABEL 4
Hasil Pengujian Average Response Time
user Non HPA average
response time(s)
20 0,9
40 1,6
60 1,9
80 4,7
100 5,8
120 7,8
140 51
160 5,7
180 4,1
200 0,2

ISSN : 2355-9365

e-Proceeding of Engineering : Vol.11, No.4 Agustus 2024 | Page 3997

d. Total request 180 62,24%
TABEL 5
Hasil Pengujian Total Request 200 70,25%
user Non HPA total
b. CPU max
request TABEL 8
20 418 Hasil Pengujian CPU max
40 790 User CPU Max
60 930 20 147,13%
80 703 40 147,13%
100 759 60 119,02%
120 708 80 92,98%
140 1145 100 175,21%
160 1142 120 83,44%
180 1627 140 98,08%
200 2161 160 162,80%
180 91,72%
e. failure S
TABEL 6 200 122,89%
Hasil Pengujian Failure
user Failure (%) c. Average Response time
20| 0 TABEL 9
40| 0 Hasil Pengujian Average Response Time
60 1 0 user HPA average
G response time
100 5 20 0,7
0 8 40 0,8
140 | 22 0 28
160 | 32 %0 >’
180 @ 100 2,4
200 | 100 20 2
140 3,3
2. Hasil Pengujian Layanan CMS HPA 160 4,6
Berikut adalah hasil pengujian load festing 180 4,8
menggunakan Locust pada layanan CMS yang 200 5,2
menggunakan Horizontal Pod Autoscaling Adapun hasil
pengujian berupa parameter aspek skalabllltgs seperti o, Topd st
CPU mean, CPU max, average response time, total TABEL 10
request, dan failure. Hasil Pengujian Total Request
a. CPU mean user HPA total
TABEL 7 request
Hasil Pengujian CPU mean 20 431
user HPA CPU mean 40 616
20 50,24% 60 867
40 53,32% 80 1296
60 62,25% 100 1333
80 64,96% 120 1422
100 69,92% 140 1584
120 42,15% 160 1258
140 58,85% 180 1453
160 64,71% 200 1578

ISSN : 2355-9365

e. Failure
TABEL 11
Hasil Pengujian Failure

user HPA failure
20 0%
40 0%
60 0%
80 0%
100 0%
120 0%
140 0%
160 0%
180 6%
200 14%

V. ANALISIS

Selanjutnya melakukan analisis terhadap data dari
layanan CMS yang menggunakan HPA dan tanpa HPA. Pada
tahap ini dilakukan identifikasi untuk mengambil informasi
dari data hasil pengujian yang diperoleh. Tujuan dari analisis
adalah untuk mendapatkan profil atau karakter dari fungsi
HPA pada cluster Kubernetes di Google Kubernetes Engine.

A. Analisis Jumlah Pod

Berikut adalah hasil pengujian Load testing dengan varian
jumlah simultan user 20 hingga 200 jumlah replika pod pada
layanan CMS Non-HPA
1. Perbandingan Jumlah Pod

Perbandingan Jumlah Pod

40
30

: I | |
10 3

80 100 120 140 160 180 200

B HPA Jumlah pod ® Non-HPA Jumlah Pod

GAMBAR 4
Perbandingan jumlah pod

Analisa perbandingan ini menunjukkan:

a. penggunaan pod pada non-HPA cenderung tetap

b. penggunaan pod pada HPA cenderung berubah

dari penelusuran data jumlah pod pada layanan diperoleh
jumlah pod adalah:

jumlah pod pada non-HPA sebanyak 3 pod.

jumlah pod pada HPA dapat berubah dari minimal 3 pod
hingga maksimal 30 pod

B. Analsis Penggunaan CPU
Berikut ini adalah analisis CPU mean pada pengujian
layanan non-HPA dan layanan dengan HPA.

e-Proceeding of Engineering : Vol.11, No.4 Agustus 2024 | Page 3998

1.Penggunaan CPU mean Value Pada Layanan CMS non-
HPA

Non-HPA CPU mean

1000,00% 874,40% oo,
551,59% 19,26%
500,00% o 295 904) 790
78,23% 30/ “I 2?0?"3
0,00% = I u

20 40 60 80 100 120 140 160 180 200

GAMBAR 5
CPU mean value non-HPA.

