
ISSN : 2355-9365 e-Proceeding of Engineering : Vol.11, No.4 Agustus 2024 | Page 3993

Implementasi Dan Profiling Layanan Cms

Wordpress Menggunakan Fitur Horizontal Pod

Autoscaler Pada Google Kubernetes Engine

Dengan Metrik Cpu, Pod, Dan Transaction

1st Arya Bimo Bagas Penggalih

Fakultas Rekayasa Industri

Universitas Telkom

Bandung, Indonesia

aryabimo@student.telkomuniverity.ac.i

d

2nd Adityas Widjajarto

Fakultas Rekayasa Industri

Universitas Telkom

Bandung, Indonesia

adtwjrt@telkomuniversity.co.id

3rd Avon Budiyono

Fakultas Rekayasa Industri

Universitas Telkom

Bandung, Indonesia

avonbudi@telkomuniversity.ac.id

Abstrak— Aspek skalabilitas layanan pada cloud platform

dapat dilakukan dengan container manajemen dengan

Kubernetes Berdasarkan hal tersebut, penggunaan fitur pada

Google Kubernetes Engine yaitu horizontal pod autoscaler dapat

menjadi solusi. Metode yang digunakan pada pengujian ini

menggunakan Load Testing untuk mengukur utilisasi CPU, dan

kemampuan layanan menerima request dari varian jumlah user

tersebut. Pengujian pada layanan disimulasikan menggunakan

platform cloud yaitu Google Cloud Platform dengan service

Google Kubernetes Engine. Pada layanan CMS yang

menggunakan HPA memiliki konfigurasi CPU 70%. Rata-rata

penggunaan CPU dibawah 70% masih termasuk batas aman.

Dari hasil analisis penerimaan request tidak ada perbedaan

yang signifikan pada total request dan average response time.

Namun pada parameter persentase failure layanan CMS yang

menggunakan HPA, terdapat perbedaan persentase failure

yang cukup tinggi. Seperti pada varian user 200 layanan CMS

Non-HPA memiliki total request 2161 dengan persentase failure

100% dan layanan CMS dengan HPA memiliki total request

1578 dengan persentase failure 14%. Dengan persentase failure

yang lebih kecil dapat di indikasikan HPA dapat menjadi salah

satu solusi meningkatkan skalabilitas.

Kata kunci: Kubernetes, Load Testing, Horizontal Pod

Autoscaler, skalabilitas

I. PENDAHULUAN

 Pada era modern komputasi awan dan teknologi

kontainerisasi, Kubernetes telah menjadi salah satu platform

orkestrasi kontainer paling populer yang digunakan untuk

mengelola aplikasi skala besar. Penggunaan Kubernetes

memungkinkan pengembang layanan untuk dengan mudah

menyebarkan dan mengelola aplikasi di lingkungan yang

kompleks dan dinamis. penggunaan aplikasi berbasis web

cenderung meningkat seiring banyaknya pengguna internet

diseluruh dunia. Dari data statistik pengguna internet secara

individual menurut international Telecomunication Union

(ITU) pada paper 2019 Measuring digital development Facts

and figures 2019, pada tahun tersebut rata-rata pengguna

internet individualnya mencapai 53.6% diseluruh dunia.[1].

Mulai banyaknya permintaan request jumlah pengguna

internet menjadikan penyedia layanan atau perusahaan

aplikasi berbasis web harus meningkatkan dari segi aspek

skalabilitas mereka terutama server, semakin meningkat

jumlah permintaan request maka akan mengakibatkan server

down atau down time karena server overload.

 Teknologi Cloud computing dibutuhkan sebagai

teknologi komputasi terdistribusi yang mampu

mengabstraksikan kemampuan hardware atau perangkat

keras dalam menjalankan sebuah proses komputasi atau

sistem operasi, efisiensi resource penggunaan perangkat dari

segi hardware dan proses untuk high availability, serta sistem

yang lebih handal untuk menangani sistem kegagalan.[2].

 Penerapan auto scaling dapat mengoptimalkan layanan

cloud yang bersifat on-demand service dan rapid elasticy

dengan metode pengelolaan secara otomatis yang dilakukan

oleh sistem. Salah satu metode auto scaling yaitu dengan

memprediksi penggunaan resource di sisi server sehingga

sistem cloud yang dibangun dapat memperkirakan berapa

jumlah resource yang dibutuhkan oleh layanan[3].

 Horizontal Pod Autoscaling (HPA) adalah fitur penting

dalam Kubernetes yang memungkinkan infrastruktur secara

otomatis menyesuaikan jumlah replika pod berdasarkan

permintaan lalu lintas dan penggunaan sumber daya.

Penggunaan HPA pada Google Kuberntes Engine (GKE)

memungkinkan aplikasi untuk meningkatkan jumlah replika

pod saat beban kerja meningkat dan mengurangi jumlah

replika pod saat beban kerja menurun, secara otomatis

mengoptimalkan penggunaan sumber daya dan

meningkatkan elastisitas aplikasi.[4].

