
ISSN : 2355-9365 e-Proceeding of Engineering : Vol.12, No.1 Februari 2025 | Page 2052

Pengaruh Refactoring Extract Method

terhadap Pengembangan Aplikasi

menggunakan Test Driven Development

1st Fauzi Hazim Wibowo

Fakultas Informatika

Universitas Telkom

Bandung, Indonesia
fauzihzm@students.telkomuniversity.a

c.id

2nd Dawam Dwi Jatmiko Suwawi
Fakultas Informatika

Universitas Telkom

Bandung, Indonesia
dawamdjs@telkomuniversity.ac.id

3rd Anisa Herdiani
Fakultas Informatika

Universitas Telkom

Bandung, Indonesia
anisaherdiani@telkomuniversity.ac.id

Abstrak — Tingginya kompleksitas dan rendahnya

maintainability pada kode menyebabkan maintain sebuah

program sulit untuk dilakukan. Maintainability dan

readability saling berkaitan karena rendahnya

maintainability menyebabkan kode sulit untuk dibaca dan

dimodifikasi. Menurunkan kompleksitas, meningkatkan

maintainability, dan meningkatkan readability merupakan

tujuan refactoring pada test driven development.

Refactoring dengan extract method dipilih karena dapat

meningkatkan readability dan mengurangi duplikasi pada

kode. Pengembangan website pada penelitian ini

menggunakan paradigma pemrograman functional

programming dan mengalami permasalahan long method.

Metode refactoring ini dapat menghilangkan long method

pada paradigma pemrograman functional programming

sehingga sesuai diterapkan pada penelitian ini. Test driven

development merupakan pengembangan perangkat lunak

yang didasari oleh pembuatan program pengujian iteratif

otomatis kecil, penulisan kode untuk lolos testing, dan

refactoring code. Penelitian ini membuat website penilaian

e-learning readiness Hung model berdasarkan requirement

dari kaprodi S1 PJJ Informatika menggunakan test driven

development. Pengembangan website ini dikerjakan oleh

satu tim dan memiliki anggaran yang kecil. Oleh karena

itu, penelitian ini sesuai dengan metode pengembangan

perangkat lunak test driven development yang

memungkinkan pengembangan perangkat lunak dengan

satu tim dan anggaran yang kecil. Website ini diteliti dan

dianalisis terkait pengaruh extract method terhadap

cyclomatic complexity, halstead volume, maintainability

index, dan code readability prediction pada pengembangan

menggunakan test driven development.

Kata kunci — test driven development, extract method,

cyclomatic complexity, halstead volume, maintainability

index, code readability prediction.

I. PENDAHULUAN

A. Latar Belakang
E-learning readiness merupakan faktor-faktor yang

harus diperhatikan oleh institusi, pengajar, dan
mahasiswa agar implementasi e-learning berhasil [1].
Selain itu, e-learning readiness juga bertujuan untuk
mengetahui faktor-faktor penghambat kesuksesan dalam
pelaksanaan e-learning [2]. Salah satu model pada e-

learning readiness pada mahasiswa adalah model Hung.
Model ini membagi e-learning readiness ke beberapa

matrik, antara lain : computer/internet self-efficacy, self-

directed learning, learner control, motivation for

learning, dan online communication self-efficacy [3].
Test driven development merupakan

pengembangan perangkat lunak yang didasari oleh
pembuatan program pengujian iteratif otomatis kecil,
penulisan kode untuk lolos testing, dan refactoring code
[4]. Metode ini cocok digunakan pada penelitian ini
karena dapat dikerjakan dengan satu tim dan anggaran
yang kecil. Tahap refactoring pada test driven

development akan menyempurnakan kode dengan
mengurangi duplikasi sehingga dapat mengurangi
kompleksitas, meningkatkan readability, dan
meningkatkan maintainability pada kode [5]. Extract

method mengubah bagian kode menjadi method [6].
Metode extract method dipilih karena memiliki
keunggulan dapat meningkatkan readability dan
mengurangi duplikasi pada kode [7]. Rendahnya
readabilitas pada penelitian ini karena menggabungkan
banyak logika pada satu skrip (long method) sehingga
refactoring extract method digunakan pada penelitian ini.
Metode refactoring ini dapat menghilangkan long

method pada paradigma pemrograman functional

programming. Long method terjadi karena
menggabungkan banyak logika pada satu skrip [8].