Dari analisa Penggunaan CPU Mean Value ini dapat
diperoleh persentease penggunaan CPU Mean Value sebagai
berikut:

a. Penggunaan CPU rata-rata tertinggi didapat pada varian
jumlah user 160 dengan rata-rata penggunaan CPU
874,40%

b. Penggunaan CPU rata-rata terendah didapat pada varian
jumlah user 20 dengan penggunaan CPU rata-rata
78,23%

dari penelusuran data penggunaan CPU Mean value

Menunjukan:

a. Penggunaan CPU Mean Value cenderung tidak stabil

b. Penggunaan CPU Mean Value dapat melebihi 100%

2.Penggunaan CPU Mean Value Pada Layanan CMS HPA
HPA CPU mean

100,00%
50,258,357, 25, 9FR52% 5/8 8:f4,7160,24%,25%
’ 42,15%
0,00%

20 40 60 80 100 120 140 160 180 200

GAMBAR 6
CPU mean Value HPA

Dari analisis penggunaan CPU Mean Value pada Layanan
CMS Dengan HPA dapat diperoleh data penggunaan CPU
mean Value sebagai berikut:

a. Rata-rata CPU Mean Value tertinggi ada pada jumlah
varian simultan user 200 dengan persentase CPU Mean
Value 70,25%

b. Rata-rata CPU Mean Value terendah ada pada jumlah
varian simultan user 120 dengan persentase CPU Mean
Value 42,15%

Dari penelusuran data penggunaan CPU Mean value

menunjukan:

a. Rata-rata penggunaan CPU pada layanan CMS yang
menggunakan Horizontal Autoscaling dibawah 70%

b. rata-rata penggunaan CPU pada setiap varian simultan
user memiliki kencenderungan naik

3. Perbandingan CPU mean Value Pada Layanan CMS

ISSN : 2355-9365

Perbandingan CPU Mean

1000,00%
500,00%

0,00%
20 40 60 80 100 120 140 160 180 200

«=@==HPA CPU mean ==@==Non-HPA cpu mean

GAMBAR 7
Perbandingan CPU mean value.

Berikut adalah hasil analisis perbandingan dari data CPU

Mean Value:

a. CPU Mean value pada layanan CMS non-HPA
cenderung lebih besar

b. CPU Mean value pada layanan CMS HPA cenderung
lebih kecil

c. CPU Mean Value pada layanan CMS Non-HPA
cenderung tidak stabil

d. CPU Mean Value pada layanan CMS HPA Cenderung
stabil

e. Rata-rata CPU Mean Value pada layanan CMS non-HPA
lebih dari 100%

f. Rata-rata CPU Mean Value pada layanan CMS HPA
dibawah 70%

4. Penggunaan CPU Max Pada Layanan CMS Non-HPA

Non-HPA CPU max

1500,00%
1211,08%

67 300t5%,91%
706,8%0,58%

31,83% 498,789
()
500,00% 282,09°i I381,92A1I
0,00% I I

20 40 60 80 100 120 140 160 180 200

1000,00%

Gambar 8 Hasil Pengujian Penggunaan CPU Max CMS Non-HPA

Dari analisis penggunaan CPU Max Value pada Layanan

CMS Dengan HPA dapat diperoleh data penggunaan CPU

max Value sebagai berikut:

a. Penggunaan CPU Max terkecil ada pada varian jumlah
user 20 dengan persentase CPU Max 282,09%,

b. penggunaan CPU Max terbesar ada pada varian jumlah
user 140 dengan penggunaan CPU Max 1211,08%.

Dari penelusuran data penggunaan CPU Max Value

menunjukan:

c. CPU Max Value dapat lebih dari 100%

d. CPU Max Value memiliki kencenderungan tidak stabil

5. Penggunaan CPU Max Pada Layanan CMS Dengan HPA

e-Proceeding of Engineering : Vol.11, No.4 Agustus 2024 | Page 3999

HPA CPU max

200,00% 175,21%

162,80%
122,89%

147,188%,13%
0,
150,00% B
100,00% 92,98% [l o3 4425087 | 91,72%
) o)
50,00% | I I I I
0,00%

20 40 60 80 100 120 140 160 180 200

GAMBAR 9
Hasil Pengujian Penggunaan CPU Max CMS HPA

Dari analisis penggunaan CPU max Value pada Layanan

CMS Dengan HPA dapat diperoleh data penggunaan CPU

max Value sebagai berikut:

a. Penggunaan CPU Max terbesar ada pada varian jumlah
user 100 dengan penggunaan CPU Max 175,21%.

b. Penggunaan CPU Max terkecil ada pada varian jumlah
user 80 dengan persentase CPU Max 92,98%.