II. DASAR TEORI

A. Central Processing Unit (CPU)

CPU (central processing unit) atau sering disebut juga

dengan istilah processor, adalah bagian dari sebuah sistem

komputer yang melakukan instruksi dari program komputer,

dan merupakan unsur utama yang melaksanakan fungsi

komputer. Processor juga seringkali disebut sebagai otak dari

sebuah komputer.Utilisasi CPU adalah penggunaan sumber

daya komputasi yaitu CPU. Utilisasi CPU memiliki Key

ISSN : 2355-9365 e-Proceeding of Engineering : Vol.11, No.4 Agustus 2024 | Page 3994

Performance Indicator sebagai standar batas utilisasi dengan

jika penggunaan lebih dari 70% masuk kedalam Warning

threshold, jika penggunaan lebih dari 90% masuk kedalam

Critical Threshold.[5]

B. Skalabilitas

 skalabilitas adalah kemampuan sistem untuk

menyesuaikan masalah dalam ruang lingkup masalah

peningkatan, seperti peningkatan jumlah volume pekerjaan

yang dilakukan sistem.[6].

C. Load Testing

Load testing merupakan bentuk pengujian yang bertujuan

untuk mengevaluasi kemampuan suatu sistem, aplikasi, atau

infrastruktur dalam menangani beban kerja yang tinggi atau

volume pengguna yang besar. Tujuan utama dari Load testing

adalah untuk menemukan batas kinerja sistem,

mengidentifikasi bottleneck, dan memastikan bahwa aplikasi

berjalan dengan lancar di bawah tekanan maksimal.

D. Google Cloud Platform

Merupakan produk yang dikembangkan oleh Google

yang dimana berfokus pada layanan cloud computing untuk

membuat, menguji, dan men-deploy dengan menggunakan

infrastruktur dan fitur Google yang dapat diskalakan.

E. Virtual Machine

 Virtual machine (VM) adalah suatu teknologi yang

memungkinkan replikasi mesin fisik dalam bentuk mesin

virtual yang dapat menjalankan sistem operasi dan aplikasi

secara terisolasi.

F. Locust

Locust adalah sebuah perangkat lunak (software) open-

source yang digunakan untuk melakukan uji beban (Load

testing) terhadap sistem atau aplikasi. Dalam konteks

tinjauan pustaka, Locust dapat digunakan untuk menguji

performa dan keandalan sebuah aplikasi atau sistem yang

terkait dengan penelitian yang sedang dilakukan.

G. Kubernetes

Kubernetes adalah platform open source untuk mengelola

kumpulan kontainer dalam suatu cluster server. Platform ini

pertama kali dikembangkan oleh Google dan kini dikelola

oleh Cloud Native Computing Foundation (CNCF) sebagai

platform manajemen kontainer yang cukup populer.

Kontainer sendiri adalah environment dengan sumber daya,

CPU, dan sistem file untuk satu aplikasi. Jadi, aplikasi

tersebut akan memiliki sumber daya sendiri. Keuntungannya,

aplikasi jadi tidak mudah mengalami downtime

H. Horizontal Pod Autoscaler

Horizontal Pod Autoscaling (HPA) adalah mekanisme

otomatis dalam Kubernetes yang digunakan untuk

menyesuaikan jumlah replika pod secara horizontal

berdasarkan beban kerja atau tingkat penggunaan sumber

daya. HPA dapat digunakan untuk mengoptimalkan

penggunaan sumber daya.

III. METODELOGI PENELITIAN

A. Model Konseptual Penelitian

 Model konseptual ini bertujuan untuk memudahkan

dalam melakukan identifikasi permasalahan yang ditemukan

pada penelitian profiling layanan CMS yaitu, sebagai berikut:

GAMBAR 1

Model Konseptual Penelitian

Dapat diketahui pada Gambar 1 bahwa terdapat tiga ruang

lingkup yaitu kebutuhan, penelitian dan dasar ilmu yang di

terapkan. Pada aspek Kebutuhan terdiri dari 3 bagian

diantaranya aplikasi load testing yaitu platform pengujian

yaitu Google Kubernetes Engine dan aplikasi objek yaitu

layanan CMS. Ilmu yang diterapkan terdiri dari dasar teori

dan metodologi. Dasar Teori yang digunakan diantaranya

Kubernetes, Horizontal Pod Autoscaler, CPU Utilization dan

Load Testing.

B. Sistematika Penelitian

Dalam melakukan penelitian ilmiah, sistematika

penelitian diperlukan agar penelitian yang dilaksanakan

berjalan terstruktur dan sistematis. Penelitian diawali dengan

tahap identifikasi masalah, analisis, desain, eksperimen, dan

terakhir evaluasi dan kesimpulan

GAMBAR 2

Sistematika Penyelesaian Masalah

ISSN : 2355-9365 e-Proceeding of Engineering : Vol.11, No.4 Agustus 2024 | Page 3995

IV. HASIL DAN PEMBAHASAN

A. Rancangan Sistem

Dalam Melakukan eksperimen load testing pada CMS

dibutuhkannya penracangan sistem untuk melakukan

pengujian dengan menggunakan beberapa instrument

eksperimen. Instrumen yang digunakan berguna untuk

mendukung jalannya eksperimen. Maka dari itu, dilakukan

identifikasi instrument eksperimen yang terdiri dari intriment

fisik dan program. Berikut adalah instrument eksperimen

yang digunakan.