Pengaruh extract method pada pengembangan test

driven development diujikan dengan membandingkan
hasil penghitungan cyclomatic complexity, halstead

volume, maintainability index, dan code readability

prediction sebelum maupun sesudah refactoring dengan
studi kasus website e-learning readiness model Hung

pada S1 PJJ Informatika. Cyclomatic complexity dan
halstead volume digunakan untuk menguji matrik
kompleksitas. Maintainability index sebagai matrik
pengukuran maintainability pada kode. Sedangkan, code

readability prediction untuk matrik readabilitas pada
kode. Pengaruh extract method ini diperoleh dengan
menghitung persentase penurunan cyclomatic

complexity, penurunan halstead volume, kenaikan
maintainability index, dan kenaikan code readability

prediction pada function sebelum dan sesudah
refactoring. Hasil perhitungan tersebut kemudian
dihitung rata-ratanya. Apabila mendapatkan persentase
rata-rata yang positif pada penurunan cyclomatic

ISSN : 2355-9365 e-Proceeding of Engineering : Vol.12, No.1 Februari 2025 | Page 2053

complexity, penurunan halstead volume, kenaikan
maintainability index, dan kenaikan code readability

prediction maka penerapan refactoring extract method

sesuai terhadap pengembangan test driven development.
Pengaruh extract method terhadap cyclomatic

complexity, halstead volume, maintainability index, dan
code readability prediction terhadap test driven

development belum pernah dibahas di jurnal sehingga
dibahas pada penelitian ini.

B. Topik dan Batasannya

Belum terdapat jurnal yang membahas tentang
pengaruh extract method terhadap cyclomatic

complexity, halstead volume, maintainability index, dan
code readability prediction pada pengembangan
perangkat lunak menggunakan metode test driven

development merupakan alasan diambilnya topik ini
dengan studi kasus program Telkom University E-

Readiness Survey For S1 PJJ Informatika (TUNERS).
Penelitian ini menghitung 4 hal tersebut pada program
baik sebelum maupun sesudah refactoring dengan
metode extract method. Refactoring pada test driven

development berfungsi untuk menyempurnakan kode
dengan mengurangi duplikasi sehingga dapat
mengurangi kompleksitas, meningkatkan readability,
dan meningkatkan maintainability pada kode sehingga 4
hal tersebut digunakan.

Batasan masalah dari penelitian ini adalah hanya
menguji dan menyimpulkan dari 4 hal tersebut
berdasarkan studi kasus TUNERS. Selain itu, juga
membuat website e-learning readiness model Hung yang
sesuai dengan program studi S1 PJJ Informatika.

C. Tujuan

Tujuan dari penelitian ini adalah membangun
TUNERS menggunakan test driven development

berdasarkan requirement yang diberikan oleh Kepala
Program Studi S1 PJJ Informatika. Website ini
digunakan sebagai studi kasus untuk diteliti dan
mengidentifikasikan pengaruh extract method terhadap
cyclomatic complexity, halstead volume, maintainability

index, dan code readability prediction pada
pengembangan perangkat lunak dengan test driven

development.

II. KAJIAN TEORI

A. E-learning Readiness Model Hung

Menurut Odunaike, dkk [1] mendefinisikan e-

learning readiness sebagai faktor-faktor yang harus
diperhatikan agar implementasi e-learning berhasil.
Faktor-faktor yang terdapat dari model tersebut dapat
digunakan untuk mengukur tingkat keberhasilan
implementasi e-learning. Selain itu, e-learning readiness

juga bertujuan untuk mengetahui faktor penghambat
kesuksesan pelaksanaan e-learning [2]. Faktor yang
menghambat implementasi e-learning dapat diketahui
dari hasil penilaian sehingga diketahui faktor yang
menghambat implementasinya. Setelah, diketahui faktor
penghambat implementasi e-learning, institusi dapat

menyusun keputusan untuk meningkatkan e-learning

readiness.
Model Hung merupakan salah satu model pada e-

learning readiness. Model tersebut digunakan oleh
Cesario [3] pada penelitiannya terhadap Perancangan
Sistem dan Analisis e-Learning Readiness Mahasiswa
pada Mahasiswa S1 PJJ Informatika Universitas Telkom
dapat dilihat pada tabel 1.

