ISSN : 2355-9365

e-Proceeding of Engineering : Vol.12, No.1 Februari 2025 | Page 2052

Pengaruh Refactoring Extract Method
terhadap Pengembangan Aplikasi
menggunakan Test Driven Development

1%t Fauzi Hazim Wibowo
Fakultas Informatika
Universitas Telkom
Bandung, Indonesia
fauzihzm @students.telkomuniversity.a
c.id

Abstrak — Tingginya kompleksitas dan rendahnya
maintainability pada kode menyebabkan maintain sebuah
program sulit untuk dilakukan. Maintainability dan
readability saling berkaitan karema rendahnya
maintainability menyebabkan kode sulit untuk dibaca dan
dimodifikasi. Menurunkan kompleksitas, meningkatkan
maintainability, dan meningkatkan readability merupakan
tujuan refactoring pada test driven development.
Refactoring dengan extract method dipilih karena dapat
meningkatkan readability dan mengurangi duplikasi pada
kode. Pengembangan website pada penelitian ini
menggunakan paradigma pemrograman functional
programming dan mengalami permasalahan long method.
Metode refactoring ini dapat menghilangkan long method
pada paradigma pemrograman functional programming
sehingga sesuai diterapkan pada penelitian ini. Test driven
development merupakan pengembangan perangkat lunak
yang didasari oleh pembuatan program pengujian iteratif
otomatis kecil, penulisan kode untuk lolos testing, dan
refactoring code. Penelitian ini membuat website penilaian
e-learning readiness Hung model berdasarkan requirement
dari kaprodi S1 PJJ Informatika menggunakan test driven
development. Pengembangan website ini dikerjakan oleh
satu tim dan memiliki anggaran yang kecil. Oleh karena
itu, penelitian ini sesuai dengan metode pengembangan
perangkat lunak test driven development yang
memungkinkan pengembangan perangkat lunak dengan
satu tim dan anggaran yang kecil. Website ini diteliti dan
dianalisis terkait pengaruh extract method terhadap
cyclomatic complexity, halstead volume, maintainability
index, dan code readability prediction pada pengembangan
menggunakan test driven development.

Kata kunci — test driven development, extract method,
cyclomatic complexity, halstead volume, maintainability
index, code readability prediction.

I. PENDAHULUAN

A. Latar Belakang

E-learning readiness merupakan faktor-faktor yang
harus diperhatikan oleh institusi, pengajar, dan
mahasiswa agar implementasi e-learning berhasil [1].
Selain itu, e-learning readiness juga bertujuan untuk
mengetahui faktor-faktor penghambat kesuksesan dalam
pelaksanaan e-learning [2]. Salah satu model pada e-
learning readiness pada mahasiswa adalah model Hung.
Model ini membagi e-learning readiness ke beberapa

2" Dawam Dwi Jatmiko Suwawi
Fakultas Informatika
Universitas Telkom
Bandung, Indonesia
dawamdjs @telkomuniversity.ac.id

3" Anisa Herdiani
Fakultas Informatika
Universitas Telkom
Bandung, Indonesia
anisaherdiani @telkomuniversity.ac.id