1. Topologi Jaringan

Topologi jaringan digunakan untuk menggambarkan

kegiatan yang akan dilakukan dalam pengujian ini, sebagai

langkah untuk mendapatkan hasil percobaan dalam

melakukan pengujian load testing.

GAMBAR 3

Topologi Jaringan Pengujian

2. Daftar IP Address

IP Address yang digunakan pada penelitian ini,

dilampirkan pada Tabel 1 Daftar IP address:

TABEL 1

Daftar IP Address

Host IP Address

Laptop 192.168.100.48

Wordpress 34.110.182.68

Pod 10.116.9.62/*

Locust 0.0.0.0:8089

B. Skenario Pengujian

Dalam skenario pengujian ini, locust yang di install pada

cluster local melakukan load test dengan varian simultan user

yaitu 20, 40, 60, 80, 100, 120, 140, 180, dan 200 dengan

waktu uji coba 1 menit untuk setiap varian simultan user

dengan task melakukan request </= dan Post_id kepada
aplikasi objek yang di deploy pada aplikasi Web CMS yang

di deploy platform Kubernetes di Google Cloud Platform.

1. Skenario 1: pengujian layanan CMS non-HPA

Dalam skenario pengujian ini, locust yang di install pada

cluster local melakukan load test dengan varian simultan user

yaitu 20, 40, 60, 80, 100, 120, 140, 180, dan 200 dengan

waktu uji coba 1 menit untuk setiap varian simultan user

kepada aplikasi objek yang di deploy pada platform

Kubernetes di Google Cloud Platform tanpa menggunakan

fitur Horinzontal autoscaler

GAMBAR 4

Pengujian Load Test non-HPA

2. Skenario 2: Pengujian layanan CMS HPA

Dalam scenario pengujian ini locust digunakan untuk

mengukur kemampuan layanan CMS yang sudah

menggunakan HorizontalPodAutoscaler dengan konfigurasi

utilisasi CPU 70% untuk menambahkan replika minimal 3

pod dan maksimal 30 pod dengan varian simultan user yang

digunakan untuk pengujian ini yaitu 20, 40, 60, 80, 100, 120,

160, 180, dan 200 dengan waktu uji coba 1 menit untuk setiap

varian simultan user.

GAMBAR 5

 Pengujian Load test HPA

C. Pengujian

 Pada tahapan ini akan dilakukan 2 pengujian dimulai

dengan pengujian load testing pada layanan CMS non-HPA

lalu dilanjutkan dengan pengujian load testing pada layanan

CMS HPA
1. Pengujian Layanan CMS non-HPA

Dalam spengujian ini, menggunakan Locust unutk

melakukan load test dengan varian simultan user yaitu 20, 40,

60, 80, 100, 120, 140, 180, dan 200 dengan waktu uji coba 1

menit untuk setiap varian simultan user kepada aplikasi objek

yang di deploy pada platform Kubernetes di Google Cloud

Platform tanpa menggunakan fitur Horinzontal autoscaler.

a. Setelah aplikasi objek berhasil di deploy kedalam

Google Kubernetes Engine maka perlu mengakses ke

external ip aplikasi objek untuk memastikan bahwa

aplikasi objek sudah berhasil di deploy.

ISSN : 2355-9365 e-Proceeding of Engineering : Vol.11, No.4 Agustus 2024 | Page 3996

b. Menjalankan locust yang sudah terisntall di dalam

cluster local dan membuka locust interface dibrower.

c. Setelah mengakses locust interface, melakukan

konfigurasi dengan memasukan jumlah user, spawnrate,

runtime,dan external ip aplikasi objek.

d. Setelah melakukan konfigurasi dapat langsung

menjalankan Load testing kepada aplikasi objek

e. Setelah Load testing sudah berjalan lakukan monitoring

statistic kegagalan request yang dapat di monitor dengan

locust interface yang sudah di jalankan di cluster local.

f. Setelah loadtesting selesai maka dapat dilanjutkan

memonitor CPU yang dapat di monitor pada fitur google

cloud monitoring.