TABEL 1.

Tabel model Hung [3]

Komponen Deskripsi

Computer/i

nternet self-

efficacy

Penilaian terhadap kemampuan
seseorang dalam menggunakan
komputer [9].

Self-

directed

learning

Merupakan kemampuan individu
menentukan kebutuhan belajar,
merumuskan tujuan, menentukan
strategi belajar, dan mengevaluasi
hasil pembelajarannya [10].

Learner

control

Merupakan tingkat kemampuan
individu untuk mengarahkan proses
pembelajarannya sendiri [11].

Motivation

for learning

Kesiapan mahasiswa untuk terbuka
terhadap ide-ide baru,
motivasi untuk belajar, memperbaiki
kesalahan, dan mendiskusikannya
dengan orang lain [3].

Online

communica

tion Self-

efficacy

Kemampuan individu dalam
berkomunikasi dengan dosen dan
teman, serta mengunggah pertanyaan,
dan juga mengekspresikan perasaan
dan pikiran secara online [12].

B. Test Driven Development

Test driven development (TDD) merupakan metode
didasari oleh pembuatan program pengujian iteratif
otomatis kecil, penulisan kode untuk lolos testing, dan
peningkatan kode [4]. Metode ini terdiri dari 3 fase pada
TDD, yaitu : menulis test case (red), memastikan lolos
test (green), refactoring (blue) [13]. Berikut tahapan dari
TDD.

ISSN : 2355-9365 e-Proceeding of Engineering : Vol.12, No.1 Februari 2025 | Page 2054

GAMBAR 1.

Proses TDD [14]

Tahapan refactoring pada TDD memiliki keunggulan

menyempurnakan kode dengan mengurangi duplikasi
sehingga dapat mengurangi kompleksitas, meningkatkan
readability, dan meningkatkan maintainability pada
kode [5].

C. Extract Method

Extract Method (XM) memiliki keunggulan dapat
meningkatkan readability dan mengurangi duplikasi
pada kode [7]. XM mengubah bagian kode menjadi
method [6]. Hal tersebut dilakukan dengan
memindahkan kode dari method lama ke method baru
[7].

Metode ini dapat digunakan ketika program dengan
paradigma pemrograman functional programming

mengalami masalah long method. Long method terjadi
karena menggabungkan banyak logika pada satu skrip
[8]. XM membagi kode pada method baru.

D. Software Complexity

Software Complexity (SC) merupakan tingkat
kesulitan memahami dan bekerja pada suatu program
[15]. Terdapat penelitian yang menyatakan korelasi
antara SC dengan Software Maintainability dan Cost.
Penelitian ini menyatakan semakin tinggi tingkat SC
maka semakin sulit untuk memahami kode tersebut
sehingga membutuhkan pegawai yang lebih banyak yang
menyebabkan meningkatnya cost [16].

E. Cyclomatic Complexity

Cyclomatic Complexity (CC) merupakan sebuah
matrik untuk mengukur kompleksitas dari sebuah
program [17]. CC mengukur kompleksitas dengan
menggunakan Control Flow Graph (CFG). CFG tersebut
diperoleh dengan membuat node dari setiap statement

dan menjumlahkan jumlah node tersebut, kemudian
menyambungkan setiap node dengan edge berdasarkan
alur atau flow tersebut [17]. Persamaan dari CC dapat
dilihat pada persamaan 1. þþ = � 2 ÿ + 2 (1)

Keterangan :
CC = Cyclomatic complexity

E = Edge

n = Node

Hasil dari persamaan tersebut kemudian

menghasilkan nilai yang diklasifikasikan. Berikut
pengklasifikasiannya dapat dilihat pada tabel 2.

TABEL 2.

