
ISSN : 2355-9365 e-Proceeding of Engineering : Vol.12, No.1 Februari 2025 | Page 1215

Pengembangan Frontend Dalam Migrasi Multi

Page Application Ke Single Page Application

Dengan Pendekatan Iterative Incremental Pada

Studi Kasus Sofi Modul Pengajuan

1st Andrian Saputra

Fakultas Rekayasa Industri

Universitas Telkom

Bandung, Indonesia

andrians@student.telkomuniversity.ac.i

d

2nd Ekky Novriza Alam

Fakultas Rekayasa Industri

Universitas Telkom

Bandung, Indonesia

ekkynovrizalam@telkomuniversity.ac.id

3rd Tien Fabrianti Kusumasari,

Fakultas Rekayasa Industri

Universitas Telkom

Bandung, Indonesia

tienkusumasari@telkomuniversity.ac.id

Abstrak — Revolusi industri 4.0 mendorong sektor

pendidikan untuk mengadopsi teknologi terkini seperti

pembelajaran jarak jauh dan platform digital. Universitas

Telkom mengembangkan platform SOFI untuk memonitor

Sidang Tugas Akhir di Fakultas Rekayasa Industri. Awalnya

menggunakan arsitektur monolitik dan Multi Page Application

(MPA), aplikasi ini kini memerlukan peningkatan untuk

menangani jumlah pengguna yang besar dan memperbaiki

pengalaman pengguna. Penelitian ini bertujuan

mengembangkan front-end aplikasi SOFI dengan menerapkan

Single Page Application (SPA) dan arsitektur microservices.

SPA dipilih untuk mengurangi waktu respon dan

meningkatkan interaktivitas serta penanganan error,

sedangkan microservices menawarkan fleksibilitas dan

skalabilitas yang lebih tinggi. Metodologi yang digunakan

adalah System Development Life Cycle (SDLC) dengan

pendekatan Iterative Incremental, karena mampu

mengakomodasi umpan balik pengguna dan perubahan

kebutuhan selama proses pengembangan. Hasil penelitian

menunjukkan bahwa migrasi ke SPA dan microservices

meningkatkan performa dan pengalaman pengguna aplikasi

SOFI serta mempermudah pengembangan dan pemeliharaan

kode. Penelitian ini memberikan kontribusi signifikan terhadap

digitalisasi layanan pendidikan, khususnya dalam efisiensi dan

kenyamanan proses sidang tugas akhir.

Kata kunci — Digitalisasi Pendidikan, Microservices,

Iterative Incrementa, Multi Page Application, Single Page

Application , Systems Development Life Cycle

I. PENDAHULUAN

Sektor pendidikan telah mengalami transformasi besar

dengan mengadopsi konsep industri 4.0, yang semakin

dipercepat dengan adanya COVID-19. Kemajuan seperti

pembelajaran jarak jauh, pembelajaran adaptif, dan

penggunaan platform digital telah mengubah cara mahasiswa

dan pendidik berinteraksi dan mengakses informasi,

meningkatkan fleksibilitas dan aksesbilitas. Revolusi industri

4.0 ini menuntut institusi pendidikan untuk terus berkembang

dengan mengikut perkembangan teknologi dan

memanfaatkan teknologi informasi dan komunikasi untuk

mendukung proses belajar mengajar. Salah satu layanan yang

memiliki potensi besar untuk didigitalisasi adalah sidang

tugas akhir, yang merupakan ujian terbuka bagi mahasiswa

untuk penetapan status kemajuan studi mahasiswa.

Digitalisasi sidang tugas akhir tidak hanya memungkinkan

proses yang lebih efisien dan terorganisir tetapi juga

memberikan fleksibilitas dan akses yang lebih besar bagi

mahasiswa, pembimbing, dan penguji, sejalan dengan tren

modern dalam pendidikan tinggi.