2. Pengujian Layanan CMS HPA

Dalam pengujian ini, menggunakan Locust unutk

melakukan load test dengan varian simultan user yaitu 20, 40,

60, 80, 100, 120, 140, 180, dan 200 dengan waktu uji coba 1

menit untuk setiap varian simultan user kepada aplikasi objek

yang di deploy pada platform Kubernetes di Google Cloud

Platform yang menggunakan fitur Horinzontal autoscaler.

a. Menjalanlan cluster pada Google Kubernetes engine

yang berfungsi sebagai tempat aplikasi objek yaitu

wordpress di deploy.

b. Setelah aplikasi objek berhasil di deploy kedalam Google

Kubernetes Engine maka perlu mengakses ke external ip

aplikasi objek untuk memastikan bahwa aplikasi objek

sudah berhasil di deploy.

c. Melakukan configurasi Horizontal Pod Autoscaler pada

aplikasi objek yaitu Wordpress yang di deploy di cluster

Google Cloud Platform dengan konfigurasi jumlah

minimal pod 3 dan maksimal pod 30.

d. Menjalankan locust yang sudah terisntall di dalam

cluster local dan membuka Locust interface dibrowser.

e. Setelah mengakses Locust interface, melakukan

konfigurasi dengan memasukan jumlah user, spawnrate,

runtime,dan external ip aplikasi objek.

f. Setelah melakukan konfigurasi dapat langsung

menjalankan load testing kepada aplikasi objek

g. Setelah load testing sudah berjalan lakukan monitoring

statistic kegagalan request yang dapat di monitor dengan

Locust interface yang sudah di jalankan di cluster local.

h. Setelah loadtesting selesai maka dapat dilanjutkan

memonitor CPU yang dapat di monitor pada fitur google

cloud monitoring.

D. Hasil Pengujian

 Berikut adalah hasil pengujian load testing menggunakan

Locust pada layanan CMS yang tidak menggunakan

Horizontal Pod Autoscaling dan layanan CMS yang

menggunakan Horizontal Pod Autoscaling Adapun hasil

pengujian berupa parameter aspek skalabilitas seperti CPU

mean, CPU max, average response time, total request, dan

failure.

1. Hasil Pengujian Layanan CMS non-HPA

Berikut adalah hasil pengujian load testing menggunakan

Locust pada layanan CMS yang tidak menggunakan

Horizontal Pod Autoscaling Adapun hasil pengujian berupa

parameter aspek skalabilitas seperti CPU mean, CPU max,

average response time, total request, dan failure.

a. CPU mean

TABEL 2

Hasil Pengujian CPU mean

user Non HPA CPU Mean

value (%)

20 78,23

40 206,30

60 434,85

80 295,90

100 143,20

120 238,79

140 551,59

160 874,40

180 755

200 519,26

b. CPU max
TABEL 3

hasil Pengujian CPU Max

user Non HPA CPU Max

value (%)

20 282,09

40 706,86

60 690,58

80 531,83

100 381,92

120 498,78

140 1211,08

160 967,24

180 1091,74

200 1026,91

C. Average responsetime

TABEL 4

 Hasil Pengujian Average Response Time

user Non HPA average

response time(s)

20 0,9

40 1,6

60 1,9

80 4,7

100 5,8

120 7,8

140 5,1

160 5,7

180 4,1

200 0,2

ISSN : 2355-9365 e-Proceeding of Engineering : Vol.11, No.4 Agustus 2024 | Page 3997

d. Total request
TABEL 5

Hasil Pengujian Total Request

user Non HPA total

request

20 418

40 790

60 930

80 703

100 759

120 708

140 1145

160 1142

180 1627

200 2161

e. failure
TABEL 6

Hasil Pengujian Failure

user Failure (%)

20 0

40 0

60 0

80 6

100 7

120 8

140 22

160 32

180 56

200 100

2. Hasil Pengujian Layanan CMS HPA

 Berikut adalah hasil pengujian load testing

menggunakan Locust pada layanan CMS yang

menggunakan Horizontal Pod Autoscaling Adapun hasil

pengujian berupa parameter aspek skalabilitas seperti

CPU mean, CPU max, average response time, total

request, dan failure.

a. CPU mean

TABEL 7

Hasil Pengujian CPU mean

user HPA CPU mean

20 50,24%

40 53,32%

60 62,25%

80 64,96%

100 69,92%

120 42,15%

140 58,85%

160 64,71%

180 62,24%

200 70,25%

b. CPU max
TABEL 8

Hasil Pengujian CPU max

User CPU Max

20 147,13%

40 147,13%

60 119,02%

80 92,98%

100 175,21%

120 83,44%

140 98,08%

160 162,80%

180 91,72%

200 122,89%

c. Average Response time

TABEL 9

Hasil Pengujian Average Response Time

user HPA average

response time

20 0,7

40 0,8

60 0,8

80 1,7

100 2,4

120 2,9

140 3,3

160 4,6

180 4,8

200 5,2

d. Total Request
TABEL 10

Hasil Pengujian Total Request

user HPA total

request

20 431

40 616

60 867

80 1296

100 1333

120 1422

140 1584

160 1258

180 1453

200 1578

ISSN : 2355-9365 e-Proceeding of Engineering : Vol.11, No.4 Agustus 2024 | Page 3998

e. Failure
TABEL 11

Hasil Pengujian Failure

user HPA failure

20 0%

40 0%

60 0%

80 0%

100 0%

120 0%

140 0%

160 0%

180 6%

200 14%

V. ANALISIS

Selanjutnya melakukan analisis terhadap data dari

layanan CMS yang menggunakan HPA dan tanpa HPA. Pada

tahap ini dilakukan identifikasi untuk mengambil informasi

dari data hasil pengujian yang diperoleh. Tujuan dari analisis

adalah untuk mendapatkan profil atau karakter dari fungsi

HPA pada cluster Kubernetes di Google Kubernetes Engine.