Klasifikasi CC [17,18]

CC Rating

1 - 4 Very low

5 - 10 Low

11 - 20 Nominal

21 - 40 High

41 - 50 Very high

> 50 Extra high

Pada penelitian tentang klasifikasi CC di atas pada

studi kasus COCOMO II membandingkan CC terhadap
judgment dari 3 expert. Menghasil nilai kappa statistic
0,78 yang menghasilkan nilai sedang sehingga dapat
digunakan sebagai alternatif pendekatan terhadap
complexity [17].

F. Halstead Volume

Halstead metrics merupakan pengukuran complexity

metrics berdasarkan jumlah dari operator dan operand
[18]. Halstead volume menghitung functional point atau
pengukuran dari program size [19]. Halstead volume
(HV) merupakan salah satu bagian dari halstead metrics.
Berikut [15] persamaan dari HV dapat dilihat pada
persamaan 2.

HV = N ✕ log2n (2)

ISSN : 2355-9365 e-Proceeding of Engineering : Vol.12, No.1 Februari 2025 | Page 2055

Keterangan :
HV = Halstead volume

N = Nilai kalkulasi length of program

n = Nilai kalkulasi vocabulary of the program

Length of program mengkalkulasikan total operator

dan operand pada program [16]. Persamaan [15] dari
length of program dapat dilihat pada persamaan 3.

 ā = ā1 + ā2 (3)

Keterangan :
N = Length of program

N1 = Total semua operator yang muncul
N2 = Total semua operand yang muncul

Vocabulary of the program adalah kalkulasi dari
jumlah operator dan operand unik yang muncul dalam
program [16]. Berikut [15] persamaan dari vocabulary of

the program dapat dilihat pada persamaan 4. ÿ = ÿ1 + ÿ2 (4)
Keterangan :
n = Vocabulary of program

n1 = Jumlah operator unik
n2 = Jumlah operand unik

G. Maintainability Index
MI digunakan untuk mengukur tingkat kesulitan

dari perawatan atau perubahan sebuah perangkat lunak
di masa mendatang dengan mengkalkulasi berdasarkan
LoC (Line of Code), CC, dan HV [20]. Persamaan [20]
dari MI dapat dilihat pada persamaan 5. ĀĀ = 171 2 5.2 × �ÿ (ÿ�) 2 0.23 × þþ 2

16.2 × �ÿ (ÿĀ�) + (50 × Ā�ÿ (√2.46 × ā�ÿþĀ))

(5)
Keterangan :
HV = Halstead Volume

CC = Cyclomatic Complexity

LoC = Lines of Code

perCM = Percent line of comment

Hasil dari persamaan tersebut kemudian

menghasilkan nilai yang diklasifikasikan. Berikut
pengklasifikasiannya dapat dilihat pada tabel 3.

TABEL 3.

Klasifikasi MI [20]

Nilai Maintainability Index Klasifikasi

MI > 85 Highly maintainability

65 < MI ≤ 85 Moderately maintainability

MI ≤ 65 Difficult to maintain

Metode pengukuran MI tersebut telah diujikan

dengan mengambil 50 method pada aplikasi AsciidocFX
dan mendapatkan akurasi 100% dari 50 method tersebut
[20].Code Readability Prediction

CRP ini dihasilkan setelah korelasi antara struktur
kode dan code readability diperoleh [21]. Berikut [21]
persamaan dari CRP dapat dilihat pada persamaan 6.

 þ�ă = 4.317 + ÿĀþ × (20.037) + ýÿ × (0.015) +āĂă × (20.005) + Āÿ × (20.093) (6)

Keterangan :
CRP = Code readability prediction

LoC = Line of code

BL = Number of blank lines

IL = Length of identifier

Sedangkan untuk persamaan dari length of identifier

yang merupakan rata-rata panjang identifier diperoleh
melalui persamaan 7 [21]. Āÿ = ������ (7)

Keterangan :
IL = Length of identifier

LOI = Total length of identifier

TOI = Total identifier

Persamaan 7 tersebut diujikan pada 100 kode dan

menghasilkan akurasi dari prediksi sebesar 87.02% dan
average deviation sebesar 0.414 [21].

III. METODE

Metode penelitian dilakukan sesuai dengan diagram

alir pada Gambar X. Diagram Alir Metodologi
Penelitian.

GAMBAR 2.