matrik, antara lain : computer/internet self-efficacy, self-
directed learning, learner control, motivation for
learning, dan online communication self-efficacy [3].
Test driven development merupakan
pengembangan perangkat lunak yang didasari oleh
pembuatan program pengujian iteratif otomatis kecil,
penulisan kode untuk lolos testing, dan refactoring code
[4]. Metode ini cocok digunakan pada penelitian ini
karena dapat dikerjakan dengan satu tim dan anggaran
yang kecil. Tahap refactoring pada test driven
development akan menyempurnakan kode dengan
mengurangi duplikasi sehingga dapat mengurangi
kompleksitas, meningkatkan readability, dan
meningkatkan maintainability pada kode [5]. Extract
method mengubah bagian kode menjadi method [6].
Metode extract method dipilih karena memiliki
keunggulan dapat meningkatkan readability dan
mengurangi duplikasi pada kode [7]. Rendahnya
readabilitas pada penelitian ini karena menggabungkan
banyak logika pada satu skrip (long method) sehingga
refactoring extract method digunakan pada penelitian ini.
Metode refactoring ini dapat menghilangkan long
method pada paradigma pemrograman functional
programming. Long method terjadi karena
menggabungkan banyak logika pada satu skrip [8].
Pengaruh extract method pada pengembangan fest
driven development diujikan dengan membandingkan
hasil penghitungan cyclomatic complexity, halstead
volume, maintainability index, dan code readability
prediction sebelum maupun sesudah refactoring dengan
studi kasus website e-learning readiness model Hung
pada S1 PJJ Informatika. Cyclomatic complexity dan
halstead volume digunakan untuk menguji matrik
kompleksitas. Maintainability index sebagai matrik
pengukuran maintainability pada kode. Sedangkan, code
readability prediction untuk matrik readabilitas pada
kode. Pengaruh extract method ini diperoleh dengan
menghitung persentase penurunan cyclomatic
complexity, penurunan halstead volume, kenaikan
maintainability index, dan kenaikan code readability
prediction pada function sebelum dan sesudah
refactoring. Hasil perhitungan tersebut kemudian
dihitung rata-ratanya. Apabila mendapatkan persentase
rata-rata yang positif pada penurunan cyclomatic

ISSN : 2355-9365

complexity, penurunan halstead volume, kenaikan
maintainability index, dan kenaikan code readability
prediction maka penerapan refactoring extract method
sesuai terhadap pengembangan fest driven development.
Pengaruh extract method terhadap cyclomatic
complexity, halstead volume, maintainability index, dan
code readability prediction terhadap test driven
development belum pernah dibahas di jurnal sehingga
dibahas pada penelitian ini.

B. Topik dan Batasannya

Belum terdapat jurnal yang membahas tentang
pengaruh extract method terhadap cyclomatic
complexity, halstead volume, maintainability index, dan
code readability prediction pada pengembangan
perangkat lunak menggunakan metode test driven
development merupakan alasan diambilnya topik ini
dengan studi kasus program Telkom University E-
Readiness Survey For S1 PJJ Informatika (TUNERS).
Penelitian ini menghitung 4 hal tersebut pada program
baik sebelum maupun sesudah refactoring dengan
metode extract method. Refactoring pada test driven
development berfungsi untuk menyempurnakan kode
dengan mengurangi duplikasi sehingga dapat
mengurangi kompleksitas, meningkatkan readability,
dan meningkatkan maintainability pada kode sehingga 4
hal tersebut digunakan.

Batasan masalah dari penelitian ini adalah hanya
menguji dan menyimpulkan dari 4 hal tersebut
berdasarkan studi kasus TUNERS. Selain itu, juga
membuat website e-learning readiness model Hung yang
sesuai dengan program studi S1 PJJ Informatika.

C. Tujuan

Tujuan dari penelitian ini adalah membangun
TUNERS menggunakan test driven development
berdasarkan requirement yang diberikan oleh Kepala
Program Studi S1 PJJ Informatika. Website ini
digunakan sebagai studi kasus untuk diteliti dan
mengidentifikasikan pengaruh extract method terhadap
cyclomatic complexity, halstead volume, maintainability
index, dan code readability prediction pada
pengembangan perangkat lunak dengan fest driven
development.

II. KAIJIAN TEORI

A. E-learning Readiness Model Hung

Menurut Odunaike, dkk [1] mendefinisikan e-
learning readiness sebagai faktor-faktor yang harus
diperhatikan agar implementasi e-learning berhasil.
Faktor-faktor yang terdapat dari model tersebut dapat
digunakan untuk mengukur tingkat keberhasilan
implementasi e-learning. Selain itu, e-learning readiness
juga bertujuan untuk mengetahui faktor penghambat
kesuksesan pelaksanaan e-learning [2]. Faktor yang
menghambat implementasi e-learning dapat diketahui
dari hasil penilaian sehingga diketahui faktor yang
menghambat implementasinya. Setelah, diketahui faktor
penghambat implementasi e-learning, institusi dapat

e-Proceeding of Engineering : Vol.12, No.1 Februari 2025 | Page 2053

menyusun keputusan untuk meningkatkan e-learning
readiness.