A. Analisis Jumlah Pod

Berikut adalah hasil pengujian Load testing dengan varian

jumlah simultan user 20 hingga 200 jumlah replika pod pada

layanan CMS Non-HPA

1. Perbandingan Jumlah Pod

GAMBAR 4

Perbandingan jumlah pod

Analisa perbandingan ini menunjukkan:

a. penggunaan pod pada non-HPA cenderung tetap

b. penggunaan pod pada HPA cenderung berubah

dari penelusuran data jumlah pod pada layanan diperoleh

jumlah pod adalah:

jumlah pod pada non-HPA sebanyak 3 pod.

jumlah pod pada HPA dapat berubah dari minimal 3 pod

hingga maksimal 30 pod

B. Analsis Penggunaan CPU

Berikut ini adalah analisis CPU mean pada pengujian

layanan non-HPA dan layanan dengan HPA.

1.Penggunaan CPU mean Value Pada Layanan CMS non-

HPA

GAMBAR 5

CPU mean value non-HPA.

Dari analisa Penggunaan CPU Mean Value ini dapat

diperoleh persentease penggunaan CPU Mean Value sebagai

berikut:

a. Penggunaan CPU rata-rata tertinggi didapat pada varian

jumlah user 160 dengan rata-rata penggunaan CPU

874,40%

b. Penggunaan CPU rata-rata terendah didapat pada varian

jumlah user 20 dengan penggunaan CPU rata-rata

78,23%

dari penelusuran data penggunaan CPU Mean value

Menunjukan:

a. Penggunaan CPU Mean Value cenderung tidak stabil

b. Penggunaan CPU Mean Value dapat melebihi 100%

2.Penggunaan CPU Mean Value Pada Layanan CMS HPA

GAMBAR 6

CPU mean Value HPA

Dari analisis penggunaan CPU Mean Value pada Layanan

CMS Dengan HPA dapat diperoleh data penggunaan CPU

mean Value sebagai berikut:

a. Rata-rata CPU Mean Value tertinggi ada pada jumlah

varian simultan user 200 dengan persentase CPU Mean

Value 70,25%

b. Rata-rata CPU Mean Value terendah ada pada jumlah

varian simultan user 120 dengan persentase CPU Mean

Value 42,15%

Dari penelusuran data penggunaan CPU Mean value

menunjukan:

a. Rata-rata penggunaan CPU pada layanan CMS yang

menggunakan Horizontal Autoscaling dibawah 70%

b. rata-rata penggunaan CPU pada setiap varian simultan

user memiliki kencenderungan naik

3. Perbandingan CPU mean Value Pada Layanan CMS

5
10 9 11 12

20 21
24

27
30

3 3 3 3 3 3 3 3 3 3

0

10

20

30

40

20 40 60 80 100 120 140 160 180 200

Perbandingan Jumlah Pod

HPA Jumlah pod Non-HPA Jumlah Pod

78,23%
206,30%

434,85%
295,90%

143,20%
238,79%

551,59%

874,40%
755%

519,26%

0,00%

500,00%

1000,00%

20 40 60 80 100 120 140 160 180 200

Non-HPA CPU mean

50,24%53,32%
62,25%64,96%69,92%

42,15%
58,85%64,71%62,24%70,25%

0,00%

50,00%

100,00%

20 40 60 80 100 120 140 160 180 200

HPA CPU mean

ISSN : 2355-9365 e-Proceeding of Engineering : Vol.11, No.4 Agustus 2024 | Page 3999

GAMBAR 7

Perbandingan CPU mean value.

Berikut adalah hasil analisis perbandingan dari data CPU

Mean Value:

a. CPU Mean value pada layanan CMS non-HPA

cenderung lebih besar

b. CPU Mean value pada layanan CMS HPA cenderung

lebih kecil

c. CPU Mean Value pada layanan CMS Non-HPA

cenderung tidak stabil

d. CPU Mean Value pada layanan CMS HPA Cenderung

stabil

e. Rata-rata CPU Mean Value pada layanan CMS non-HPA

lebih dari 100%

f. Rata-rata CPU Mean Value pada layanan CMS HPA

dibawah 70%

.

4. Penggunaan CPU Max Pada Layanan CMS Non-HPA

Gambar 8 Hasil Pengujian Penggunaan CPU Max CMS Non-HPA

Dari analisis penggunaan CPU Max Value pada Layanan

CMS Dengan HPA dapat diperoleh data penggunaan CPU

max Value sebagai berikut:

a. Penggunaan CPU Max terkecil ada pada varian jumlah

user 20 dengan persentase CPU Max 282,09%,

b. penggunaan CPU Max terbesar ada pada varian jumlah

user 140 dengan penggunaan CPU Max 1211,08%.