Diagram alir metodologi penelitian

ISSN : 2355-9365 e-Proceeding of Engineering : Vol.12, No.1 Februari 2025 | Page 2056

Diagram tersebut digunakan sebagai dasar
pengembangan website pada penelitian ini.Membuat
testing
Testing tersebut dibuat berdasarkan requirement yang
diberikan oleh Kepala Program Studi S1 PJJ Informatika
dapat dilihat pada lampiran 1 sebagai pengembangan
website penilaian e-learning readiness model Hung.
Testing tersebut ditulis pada laravel dusk.
A. Menjalankan semua test dan memeriksa kegagalan

pada testing
Testing tersebut dijalankan untuk menguji kode.

Apabila terjadi kegagalan maka diperiksa penyebab
kegagalan tersebut. Kegagalan tersebut diperbaiki pada
tahap penulisan kode.

B. Penulisan kode

Penulisan kode ini bertujuan agar lolos testing.
Apabila masih terjadi kegagalan pada testing maka
dilakukan penulisan hingga lolos testing. Setelah lolos
testing maka kode tersebut dihitung CC, HV, MI, dan
CRP untuk selanjutnya dibandingkan hasilnya dengan
perhitungan setelah refactoring menggunakan XM. Kode
tersebut ditulis menggunakan bahasa php dengan
framework laravel. Beberapa sistem juga dibangun
sesuai dengan requirement dari Kepala Program Studi S1
PJJ Informatika, Berikut sistem yang dibangun pada
tabel 4

TABEL 4.
Sistem yang dibangun

No Sistem Keterangan User

1 Register User dapat mendaftar pada
Pengujian ini

Mahasiswa

2 Login User dapat login agar bisa
mengakses website

Admin,
mahasiswa

3 Forget
Password

Fitur ini memungkinkan user
untuk mengganti password,
link akan dikirim pada email

Admin,
mahasiswa

4 Input
survey e-
learning
readiness

User dapat memasukkan
survey sesuai dengan pilihan
mereka. User dapat mengisi
kuesioner lebih dari sekali.

Mahasiswa

5 Quiz
Compute

r Self-
efficacy

User dapat memasukkan quiz
sesuai dengan pilihan mereka.
User dapat mengisi quiz ini
lebih dari sekali.

Mahasiswa

6 Quiz
Compute
r Learner
Control

User dapat memasukkan quiz
sesuai dengan pilihan mereka.
User dapat mengisi quiz ini
lebih dari sekali.

Mahasiswa

7 Quiz
Compute

r
Motivati

on for
Learning

User dapat memasukkan quiz
sesuai dengan pilihan mereka.
User dapat mengisi quiz ini
lebih dari sekali.

Mahasiswa

8 Quiz
Online

Commun
ication

Self
Efficacy

User dapat memasukkan quiz
sesuai dengan pilihan mereka.
User dapat mengisi quiz ini
lebih dari sekali.

Mahasiswa

9 Quiz Self
directed
learning

User dapat memasukkan quiz
sesuai dengan pilihan mereka.
User dapat mengisi quiz ini
lebih dari sekali.

Mahasiswa

10 Guidance
Page

Guidance page memiliki
tampilan berdasarkan hasil
survey. Jika hasil survey di

Mahasiswa

bawah 4.2 maka akan
menampilkan tips untuk
meningkatkan matriks
tersebut. Sedangkan, jika di
atas 4.2 akan halaman tersebut
akan menunjukkan
pengetahuan umum seputar
matriks tersebut.

11 Admin
show

survey
result

Admin dapat melihat hasil
survei dari mahasiswa. Admin
dapat melakukan searching
berdasarkan nama dan nim.
Selain itu, admin juga bisa
melakukan filter berdasarkan
kelas dan waktu pengisian.

Admin

12 Admin
show
quiz

result

Admin dapat melihat hasil quiz
dari mahasiswa. Admin dapat
melakukan searching
berdasarkan nama dan nim.
Selain itu, admin juga bisa
melakukan filter berdasarkan
kelas dan waktu pengisian.