Model Hung merupakan salah satu model pada e-
learning readiness. Model tersebut digunakan oleh
Cesario [3] pada penelitiannya terhadap Perancangan
Sistem dan Analisis e-Learning Readiness Mahasiswa
pada Mahasiswa S1 PJJ Informatika Universitas Telkom
dapat dilihat pada tabel 1.

TABEL 1.
Tabel model Hung [3]
Komponen Deskripsi
Computer/i | Penilaian terhadap kemampuan
nternet self- | seseorang dalam menggunakan
efficacy komputer [9].

Self- Merupakan kemampuan individu
directed menentukan kebutuhan belajar,
learning merumuskan tujuan, menentukan

strategi belajar, dan mengevaluasi
hasil pembelajarannya [10].
Learner Merupakan tingkat kemampuan
control individu untuk mengarahkan proses
pembelajarannya sendiri [11].

Motivation | Kesiapan mahasiswa untuk terbuka
for learning | terhadap ide-ide baru,
motivasi untuk belajar, memperbaiki
kesalahan, dan mendiskusikannya
dengan orang lain [3].
Online Kemampuan individu dalam
communica | berkomunikasi dengan dosen dan
tion Self- teman, serta mengunggah pertanyaan,
efficacy dan juga mengekspresikan perasaan
dan pikiran secara online [12].

B. Test Driven Development

Test driven development (TDD) merupakan metode
didasari oleh pembuatan program pengujian iteratif
otomatis kecil, penulisan kode untuk lolos festing, dan
peningkatan kode [4]. Metode ini terdiri dari 3 fase pada
TDD, yaitu : menulis test case (red), memastikan lolos
test (green), refactoring (blue) [13]. Berikut tahapan dari
TDD.

ISSN : 2355-9365

Membuat resting

Menjalankan semua
test dan memeriksa
kegagalan pada
lesting

Jalankan semua test

setelah refactoring

untuk memastikan
lolos semua tes

GAMBAR 1.
Proses TDD [14]

Tahapan refactoring pada TDD memiliki keunggulan
menyempurnakan kode dengan mengurangi duplikasi
sehingga dapat mengurangi kompleksitas, meningkatkan
readability, dan meningkatkan maintainability pada
kode [5].

C. Extract Method

Extract Method (XM) memiliki keunggulan dapat
meningkatkan readability dan mengurangi duplikasi
pada kode [7]. XM mengubah bagian kode menjadi
method [6]. Hal tersebut dilakukan dengan
memindahkan kode dari method lama ke method baru
[7].

Metode ini dapat digunakan ketika program dengan
paradigma pemrograman functional programming
mengalami masalah long method. Long method terjadi
karena menggabungkan banyak logika pada satu skrip
[8]. XM membagi kode pada method baru.

D. Software Complexity

e-Proceeding of Engineering : Vol.12, No.1 Februari 2025 | Page 2054

Software Complexity (SC) merupakan tingkat
kesulitan memahami dan bekerja pada suatu program
[15]. Terdapat penelitian yang menyatakan korelasi
antara SC dengan Software Maintainability dan Cost.
Penelitian ini menyatakan semakin tinggi tingkat SC
maka semakin sulit untuk memahami kode tersebut
sehingga membutuhkan pegawai yang lebih banyak yang
menyebabkan meningkatnya cost [16].

E. Cyclomatic Complexity

Cyclomatic Complexity (CC) merupakan sebuah
matrik untuk mengukur kompleksitas dari sebuah
program [17]. CC mengukur kompleksitas dengan
menggunakan Control Flow Graph (CFG). CFG tersebut
diperoleh dengan membuat node dari setiap statement
dan menjumlahkan jumlah node tersebut, kemudian
menyambungkan setiap node dengan edge berdasarkan
alur atau flow tersebut [17]. Persamaan dari CC dapat
dilihat pada persamaan 1.

CC=E—-n+2 (1)
Keterangan :
CC = Cyclomatic complexity
E = Edge
n = Node

Hasil dari persamaan tersebut kemudian
menghasilkan nilai yang diklasifikasikan. Berikut
pengklasifikasiannya dapat dilihat pada tabel 2.