Dari penelusuran data penggunaan CPU Max Value

menunjukan:

c. CPU Max Value dapat lebih dari 100%

d. CPU Max Value memiliki kencenderungan tidak stabil

5. Penggunaan CPU Max Pada Layanan CMS Dengan HPA

GAMBAR 9

Hasil Pengujian Penggunaan CPU Max CMS HPA

Dari analisis penggunaan CPU max Value pada Layanan

CMS Dengan HPA dapat diperoleh data penggunaan CPU

max Value sebagai berikut:

a. Penggunaan CPU Max terbesar ada pada varian jumlah

user 100 dengan penggunaan CPU Max 175,21%.

b. Penggunaan CPU Max terkecil ada pada varian jumlah

user 80 dengan persentase CPU Max 92,98%.

Dari penelusuran data penggunaan CPU Max Value

menunjukan:

c. CPU Max Value dapat lebih dari 100%

d. CPU Max Value memiliki kencenderungan tidak stabil

6. Perbandingan CPU Max Pada Layanan

Gambar 10 Perbandingan Penggunaan CPU Max Pada Layanan

CMS

Dari hasil pengujian diperoleh ada analisis sebagai berikut:

• bahwa pada saat varian user 20 pengujian Load

testing, penggunaan CPU Max pada layanan CMS

yang tidak menggunakan HPA sebesar 282,09% dan

layanan CMS yang menggunakan HPA sebesar

147,13%.

• Seiring berjalanya pengujian Load testing,

penggunaan CPU Max pada layanan CMS yang

tidak menggunakaan HPA selalu lebih besar

dibanding layanan CMS yang menggunakan HPA.

C. Analisis Penerimaan Request

Pada skenario pengujian Load testing yang sudah dilakukan

maka didapatkan data hasil dari pengujian Load testing.

Dalam analisis. Berikut adalah hasil pengujian Load testing

dari kedua layanan CMS dengan mengamati Penggunaan

persentase failure pada kedua Layanan CMS:

1. Perbandingan Failure Pada Kedua Layanan CMS

0,00%

500,00%

1000,00%

20 40 60 80 100 120 140 160 180 200

Perbandingan CPU Mean

HPA CPU mean Non-HPA cpu mean

282,09%

706,86%690,58%
531,83%

381,92%
498,78%

1211,08%

967,24%
1091,74%1026,91%

0,00%

500,00%

1000,00%

1500,00%

20 40 60 80 100 120 140 160 180 200

Non-HPA CPU max

147,13%147,13%

119,02%

92,98%

175,21%

83,44%
98,08%

162,80%

91,72%

122,89%

0,00%

50,00%

100,00%

150,00%

200,00%

20 40 60 80 100 120 140 160 180 200

HPA CPU max

0,00%

500,00%

1000,00%

1500,00%

20 40 60 80 100 120 140 160 180 200

Perbandingan CPU Max

HPA cpu max Non-HPA cpu max

ISSN : 2355-9365 e-Proceeding of Engineering : Vol.11, No.4 Agustus 2024 | Page 4000

GAMBAR 11

 Perbandingan Failure Pada Layanan CMS

Dari hasil perbandingan persentase failure menunjukan

bahwa:

a. Layanan CMS yang menggunakan HPA memiliki

persentase failure 0% dimulai dari varian jumlah

simultan user 20 sampai 160.

b. Layanan CMS yang tidak menggunakan HPA sudah

terdapat failure di varian jumlah simultan user 80 dengan

persentase failure 6%.

c. Rata-rata failure layanan CMS non-HPA selalu lebih

tinggi di bandingkan layanan CMS HPA.

dikarenakan fungsi Horizontal Pod Autoscaling dapat

melakukan penambahan replika pod sesuai dengan beban

yang diterima hingga jumlah maksimal konfigurasi pod.

2.Average Response Time Pada CMS non-HPA

GAMBAR 12

Hasil Pengujian Average Response Time CMS Non-HPA

Dari hasil analisis data average response time pada layanan

CMS non-HPA menunjukkan:

a. Average response time tercepat ada pada varian jumlah

simultan user 200

b. Average response time terlambat ada pada varian jumlah

simultan user 120

dari penelusuran data average response time pada layanan

diperoleh kecenderungan sebagai berikut:

a. Pada user 20 sampai 100 average response time memiliki

kecenderungan naik

b. Pada user 120 sampai 200 average response time

memiliki kecenderungan turun

3. Average Response Time Pada CMS Dengan HPA

GAMBAR 13

Hasil Pengujian Average Response Time CMS HPA

Dari hasil analisis data average response time pada layanan

CMS non-HPA menunjukkan:

• Average response time terendah ada pada user 20

dengan average response time 1,7 detik .

• Average response time tertinggi ada pada user 140

dengan average response time 9,03 detik.