Admin

C. Refactoring

Refactoring pada TDD bertujuan untuk mengurangi
kompleksitas, meningkatkan maintainability, dan
readability pada kode. Refactoring pada penelitian ini
menggunakan XM. XM dipilih karena dapat mengurangi
duplikasi pada kode dan meningkatkan readability pada
kode. XM dilakukan dengan memindahkan kode dari
method lama ke method baru. Selain itu, XM sesuai
untuk mengurangi long method pada paradigma
pemrograman functional programming. Berikut contoh
penerapan pada function guidanceLearnerControl :

public function
guidanceLearnerControl() {
 $user = Auth::User();
 if ($user?->nim == NULL) {
 return to_route('login');
 }
 $lastResults =
Answer::where('nim', $user->nim)-
>orderBy('id', 'desc')->first();
 if ($lastResults->avgLC >= 4.2)
{
 return
view('passedLearningControl');
 } else {
 return
view('unpassedLearningControl');
 }
 }

GAMBAR 3.
Sebelum refactoring XM

public function
guidanceLearnerControl() {
 if (checkLogin()) {
 return checkLogin();
 }
 $nim = getNim();
 $lastResults =
lastExists($nim);
 return
viewGuidanceLC($lastResults-
>avgLC);
 }

GAMBAR 4.
Sebelum refactoring XM

Refactoring tersebut dilakukan secara berulang pada
kode yang ditulis. Refactoring ini dilakukan sebanyak 27
iterasi pada 27 function. Iterasi meliputi proses
refactoring hingga lolos pengujian. Lebih detail iterasi
refactoring tersebut dapat dilihat pada tabel iterasi
refactoring di lampiran 3.

D. Testing setelah refactoring

Testing ini digunakan untuk menjamin kode setelah
refactoring berjalan sesuai dengan fungsinya. Apabila
terjadi kegagalan pada testing maka dilakukan perbaikan
pada refactoring ini. Setelah lolos pengujian maka
dihitung CC, HV, MI, dan CRP. Hasil perhitungan
tersebut selanjutnya dibandingkan dan diperoleh

ISSN : 2355-9365 e-Proceeding of Engineering : Vol.12, No.1 Februari 2025 | Page 2057

kesimpulan dari perbandingan CC, HV, MI, dan CRP
sebelum dan sesudah refactoring XM. Selain itu, juga
dilanjutkan pada siklus yang baru dimulai dari
pembuatan testing. Terakhir setelah semua requirement
terpenuhi maka website diserahkan kepada pihak S1 PJJ
Informatika. Surat keterangan dari tempat studi dapat
dilihat pada lampiran 4.

IV. HASIL DAN PEMBAHASAN

A. Hasil Pengujian
Pengujian ini dilakukan dengan menghitung CC, HV,

MI, dan CRP pada setiap function yang dilakukan
refactoring sehingga diperoleh hasil penghitungan
sebelum dan sesudah refactoring terhadap komponen
tersebut. Hasil dari penghitungan tersebut dianalisis
untuk mendapatkan pengaruh XM terhadap CC, HV, MI,
dan CRP pada penelitian ini. Berikut rata-rata penurunan
CC, penurunan HV, peningkatan MI, dan peningkatan
CRP yang dapat dilihat pada tabel 5.

Tabel 5.

Peningkatan nilai CC, HV, MI, dan CRP

Persentase rata -rata

Penurunan
CC

Penurunan
HV

Peningkatan
MI

Peningkatan
CRP

31% 68% 28% 4%

Tabel di atas menunjukkan implementasi XM untuk

studi kasus ini menunjukkan hasil rata-rata yang lebih
baik pada CC, HV, MI, dan CRP. Lebih detail untuk hasil
pengujian terhadap CC, HV, MI, dan CRP dapat dilihat
pada lampiran 5.

B. Analisis Hasil Pengujian

Penerapan XM sesuai terhadap pengembangan TDD
terlebih untuk paradigma pemrograman functional

programming yang memiliki permasalahan long method.
Long method tersebut terjadi karena menggabungkan
beberapa logika pada satu skrip. Hal tersebut dapat
dilihat melalui hasil pengujian di atas diperoleh hasil
rata-rata yang lebih baik pada CC, HV, MI, dan CRP.
Namun, terdapat penurunan nilai dari CRP setelah
dilakukan refactoring. Hal ini disebabkan karena
tingginya nilai IL setelah dilakukan refactoring XM.
Walaupun diperoleh penurunan LOC pada kode namun
IL meningkat.