TABEL 2.
Klasifikasi CC [17,18]

CC Rating

1-4 Very low

5-10 Low

11-20 Nominal

21-40 High

41 -50 Very high

> 50 Extra high

Pada penelitian tentang klasifikasi CC di atas pada
studi kasus COCOMO II membandingkan CC terhadap
Jjudgment dari 3 expert. Menghasil nilai kappa statistic
0,78 yang menghasilkan nilai sedang sehingga dapat
digunakan sebagai alternatif pendekatan terhadap
complexity [17].

F. Halstead Volume

Halstead metrics merupakan pengukuran complexity
metrics berdasarkan jumlah dari operator dan operand
[18]. Halstead volume menghitung functional point atau
pengukuran dari program size [19]. Halstead volume
(HV) merupakan salah satu bagian dari halstead metrics.
Berikut [15] persamaan dari HV dapat dilihat pada
persamaan 2.

HV = N X log:n 2)

ISSN : 2355-9365

Keterangan :

HV = Halstead volume

N = Nilai kalkulasi length of program

n = Nilai kalkulasi vocabulary of the program

Length of program mengkalkulasikan total operator
dan operand pada program [16]. Persamaan [15] dari
length of program dapat dilihat pada persamaan 3.

N=NI+N2 3)

Keterangan :

N = Length of program

N1 = Total semua operator yang muncul
N2 = Total semua operand yang muncul

Vocabulary of the program adalah kalkulasi dari
jumlah operator dan operand unik yang muncul dalam
program [16]. Berikut [15] persamaan dari vocabulary of
the program dapat dilihat pada persamaan 4.

n=nl+n2 @
Keterangan :
n = Vocabulary of program
nl = Jumlah operator unik
n2 = Jumlah operand unik

G. Maintainability Index
MI digunakan untuk mengukur tingkat kesulitan
dari perawatan atau perubahan sebuah perangkat lunak
di masa mendatang dengan mengkalkulasi berdasarkan
LoC (Line of Code), CC, dan HV [20]. Persamaan [20]
dari MI dapat dilihat pada persamaan 5.
MI=171—-52 %X In(HV) —0.23 X CC —

16.2 x In (Loc) + (50 X sin (4/2.46 X perCM))
(%)
Keterangan :
HV = Halstead Volume
CC = Cyclomatic Complexity
LoC = Lines of Code
perCM = Percent line of comment

Hasil dari persamaan tersebut kemudian
menghasilkan nilai yang diklasifikasikan. Berikut
pengklasifikasiannya dapat dilihat pada tabel 3.

TABEL 3.
Klasifikasi MI [20]
Nilai Maintainability Index Klasifikasi

MI > 85 Highly maintainability

65 <MI <85
MI < 65 Difficult to maintain

Moderately maintainability

Metode pengukuran MI tersebut telah diujikan
dengan mengambil 50 method pada aplikasi AsciidocFX
dan mendapatkan akurasi 100% dari 50 method tersebut
[20].Code Readability Prediction

CRP ini dihasilkan setelah korelasi antara struktur
kode dan code readability diperoleh [21]. Berikut [21]
persamaan dari CRP dapat dilihat pada persamaan 6.

e-Proceeding of Engineering : Vol.12, No.1 Februari 2025 | Page 2055

CRP = 4317 + LoC x (—0.037) + BL x (0.015) +
NOP x (=0.005) + IL x (—0.093) (6)

Keterangan :

CRP = Code readability prediction
LoC = Line of code

BL = Number of blank lines

IL = Length of identifier

Sedangkan untuk persamaan dari length of identifier
yang merupakan rata-rata panjang identifier diperoleh
melalui persamaan 7 [21].

LoI

IL = v @)

Keterangan :

IL = Length of identifier

LOI = Total length of identifier
TOI = Total identifier

Persamaan 7 tersebut diujikan pada 100 kode dan
menghasilkan akurasi dari prediksi sebesar 87.02% dan
average deviation sebesar 0.414 [21].

III. METODE
Metode penelitian dilakukan sesuai dengan diagram

alir pada Gambar X. Diagram Alir Metodologi
Penelitian.