Dari penelusuran data penggunaan CPU Max Value

menunjukan:

c. CPU Max Value dapat lebih dari 100%

d. CPU Max Value memiliki kencenderungan tidak stabil

6. Perbandingan CPU Max Pada Layanan

Perbandingan CPU Max

1500,00%
1000,00%
500,00%

0,00%
20 40 60 80 100 120 140 160 180 200

«=@==HPA cpu max ==@==Non-HPA cpu max

Gambar 10 Perbandingan Penggunaan CPU Max Pada Layanan
CMS
Dari hasil pengujian diperoleh ada analisis sebagai berikut:

e bahwa pada saat varian user 20 pengujian Load
testing, penggunaan CPU Max pada layanan CMS
yang tidak menggunakan HPA sebesar 282,09% dan
layanan CMS yang menggunakan HPA sebesar
147,13%.

e Seiring berjalanya pengujian Load testing,
penggunaan CPU Max pada layanan CMS yang
tidak menggunakaan HPA selalu lebih besar
dibanding layanan CMS yang menggunakan HPA.

C. Analisis Penerimaan Request

Pada skenario pengujian Load testing yang sudah dilakukan
maka didapatkan data hasil dari pengujian Load testing.
Dalam analisis. Berikut adalah hasil pengujian Load testing
dari kedua layanan CMS dengan mengamati Penggunaan
persentase failure pada kedua Layanan CMS:

1. Perbandingan Failure Pada Kedua Layanan CMS

ISSN : 2355-9365

Hasil Pengujian Failure

150%
100%
100%
56%
50% 50 32%
4%
0%% 0%% 0%% 6%% 76% 86% R IS% °
0% - - - - [|

20 40 60 80 100 120 140 160 180 200

B Non-HPA failure ® HPA failure

GAMBAR 11
Perbandingan Failure Pada Layanan CMS

Dari hasil perbandingan persentase failure menunjukan

bahwa:

a. Layanan CMS yang menggunakan HPA memiliki
persentase failure 0% dimulai dari varian jumlah
simultan user 20 sampai 160.

b. Layanan CMS yang tidak menggunakan HPA sudah
terdapat failure di varian jumlah simultan user 80 dengan
persentase failure 6%.

c. Rata-rata failure layanan CMS non-HPA selalu lebih
tinggi di bandingkan layanan CMS HPA.

dikarenakan fungsi Horizontal Pod Autoscaling dapat

melakukan penambahan replika pod sesuai dengan beban

yang diterima hingga jumlah maksimal konfigurasi pod.

2.Average Response Time Pada CMS non-HPA

Non-HPA average response time

20 40 60

80 100 120 140 160 180 200

GAMBAR 12
Hasil Pengujian Average Response Time CMS Non-HPA

Dari hasil analisis data average response time pada layanan

CMS non-HPA menunjukkan:

a. Average response time tercepat ada pada varian jumlah
simultan user 200

b. Average response time terlambat ada pada varian jumlah
simultan user 120

dari penelusuran data average response time pada layanan

diperoleh kecenderungan sebagai berikut:

a. Padauser 20 sampai 100 average response time memiliki
kecenderungan naik

b. Pada user 120 sampai 200 average response time
memiliki kecenderungan turun

3. Average Response Time Pada CMS Dengan HPA

e-Proceeding of Engineering : Vol.11, No.4 Agustus 2024 | Page 4000

HPA average response time(s)

10

20 40 60

80 100 120 140 160 180 200

GAMBAR 13
Hasil Pengujian Average Response Time CMS HPA

Dari hasil analisis data average response time pada layanan
CMS non-HPA menunjukkan:
e Average response time terendah ada pada user 20
dengan average response time 1,7 detik .
e Average response time tertinggi ada pada user 140
dengan average response time 9,03 detik.
e Average response time pada layanan CMS yang
menggunakan Horizontal Autoscaling memiliki
kecenderungan naik.