Selain itu, beberapa function mengalami error pada
penghitungan CRP karena memiliki nilai di bawah 1
pada kode sebelum XM. Hal tersebut dikarenakan
jumlah LOC yang banyak. Function homeView pada file
homeController yang memiliki line terbanyak memiliki
nilai CRP terendah yaitu -0,97. Hal tersebut juga
didukung dengan seluruh kode yang memiliki nilai CRP
di bawah 1 mempunyai 48 LOC. Selain itu, juga NOP
berpengaruh error tersebut. Hal ini didukung dengan
semua function yang mengalami error pada perhitungan
CRP memiliki nilai NOP di atas 13,51 dan LOC di atas
38.

Selain itu juga, terdapat beberapa function yang
mengalami penurunan CRP setelah refactoring XM

dibandingkan sebelum refactoring dikarenakan nilai IL
yang meningkat setelah refactoring. Hal ini dapat diatasi
dengan refactoring rename parameter dan rename

method agar menghasilkan nilai IL yang lebih rendah
sehingga menghasilkan CRP yang lebih tinggi. Berikut
contoh penerapannya :

public function viewQuizComputerSelfEfficacy() {
 if (checkLogin()) {
 return checkLogin();
 }
 return view('quizComputerSelfEfficacy');
 }

GAMBAR 5.
Sebelum refactoring rename parameter dan rename method

public function viewQuizCSE() {
 if (checkLogin()) {
 return checkLogin();
 }
 return view('quizCSE');
 }

GAMBAR 6.
Setelah refactoring rename parameter dan rename method

Pada contoh di atas setelah dilakukan rename parameter

dan rename method menghasilkan nilai CRP sebesar
3,29 dan nilai IL sebesar 8,4. Terdapat peningkatan nilai
CRP dibandingkan sebelum refactoring XM yang
bernilai 3,04 dan setelah refactoring XM yang bernilai
2,66. Selain itu, terdapat penurunan nilai IL
dibandingkan sebelum refactoring XM yang bernilai
10,67 dan setelah refactoring XM yang bernilai 15,2.
Nilai CRP dan IL saling berbanding terbalik, karena nilai
CRP yang tinggi memiliki nilai IL yang rendah.

V. KESIMPULAN

TUNERS telah dibuat berdasarkan requirement dari
Kepala Program Studi S1 PJJ Informatika. Website ini
akan digunakan oleh program studi S1 PJJ Informatika
sebagai penilaian e-learning readiness model Hung.
Penerapan XM pada TDD terhadap pembuatan
TUNERS memberi persentase rata-rata penurunan CC
dan HV yang positif, serta persentase rata-rata
peningkatan MI dan CRP yang positif. Oleh karena itu,
tujuan refactoring pada TDD tercapai dengan penerapan
XM. Namun, terdapat error pada nilai CRP karena LOC
dan IL yang tinggi. Selain itu, terdapat penurunan nilai
CRP setelah refactoring XM jika dibandingkan sebelum
refactoring XM. Hal ini dapat diatasi dengan melakukan
refactoring rename parameter dan rename method. Oleh
karena itu, pada penelitian selanjutnya peneliti
menyarankan untuk dilakukan refactoring rename

parameter dan rename method untuk meningkatkan CRP
pada pengembangan menggunakan TDD

REFERENSI

[1] Mosa, A. A., Mohd. Naz’ri bin Mahrin, & Ibrrahim,
R. 2016. Technological Aspects of E-Learning

ISSN : 2355-9365 e-Proceeding of Engineering : Vol.12, No.1 Februari 2025 | Page 2058

Readiness in Higher Education: A Review of the
Literature. Comput. Inf. Sci., 9(1), 113–127.
[2] Rohayani, A. H. 2015. A literature review: Readiness
factors to measuring e-learning readiness in higher
education. Procedia Computer Science, 59, 230–234.
Elsevier
[3] Gunawan, A. C., Herdiani, A., and G. A. A.
Wisudiawan. 2021. Perancangan Sistem dan Analisis e-
Learning Readiness Mahasiswa Studi Kasus: Mahasiswa
S1 PJJ Informatika Universitas Telkom. Bandung.
Universitas Telkom
[4] Al-Saqqa, S., Sawalha, S., & AbdelNabi, H. 2020.
Agile software development: Methodologies and trends.
International Journal of Interactive Mobile