Membuat resting

Menghitung CC,
HV. MI, dan CRP
Menyimpulkan dari

hasil perhitungan CC,
HV. MI, dan CRP

dda requiremer
yang belum
grpenuhi

GAMBAR 2.
Diagram alir metodologi penelitian

ISSN : 2355-9365

Diagram tersebut digunakan sebagai dasar
pengembangan website pada penelitian ini.Membuat
testing
Testing tersebut dibuat berdasarkan requirement yang
diberikan oleh Kepala Program Studi S1 PJJ Informatika
dapat dilihat pada lampiran 1 sebagai pengembangan
website penilaian e-learning readiness model Hung.
Testing tersebut ditulis pada laravel dusk.
A. Menjalankan semua test dan memeriksa kegagalan
pada testing
Testing tersebut dijalankan untuk menguji kode.
Apabila terjadi kegagalan maka diperiksa penyebab
kegagalan tersebut. Kegagalan tersebut diperbaiki pada
tahap penulisan kode.

B. Penulisan kode

Penulisan kode ini bertujuan agar lolos testing.
Apabila masih terjadi kegagalan pada testing maka
dilakukan penulisan hingga lolos testing. Setelah lolos
testing maka kode tersebut dihitung CC, HV, MI, dan
CRP untuk selanjutnya dibandingkan hasilnya dengan
perhitungan setelah refactoring menggunakan XM. Kode
tersebut ditulis menggunakan bahasa php dengan
framework laravel. Beberapa sistem juga dibangun
sesuai dengan requirement dari Kepala Program Studi S1
PJJ Informatika, Berikut sistem yang dibangun pada
tabel 4

TABEL 4.
Sistem yang dibangun
No Sistem Keterangan User
1 Register | User dapat mendaftar pada | Mahasiswa
Pengujian ini
2 Login User dapat login agar bisa Admin,
mengakses website mahasiswa
3 Forget Fitur ini memungkinkan user Admin,

Password | untuk mengganti password, | mahasiswa
link akan dikirim pada email
4 Input User dapat memasukkan | Mahasiswa
survey e- | survey sesuai dengan pilihan
learning | mereka. User dapat mengisi
readiness | kuesioner lebih dari sekali.
5 Quiz User dapat memasukkan quiz | Mahasiswa
Compute | sesuai dengan pilihan mereka.
r Self- User dapat mengisi quiz ini
efficacy | lebih dari sekali.
6 Quiz User dapat memasukkan quiz | Mahasiswa
Compute | sesuai dengan pilihan mereka.
r Learner | User dapat mengisi quiz ini
Control lebih dari sekali.

7 Quiz User dapat memasukkan quiz | Mahasiswa
Compute | sesuai dengan pilihan mereka.
r User dapat mengisi quiz ini
Motivati | lebih dari sekali.
on for
Learning
8 Quiz User dapat memasukkan quiz | Mahasiswa

Online sesuai dengan pilihan mereka.
Commun | User dapat mengisi quiz ini
ication lebih dari sekali.

Self
Efficacy
9 Quiz Self | User dapat memasukkan quiz | Mahasiswa
directed | sesuai dengan pilihan mereka.
learning | User dapat mengisi quiz ini

lebih dari sekali.
10 | Guidance | Guidance page memiliki | Mahasiswa
Page tampilan berdasarkan hasil

survey. Jika hasil survey di

e-Proceeding of Engineering : Vol.12, No.1 Februari 2025 | Page 2056

bawah 4.2 maka akan
menampilkan tips untuk
meningkatkan matriks
tersebut. Sedangkan, jika di
atas 4.2 akan halaman tersebut
akan menunjukkan
pengetahuan umum seputar
matriks tersebut.

11 Admin Admin dapat melihat hasil Admin
show survei dari mahasiswa. Admin
survey dapat melakukan searching
result berdasarkan nama dan nim.
Selain itu, admin juga bisa
melakukan filter berdasarkan
kelas dan waktu pengisian.
12 Admin Admin dapat melihat hasil quiz Admin
show dari mahasiswa. Admin dapat
quiz melakukan searching
result berdasarkan nama dan nim.

Selain itu, admin juga bisa
melakukan filter berdasarkan
kelas dan waktu pengisian.