• Average response time pada layanan CMS yang

menggunakan Horizontal Autoscaling memiliki

kecenderungan naik.

4. Perbandingan Average Response Time pada kedua layanan

CMS

GAMBAR 14

Hasil Pengujian Average Respond time (s)

Dari hasil pengujian menunjukan data sebagai berikut:

a. Average response time tercepat pada layanan CMS non-

HPA ada pada variant user 200 dengan average response

time 0,2 detik

b. Average response time terkecil pada layanan CMS HPA

ada pada varian user 20 dengan average response time

0.9 detik

c. Average response time terlambat pada layanan CMS

non-HPA ada pada varian user 140 dengan average

response time 9,03 detik

0% 0% 0% 6% 7% 8%
22%

32%

56%

100%

0% 0% 0% 0% 0% 0% 0% 0% 6% 14%

0%

50%

100%

150%

20 40 60 80 100 120 140 160 180 200

Hasil Pengujian Failure

Non-HPA failure HPA failure

0,9
1,6 1,9

4,7
5,8

7,8

5,1
5,7

4,1

0,20

2

4

6

8

10

20 40 60 80 100 120 140 160 180 200

Non-HPA average response time

1,7 1,9

6,1

4,8

6,3

8,3
9,03

7,5
8,56 8,4

0

2

4

6

8

10

20 40 60 80 100 120 140 160 180 200

HPA average response time(s)

0%

20%

40%

60%

80%

100%

120%

0

2

4

6

8

10

20 40 60 80 100 120 140 160 180 200

Perbandingan Average Response

Time (s)

HPA average response time(ms)

Non-HPA average response time

Non-HPA failure

ISSN : 2355-9365 e-Proceeding of Engineering : Vol.11, No.4 Agustus 2024 | Page 4001

d. Average response time terlambat pada layanan CMS

HPA ada pada varian user 120 dengan average response

time 7,8 detik

dari penelusuran data average response time dan failure

pada layanan CMS diperoleh analisis perbandingan sebagai

berikut:

a. Average response time pada layanan CMS non-HPA

cenderung sedikit lebih cepat akan tetapi memiliki

persentase failure yang lebih tinggi.

b. Average response time pada layanan CMS HPA

cenderung sedikit lebih lambat akan tetapi memiliki

persentase failure lebih rendah.

5. Total Request dan Failure Layanan CMS non-HPA

GAMBAR 15

Hasil Pengujian Total request Dan Failure CMS Non-HPA

Dari hasil pengujian menunjukan data sebagai berikut:

a. Total request terendah dengan persentase failure

terendah ada pada varian user 20 dengan total request

418 dan persentase failure 0%.

b. Total request tertinggi dengan persentase failure

tertinggi ada pada varian user 200 dengan total request

2161dengan persentase failure 100%.

dari penelusuran data total request dan failure pada layanan

CMS diperoleh analisis sebagai berikut:

a. Rata-rata Total request mengalami kenaikan beriringan

dengan kenaikan varian jumlah simultan user.

b. Failure cederung naik beriringan dengan kenaikan

jumlah user dan total request.

6. Total Request Dan Failure Layanan CMS Dengan HPA

GAMBAR 16

Hasil Pengujian HPA Total request

Dari hasil pengujian menunjukan data sebagai berikut:

• Total request terendah dengan persentase failure

terendah ada pada varian user 20 dengan total

request 431 dan persentase failure 0%.

• Total request tertinggi dengan persentase ada pada

varian user 140 dengan total request 1584 dengan

persentase failure 0%.

• Total request tertinggi dengan persentase failure

tertinggi ada pada varian user 200 dengan total

request 1578 dengan persentase failure 14%.

dari penelusuran data total request dan failure pada layanan

CMS diperoleh analisis sebagai berikut:

c. Rata-rata Total request mengalami kenaikan

beriringan dengan kenaikan varian jumlah simultan

user.

d. Failure cederung naik beriringan dengan kenaikan

jumlah user dan total request.

7. Perbandingan Total Request Dan Failure Pada Kedua

Layanan CMS

GAMBAR 17

Hasil Perbandingan Total request

Dari hasil pengujian Load testing di dapatkan data bahwa

pada saat pengujian Load testing selesai dilakukan diperoleh

perbandingan sebagai berikut:

• Rata-rata total request layanan CMS HPA lebih

banyak di banding layanan CMS non-HPA

• Persentase failure pada layanan CMS non-HPA

lebih besar di banding layanan CMS HPA

• Pada user 180 dan 200 layanan CMS non-HPA

memiliki jumlah total request lebih banyak dan

persentase failure lebih tinggi.

Dengan data perbandinga hasil pengujian Load testing

tersebut dapat hal ini dapat diperkirakan bahwa penggunaan

HPA dapat menampung beban jumlah user request lebih

banyak dikarenakan fitur HPA yang dapat menambahkan

replika pod sesuai dengan beban yang di terima.maka dari itu

dapat di perkirakan semakin banyak jumlah pod pada layanan

CMS, maka layanan CMS dapat menerima lebih Request.