Technologies, 14(11).
[5] Anwer, F., Aftab, S., Waheed, U., & Muhammad, S.
S. 2017. Agile software development models tdd, fdd,
dsdm, and crystal methods: A survey. International

Journal of Multidisciplinary Sciences and Engineering,
8(2), 1–10.
[6] Mariani, T., & Vergilio, S. R. 2017. A systematic
review on search-based refactoring. Information and

Software Technology, 83, 14–34. Elsevier
[7] Agnihotri, M., & Chug, A. 2020. A systematic
literature survey of software metrics, code smells and
refactoring techniques. Journal of Information

Processing Systems, 16(4), 915–934. Korea Information
Processing Society
[8] Hermans, F., & Aivaloglou, E. 2016. Do code smells
hamper novice programming? A controlled experiment
on Scratch programs. 2016 IEEE 24th International

Conference on Program Comprehension (ICPC), 1–10.
IEEE
[9] Compeau, D. R., & Higgins, C. A. 1995. Computer
self-efficacy: Development of a measure and initial test.
MIS Quarterly, 189–211. JSTOR
[10] Loyens, S. M., Magda, J., & Rikers, R. M. 2008.
Self-directed learning in problem-based learning and its
relationships with self-regulated learning. Educational

Psychology Review, 20, 411–427. Springer
[11] Shyu, H.-Y., & Brown, S. W. 1992. Learner control
versus program control in interactive videodisc
instruction: What are the effects in procedural learning.
International Journal of Instructional Media, 19(2), 85-
95.
[12] Chung, E., Noor, N. M., & Mathew, V. N. 2020. Are
you ready? An assessment of online learning readiness
among university students. International Journal of

Academic Research in Progressive Education and

Development, 9(1), 301–317.
[13] Pervez, M. U., Eman, L., & Abbas, B. D. 2022. Test

Driven Development: A Review. Nov.
[14] Bissi, W., Neto, A. G. S. S., & Emer, M. C. F. P.
2016. The effects of test driven development on internal
quality, external quality and productivity: A systematic
review. Information and Software Technology, 74, 45–
54. Elsevier
[15] Debbarma, M. K., Debbarma, S., Debbarma, N.,
Chakma, K., & Jamatia, A. 2013. A review and analysis
of software complexity metrics in structural testing.

International Journal of Computer and Communication

Engineering, 2(2), 129–133. IACSIT Press
[16] Abd Jader, M. N., & Mahmood, R. Z. 2018.
Calculating McCabe's Cyclomatic Complexity Metric
and Its Effect on the Quality Aspects of Software.
IJIRCT
[17] Subandri, M. A., & Sarno, R. 2017. Cyclomatic
complexity for determining product complexity level in
COCOMO II. Procedia Computer Science, 124, 478–
486. Elsevier
[18] Laird, L. M., & Brennan, M. C. 2006. Software

measurement and estimation: A practical approach.
John Wiley & Sons. John Wiley & Sons
[19] Thirumalai, C., Shridharshan, R. R., & Reynold, L.
R. 2017. An assessment of halstead and COCOMO
model for effort estimation. 2017 Innovations in Power

and Advanced Computing Technologies (i-PACT), 1–4.
IEEE
[20] Atmaja, R. G., Priyambadha, B., & Pradana, F.
2019. Pembangunan Kakas Bantu Untuk Mengukur
Maintainability Index Pada Perangkat Lunak
Berdasarkan Nilai Halstead Metrics dan McCabe’s
Cyclomatic Complexity: English. Jurnal Pengembangan

Teknologi Informasi Dan Ilmu Komputer, 3(3), 2167–
2172. Universitas Brawijaya
[21] Batool, A., Bashir, M. B., Babar, M., Sohail, A., &
Ejaz, N. 2021. Effect or Program Constructs on Code
Readability and Predicting Code Readability Using
Statistical Modeling. Foundations of Computing and

Decision Sciences, 46(2), 127–145.