4. Perbandingan Average Response Time pada kedua layanan
CMS

Perbandingan Average Response

Time (s)

10 120%
8 r 100%
80%

6
60%

4
I 40%
il I ||

II I =) | | | I 1| l_

0%
20 40 60 80 100 120 140 160 180 200

mmmm HPA average response time(ms)
mmm Non-HPA average response time
Non-HPA failure

GAMBAR 14
Hasil Pengujian Average Respond time (s)

Dari hasil pengujian menunjukan data sebagai berikut:

a. Average response time tercepat pada layanan CMS non-
HPA ada pada variant user 200 dengan average response
time 0,2 detik

b. Average response time terkecil pada layanan CMS HPA
ada pada varian user 20 dengan average response time
0.9 detik

c. Average response time terlambat pada layanan CMS
non-HPA ada pada varian user 140 dengan average
response time 9,03 detik

ISSN : 2355-9365

d. Average response time terlambat pada layanan CMS
HPA ada pada varian user 120 dengan average response
time 7,8 detik
dari penelusuran data average response time dan failure

pada layanan CMS diperoleh analisis perbandingan sebagai

berikut:

a. Average response time pada layanan CMS non-HPA
cenderung sedikit lebih cepat akan tetapi memiliki
persentase failure yang lebih tinggi.

b. Average response time pada layanan CMS HPA
cenderung sedikit lebih lambat akan tetapi memiliki
persentase failure lebih rendah.

5. Total Request dan Failure Layanan CMS non-HPA

Non-HPA Total request

3000 150%

2000 100%

1000 50%
0 0%

20 40 60 80 100 120 140 160 180 200

mmm Non-HPA Total request e failure

GAMBAR 15
Hasil Pengujian Total request Dan Failure CMS Non-HPA

Dari hasil pengujian menunjukan data sebagai berikut:

a. Total request terendah dengan persentase failure
terendah ada pada varian user 20 dengan fotal request
418 dan persentase failure 0%.

b. Total request tertinggi dengan persentase failure
tertinggi ada pada varian user 200 dengan fotal request
2161dengan persentase failure 100%.

dari penelusuran data fotal request dan failure pada layanan

CMS diperoleh analisis sebagai berikut:

a. Rata-rata Total request mengalami kenaikan beriringan
dengan kenaikan varian jumlah simultan user.

b. Failure cederung naik beriringan dengan kenaikan
jumlah user dan toral request.

6. Total Request Dan Failure Layanan CMS Dengan HPA

HPA Total request

2000 15%

1500 10%
1000
0,
500 5%
0 0%

20 40 60 80 100 120 140 160 180 200
I HPA total request === HPA failure

GAMBAR 16
Hasil Pengujian HPA Total request

Dari hasil pengujian menunjukan data sebagai berikut:

e-Proceeding of Engineering : Vol.11, No.4 Agustus 2024 | Page 4001

e Total request terendah dengan persentase failure
terendah ada pada varian user 20 dengan fotal
request 431 dan persentase failure 0%.

e Total request tertinggi dengan persentase ada pada
varian user 140 dengan fotal request 1584 dengan
persentase failure 0%.

o Total request tertinggi dengan persentase failure
tertinggi ada pada varian user 200 dengan fotal
request 1578 dengan persentase failure 14%.

dari penelusuran data fotal request dan failure pada layanan
CMS diperoleh analisis sebagai berikut:

c. Rata-rata Total request mengalami kenaikan
beriringan dengan kenaikan varian jumlah simultan
user.

d. Failure cederung naik beriringan dengan kenaikan
jumlah user dan total request.

7. Perbandingan Total Request Dan Failure Pada Kedua
Layanan CMS

Perbandingan Total request

2500 150%
2000
1500 ' y 100%
1000 I
|||
< I L
0 II = II = i 0%

20 40 60 80 100 120 140 160 180 200
mm HPA total request mmmm Non-HPA Total request

HPA failure Non-HPA failure

GAMBAR 17
Hasil Perbandingan Total request

Dari hasil pengujian Load testing di dapatkan data bahwa
pada saat pengujian Load testing selesai dilakukan diperoleh
perbandingan sebagai berikut:
e Rata-rata total request layanan CMS HPA lebih
banyak di banding layanan CMS non-HPA
e Persentase failure pada layanan CMS non-HPA
lebih besar di banding layanan CMS HPA
e Pada user 180 dan 200 layanan CMS non-HPA
memiliki jumlah tofal request lebih banyak dan
persentase failure lebih tinggi.
Dengan data perbandinga hasil pengujian Load testing
tersebut dapat hal ini dapat diperkirakan bahwa penggunaan
HPA dapat menampung beban jumlah user request lebih
banyak dikarenakan fitur HPA yang dapat menambahkan
replika pod sesuai dengan beban yang di terima.maka dari itu
dapat di perkirakan semakin banyak jumlah pod pada layanan
CMS, maka layanan CMS dapat menerima lebih Request.