C. Refactoring
Refactoring pada TDD bertujuan untuk mengurangi
kompleksitas, meningkatkan maintainability, dan
readability pada kode. Refactoring pada penelitian ini
menggunakan XM. XM dipilih karena dapat mengurangi
duplikasi pada kode dan meningkatkan readability pada
kode. XM dilakukan dengan memindahkan kode dari
method lama ke method baru. Selain itu, XM sesuai
untuk mengurangi long method pada paradigma
pemrograman functional programming. Berikut contoh
penerapan pada function guidanceLearnerControl :
public function
guidanceLearnerControl() {
$user = Auth::User();
if ($user?->nir
return to_route('login');
}
$lastResults =
r::where('nim’, $user->nim)-

public function

1
S

$nim = getNim();

$lastResults =
lastExists

S(Sni
id', 'desc')->f); turn
viewGuidanceLC($lastResults-

>avgL.C);

if (élastRcsults»\u\'gl<C >=4.2)

{
return
view('passedLearningControl'); GAMBAR 4.
} else { Sebelum refactoring XM
return
view('unpassedLearningControl');
}
}

GAMBAR 3.
Sebelum refactoring XM

Refactoring tersebut dilakukan secara berulang pada
kode yang ditulis. Refactoring ini dilakukan sebanyak 27
iterasi pada 27 function. Iterasi meliputi proses
refactoring hingga lolos pengujian. Lebih detail iterasi
refactoring tersebut dapat dilihat pada tabel iterasi
refactoring di lampiran 3.

D. Testing setelah refactoring

Testing ini digunakan untuk menjamin kode setelah
refactoring berjalan sesuai dengan fungsinya. Apabila
terjadi kegagalan pada testing maka dilakukan perbaikan
pada refactoring ini. Setelah lolos pengujian maka
dihitung CC, HV, MI, dan CRP. Hasil perhitungan
tersebut selanjutnya dibandingkan dan diperoleh

ISSN : 2355-9365

kesimpulan dari perbandingan CC, HV, MI, dan CRP
sebelum dan sesudah refactoring XM. Selain itu, juga
dilanjutkan pada siklus yang baru dimulai dari
pembuatan testing. Terakhir setelah semua requirement
terpenuhi maka website diserahkan kepada pihak S1 PJJ
Informatika. Surat keterangan dari tempat studi dapat
dilihat pada lampiran 4.

Iv. HASIL DAN PEMBAHASAN

A. Hasil Pengujian

Pengujian ini dilakukan dengan menghitung CC, HV,
MI, dan CRP pada setiap function yang dilakukan
refactoring sehingga diperoleh hasil penghitungan
sebelum dan sesudah refactoring terhadap komponen
tersebut. Hasil dari penghitungan tersebut dianalisis
untuk mendapatkan pengaruh XM terhadap CC, HV, MI,
dan CRP pada penelitian ini. Berikut rata-rata penurunan
CC, penurunan HV, peningkatan MI, dan peningkatan
CRP yang dapat dilihat pada tabel 5.

Tabel 5.
Peningkatan nilai CC, HV, MI, dan CRP

Persentase rata -rata

Penurunan Penurunan Peningkatan Peningkatan
CcC HV MI CRP
31% 68% 28% 4%

Tabel di atas menunjukkan implementasi XM untuk
studi kasus ini menunjukkan hasil rata-rata yang lebih
baik pada CC, HV, MI, dan CRP. Lebih detail untuk hasil
pengujian terhadap CC, HV, MI, dan CRP dapat dilihat
pada lampiran 5.

B. Analisis Hasil Pengujian

Penerapan XM sesuai terhadap pengembangan TDD
terlebih untuk paradigma pemrograman functional
programming yang memiliki permasalahan long method.
Long method tersebut terjadi karena menggabungkan
beberapa logika pada satu skrip. Hal tersebut dapat
dilihat melalui hasil pengujian di atas diperoleh hasil
rata-rata yang lebih baik pada CC, HV, MI, dan CRP.
Namun, terdapat penurunan nilai dari CRP setelah
dilakukan refactoring. Hal ini disebabkan karena
tingginya nilai IL setelah dilakukan refactoring XM.
Walaupun diperoleh penurunan LOC pada kode namun
IL meningkat.