V. KESIMPULAN

A. Kesimpulan

Penelitian ini menghasilkan kesimpulan sebagai

berikut:

1. Penerapan Horizontal Pod Autoscaling pada cluster

Kubernetes dengan konfigurasi 70% dapat

meningkatkan skalabilitas layanan pada cluster. Hal

ini dapat dilihat dari penggunaan CPU yang stabil di

0%

50%

100%

150%

0

1000

2000

3000

20 40 60 80 100 120 140 160 180 200

Non-HPA Total request

Non-HPA Total request failure

0%

5%

10%

15%

0

500

1000

1500

2000

20 40 60 80 100 120 140 160 180 200

HPA Total request

HPA total request HPA failure

0%

50%

100%

150%

0

500

1000

1500

2000

2500

20 40 60 80 100 120 140 160 180 200

Perbandingan Total request

HPA total request Non-HPA Total request

HPA failure Non-HPA failure

ISSN : 2355-9365 e-Proceeding of Engineering : Vol.11, No.4 Agustus 2024 | Page 4002

bawah 70%, serta penurunan persentase failure secara

signifikan pada layanan HPA dengan persentase

failure 14% dibandingkan dengan layanan non-HPA

dengan persentase failure 100% pada varian jumlah

user 200

2. Menguji aspek skalabilitas cluster Kubernetes dengan

metode Load testing menggunakan Locust. Load testing

dilakukan dengan variasi jumlah user dimulai dari 20, 40,

60, 80, 100, 120, 140, 160, 180, dan 200 user.

3. Aspek skalabilitas pada layanan yang menggunakan

horizontal pod autoscaling lebih baik dibandingkan

dengan layanan yang tidak menggunakan horizontal

pod autoscaling. Hal ini dapat dilihat dari penggunaan

rata-rata CPU yang lebih stabil di bawah 70% pada

layanan yang menggunakan horizontal pod

autoscaling, serta persentase failure yang lebih sedikit

pada layanan CMS yang menggunakan Horizontal

Pod Autoscaling dengan persentase failure tertinggi

14% pada varian jumlah user 200, dibandingkan

dengan layanan CMS yang tidak menggunakan

Horizontal Pod Autoscaling dengan persentase failure

tertinggi 100% pada varian jumlah user 200.

B. Saran

Berdasarkan hasil analisis dan pengujian yang telah

dilakukan, berikut berupa saran yang dapat disampaikan:

1. Dalam pengujian dapat menggunakan fitur autoscaling

yang berbeda seperti vertical pod autoscaling

2. Dalam pengujian disarankan untuk membuat sistem

dengan spesifikasi lebih tinggi dan aplikasi Load testing

yang berbeda agar mendapatkan perbandingan yang

lebih banyak sehingga informasi yang didapat lebih

banyak.

3. Pada pengujian dilakukan hanya menggunakan

parameter CPU, total request, average response time dan

failure. Untuk selanjutnya dapat dilakukan pengujian

menggunakan parameter uji yang lain agar dapat

mendapatkan informasi dari parameter yang lainya.

.

REFERENSI

[1] ITU/UN tech agency. (2023). Measuring digital

development: Facts & figures 2019. ITU Hub.

https://www.itu.int/hub/2020/05/measuring-

digital-development-facts-figures-2019/

[2] Kusuma, T. P., Munadi, R., & Sanjoyo, D. D.

(2017). Implementasi dan analisis computer

clustering system dengan menggunakan

virtualisasi Docker. eProceedings of

Engineering, 4

[3] Singh, H. (2022, January 6). Understanding how

Autoscaling works in DevOps - debut Infotech -

medium. Medium.

https://medium.com/debutinfotech/understandi

ng-how-autoscaling-works-in-devops-

7bb04503eff6

[4] Horizontal pod autoscaling. (2023, July 25).

Kubernetes.

https://kubernetes.io/docs/tasks/run-

application/horizontal-pod-autoscale/

[5] Cockcroft, A. (2001). Capacity planning for

internet services: Quick Planning Techniques

for High Growth Rates.

[6] Falatah, M. M., & Batarfi, O. (2014). Cloud

scalability Considerations. International

Journal of Computer Science & Engineering

Survey, 5(4), 37–47.

https://doi.org/10.5121/ijcses.2014.5403

.

https://www.itu.int/hub/2020/05/measuring-digital-development-facts-figures-2019/
https://www.itu.int/hub/2020/05/measuring-digital-development-facts-figures-2019/
https://medium.com/debutinfotech/understanding-how-autoscaling-works-in-devops-7bb04503eff6
https://medium.com/debutinfotech/understanding-how-autoscaling-works-in-devops-7bb04503eff6
https://medium.com/debutinfotech/understanding-how-autoscaling-works-in-devops-7bb04503eff6
https://kubernetes.io/docs/tasks/run-application/horizontal-pod-autoscale/
https://kubernetes.io/docs/tasks/run-application/horizontal-pod-autoscale/