V. KESIMPULAN
A. Kesimpulan

Penelitian ini menghasilkan kesimpulan sebagai
berikut:
1. Penerapan Horizontal Pod Autoscaling pada cluster
Kubernetes dengan konfigurasi 70% dapat

meningkatkan skalabilitas layanan pada cluster. Hal
ini dapat dilihat dari penggunaan CPU yang stabil di

ISSN : 2355-9365

bawah 70%, serta penurunan persentase failure secara
signifikan pada layanan HPA dengan persentase
failure 14% dibandingkan dengan layanan non-HPA
dengan persentase failure 100% pada varian jumlah
user 200

Menguji aspek skalabilitas cluster Kubernetes dengan
metode Load testing menggunakan Locust. Load testing

dilakukan dengan variasi jumlah user dimulai dari 20, 40,

60, 80, 100, 120, 140, 160, 180, dan 200 user.

Aspek skalabilitas pada layanan yang menggunakan
horizontal pod autoscaling lebih baik dibandingkan
dengan layanan yang tidak menggunakan horizontal
pod autoscaling. Hal ini dapat dilihat dari penggunaan
rata-rata CPU yang lebih stabil di bawah 70% pada
layanan yang menggunakan horizontal pod
autoscaling, serta persentase failure yang lebih sedikit
pada layanan CMS yang menggunakan Horizontal
Pod Autoscaling dengan persentase failure tertinggi
14% pada varian jumlah user 200, dibandingkan
dengan layanan CMS yang tidak menggunakan
Horizontal Pod Autoscaling dengan persentase failure
tertinggi 100% pada varian jumlah user 200.

B. Saran

Berdasarkan hasil analisis dan pengujian yang telah

dilakukan, berikut berupa saran yang dapat disampaikan:

1.

2.

Dalam pengujian dapat menggunakan fitur autoscaling
yang berbeda seperti vertical pod autoscaling

Dalam pengujian disarankan untuk membuat sistem
dengan spesifikasi lebih tinggi dan aplikasi Load testing
yang berbeda agar mendapatkan perbandingan yang
lebih banyak sehingga informasi yang didapat lebih
banyak.

Pada pengujian dilakukan hanya menggunakan
parameter CPU, total request, average response time dan
failure. Untuk selanjutnya dapat dilakukan pengujian
menggunakan parameter uji yang lain agar dapat
mendapatkan informasi dari parameter yang lainya.

(2]

[4]

[6]

e-Proceeding of Engineering : Vol.11, No.4 Agustus 2024 | Page 4002

REFERENSI

ITU/UN tech agency. (2023). Measuring digital
development: Facts & figures 2019. ITU Hub.
https://www.itu.int/hub/2020/05/measuring-
digital-development-facts-figures-2019/
Kusuma, T. P., Munadi, R., & Sanjoyo, D. D.
(2017). Implementasi dan analisis computer
clustering system dengan menggunakan
virtualisasi Docker. eProceedings of
Engineering, 4

Singh, H. (2022, January 6). Understanding how
Autoscaling works in DevOps - debut Infotech -
medium. Medium.
https://medium.com/debutinfotech/understandi
ng-how-autoscaling-works-in-devops-
7bb04503eff6

Horizontal pod autoscaling. (2023, July 25).
Kubernetes.
https://kubernetes.io/docs/tasks/run-
application/horizontal-pod-autoscale/
Cockcroft, A. (2001). Capacity planning for
internet services: Quick Planning Techniques
for High Growth Rates.

Falatah, M. M., & Batarfi, O. (2014). Cloud

scalability Considerations. International
Journal of Computer Science & Engineering
Survey, 54), 37-47.

https://doi.org/10.5121/ijcses.2014.5403

https://www.itu.int/hub/2020/05/measuring-digital-development-facts-figures-2019/
https://www.itu.int/hub/2020/05/measuring-digital-development-facts-figures-2019/
https://medium.com/debutinfotech/understanding-how-autoscaling-works-in-devops-7bb04503eff6
https://medium.com/debutinfotech/understanding-how-autoscaling-works-in-devops-7bb04503eff6
https://medium.com/debutinfotech/understanding-how-autoscaling-works-in-devops-7bb04503eff6
https://kubernetes.io/docs/tasks/run-application/horizontal-pod-autoscale/
https://kubernetes.io/docs/tasks/run-application/horizontal-pod-autoscale/