Selain itu, beberapa function mengalami error pada
penghitungan CRP karena memiliki nilai di bawah 1
pada kode sebelum XM. Hal tersebut dikarenakan
jumlah LOC yang banyak. Function homeView pada file
homeController yang memiliki /ine terbanyak memiliki
nilai CRP terendah yaitu -0,97. Hal tersebut juga
didukung dengan seluruh kode yang memiliki nilai CRP
di bawah 1 mempunyai 48 LOC. Selain itu, juga NOP
berpengaruh error tersebut. Hal ini didukung dengan
semua function yang mengalami error pada perhitungan
CRP memiliki nilai NOP di atas 13,51 dan LOC di atas
38.

Selain itu juga, terdapat beberapa function yang
mengalami penurunan CRP setelah refactoring XM

e-Proceeding of Engineering : Vol.12, No.1 Februari 2025 | Page 2057

dibandingkan sebelum refactoring dikarenakan nilai IL
yang meningkat setelah refactoring. Hal ini dapat diatasi
dengan refactoring rename parameter dan rename
method agar menghasilkan nilai IL yang lebih rendah
sehingga menghasilkan CRP yang lebih tinggi. Berikut
contoh penerapannya :

public function viewQuizComputerSelfEfficacy() {
if (checkLogin()) {
return checkLogin();

}

return view('quizComputerSelfEfficacy');

1
j
GAMBAR 5.
Sebelum refactoring rename parameter dan rename method

public function viewQuizCSE() {
if (checkLogin()) {
return checkLogin();

}

return view('quizCSE');
!
J

GAMBAR 6.
Setelah refactoring rename parameter dan rename method

Pada contoh di atas setelah dilakukan rename parameter
dan rename method menghasilkan nilai CRP sebesar
3,29 dan nilai IL sebesar 8,4. Terdapat peningkatan nilai
CRP dibandingkan sebelum refactoring XM yang
bernilai 3,04 dan setelah refactoring XM yang bernilai
2,66. Selain itu, terdapat penurunan nilai IL
dibandingkan sebelum refactoring XM yang bernilai
10,67 dan setelah refactoring XM yang bernilai 15,2.
Nilai CRP dan IL saling berbanding terbalik, karena nilai
CRP yang tinggi memiliki nilai IL yang rendah.

V. KESIMPULAN

TUNERS telah dibuat berdasarkan requirement dari
Kepala Program Studi S1 PJJ Informatika. Website ini
akan digunakan oleh program studi S1 PJJ Informatika
sebagai penilaian e-learning readiness model Hung.
Penerapan XM pada TDD terhadap pembuatan
TUNERS memberi persentase rata-rata penurunan CC
dan HV yang positif, serta persentase rata-rata
peningkatan MI dan CRP yang positif. Oleh karena itu,
tujuan refactoring pada TDD tercapai dengan penerapan
XM. Namun, terdapat error pada nilai CRP karena LOC
dan IL yang tinggi. Selain itu, terdapat penurunan nilai
CRP setelah refactoring XM jika dibandingkan sebelum
refactoring XM. Hal ini dapat diatasi dengan melakukan
refactoring rename parameter dan rename method. Oleh
karena itu, pada penelitian selanjutnya peneliti
menyarankan untuk dilakukan refactoring rename
parameter dan rename method untuk meningkatkan CRP
pada pengembangan menggunakan TDD

REFERENSI

[1] Mosa, A. A., Mohd. Naz’ri bin Mahrin, & Ibrrahim,
R. 2016. Technological Aspects of E-Learning

ISSN : 2355-9365

Readiness in Higher Education: A Review of the
Literature. Comput. Inf. Sci., 9(1), 113—-127.

[2] Rohayani, A. H. 2015. A literature review: Readiness
factors to measuring e-learning readiness in higher
education. Procedia Computer Science, 59, 230-234.
Elsevier

[3] Gunawan, A. C., Herdiani, A., and G. A. A.
Wisudiawan. 2021. Perancangan Sistem dan Analisis e-
Learning Readiness Mahasiswa Studi Kasus: Mahasiswa
S1 PJJ Informatika Universitas Telkom. Bandung.
Universitas Telkom

[4] Al-Saqqa, S., Sawalha, S., & AbdelNabi, H. 2020.
Agile software development: Methodologies and trends.
International Journal of Interactive Mobile
Technologies, 14(11).

[5] Anwer, F., Aftab, S., Waheed, U., & Muhammad, S.
S. 2017. Agile software development models tdd, fdd,
dsdm, and crystal methods: A survey. International
Journal of Multidisciplinary Sciences and Engineering,
8(2), 1-10.

[6] Mariani, T., & Vergilio, S. R. 2017. A systematic
review on search-based refactoring. Information and
Software Technology, 83, 14-34. Elsevier

[7] Agnihotri, M., & Chug, A. 2020. A systematic
literature survey of software metrics, code smells and
refactoring techniques. Journal of Information
Processing Systems, 16(4), 915-934. Korea Information
Processing Society

[8] Hermans, F., & Aivaloglou, E. 2016. Do code smells
hamper novice programming? A controlled experiment
on Scratch programs. 2016 IEEE 24th International
Conference on Program Comprehension (ICPC), 1-10.
IEEE

[9] Compeau, D. R., & Higgins, C. A. 1995. Computer
self-efficacy: Development of a measure and initial test.
MIS Quarterly, 189-211. JSTOR

[10] Loyens, S. M., Magda, J., & Rikers, R. M. 2008.
Self-directed learning in problem-based learning and its
relationships with self-regulated learning. Educational
Psychology Review, 20, 411-427. Springer

[11] Shyu, H.-Y., & Brown, S. W. 1992. Learner control
versus program control in interactive videodisc
instruction: What are the effects in procedural learning.
International Journal of Instructional Media, 19(2), 85-
95.

[12] Chung, E., Noor, N. M., & Mathew, V. N. 2020. Are
you ready? An assessment of online learning readiness
among university students. International Journal of
Academic Research in Progressive Education and
Development, 9(1), 301-317.

[13] Pervez, M. U., Eman, L., & Abbas, B. D. 2022. Test
Driven Development: A Review. Nov.

[14] Bissi, W., Neto, A. G. S. S., & Emer, M. C. F. P.
2016. The effects of test driven development on internal
quality, external quality and productivity: A systematic
review. Information and Software Technology, 74, 45—
54. Elsevier

[15] Debbarma, M. K., Debbarma, S., Debbarma, N.,
Chakma, K., & Jamatia, A. 2013. A review and analysis
of software complexity metrics in structural testing.

e-Proceeding of Engineering : Vol.12, No.1 Februari 2025 | Page 2058

International Journal of Computer and Communication
Engineering, 2(2), 129-133. IACSIT Press

[16] Abd Jader, M. N., & Mahmood, R. Z. 2018.
Calculating McCabe's Cyclomatic Complexity Metric
and Its Effect on the Quality Aspects of Software.
IJIRCT

[17] Subandri, M. A., & Sarno, R. 2017. Cyclomatic
complexity for determining product complexity level in
COCOMO 1I. Procedia Computer Science, 124, 478—
486. Elsevier

[18] Laird, L. M., & Brennan, M. C. 2006. Software
measurement and estimation: A practical approach.
John Wiley & Sons. John Wiley & Sons

[19] Thirumalai, C., Shridharshan, R. R., & Reynold, L.
R. 2017. An assessment of halstead and COCOMO
model for effort estimation. 2017 Innovations in Power
and Advanced Computing Technologies (i-PACT), 1-4.
IEEE

[20] Atmaja, R. G., Priyambadha, B., & Pradana, F.
2019. Pembangunan Kakas Bantu Untuk Mengukur
Maintainability Index Pada Perangkat Lunak
Berdasarkan Nilai Halstead Metrics dan McCabe’s
Cyclomatic Complexity: English. Jurnal Pengembangan
Teknologi Informasi Dan Ilmu Komputer, 3(3), 2167—
2172. Universitas Brawijaya

[21] Batool, A., Bashir, M. B., Babar, M., Sohail, A., &
Ejaz, N. 2021. Effect or Program Constructs on Code
Readability and Predicting Code Readability Using
Statistical Modeling. Foundations of Computing and
Decision Sciences, 46(2), 127-145.