Universitas Telkom merupakan salah satu perguruan

tinggi yang telah menyesuaikan diri dengan industri 4.0, dan

salah satu upaya Universitas Telkom dalam menjawab

tantangan ini adalah digitalisasi pada layanan sidang tugas

akhir. Bukti nyata dari digitalisasi ini adalah website SOFI,

sebuah platform berbasis web yang digunakan untuk

memonitor Sidang Tugas Akhir Fakultas Rekayasa Industri

di Universitas Telkom. Beberapa proses bisnis pada aplikasi

SOFI adalah pendaftaran sidang, penjadwalan sidang,

pelaksanaan sidang, revisi sidang, dan penilaian sidang.

Aplikasi SOFI dikembangkan menggunakan arsitektur

monolitik. Penelitian terdahulu yang berjudulkan <A
Comparative Review of Microservices and Monolithic

Architectures= [1] membuktikan bahwa arsitektur monolitik

cocok digunakan jika pengguna masih pada skala yang kecil

dan juga mudah untuk dikembangkan. Namun, arsitektur

monolitik tidak dapat memenuhi kebutuhan website SOFI

yang memerlukan arsitektur kode yang memudahkan

pengembang dalam memahami kode serta mampu

menangani pengguna dalam jumlah besar. Karena website

SOFI tidak memiliki pengembang tetap dan memiliki

pengguna dengan skala yang besar, diperlukan perubahan ke

arsitektur yang lebih fleksibel dan skalabel. Hal ini

menyebabkan aplikasi SOFI sering kali mengalami keluhan

dari pengguna.

 Aplikasi SOFI membutuhkan teknologi yang dapat

menangangi jumlah pengguna yang tinggi secara bersamaan,

arsitektur monolitik tidak dapat memenuhi kebututuhan

tersebut. Oleh karena itu, arsitektur yang diharapkan dapat

memenuhi kebutuhan website SOFI adalah arsitektur

ISSN : 2355-9365 e-Proceeding of Engineering : Vol.12, No.1 Februari 2025 | Page 1216

microservice, arsitektur microservice adalah arsitektur

aplikasi dengan memecah basis kode menjadi unit pecahan

yang lebih kecil dan spesifik. Penelitian terdahulu yang

berjudulkan <The Comparison of Microservice and

Monolithic Architecture= [2] membuktikan bahwa arsitektur

microservice lebih efisien jika aplikasi harus menangani

pengguna dalam jumlah yang besar. Penelitian tersebut juga

membuktikan bahwa arsitektur microservice lebih mudah

untuk di pelihara oleh pengembang, karena lebih mudah

untuk dipahami oleh pengembang, setiap fungsi utama

terpisah dan kesalahan fungsi microservice hanya

mempengaruhi microservice itu sendiri.

 Saat ini, website SOFI juga masih menggunakan konsep

MPA (Multi Page Application). Dalam konsep MPA, setiap

kali pengguna melakukan navigasi antar halaman, seluruh

konten website harus dimuat ulang. Hal ini menyebabkan

website menjadi lebih berat dan memperpanjang waktu muat.

Namun, MPA memiliki keunggulan dalam hal SEO, yang

memudahkan website untuk ditemukan diinternet. Meskipun

demikian, kelebihan MPA dalam hal SEO seringkali

bertentangan dengan kebutuhan untuk meningkatkan

pengalaman pengguna. Terlebih bagi, untuk website yang

hanya digunakan secara internal oleh organisasi, keunggulan

SEO tersebut menjadi kurang relevan. Kelemahan lain dari

MPA dari sisi pengguna termasuk peningkatan penggunaan

bandwidth karena setiap navigasi memuat ulang halaman

sepenuhnya, yang bisa menjadi masalah bagi pengguna

dengan koneksi internet lambat. Selain itu, transisi antar

halaman yang tidak mulus dapat mengganggu kenyamanan

pengguna dan membuat interaksi terasa lambat dan terputus-

putus. Kelemahan-kelemahan ini juga berkorelasi dengan

masalah penanganan error dari sisi pengguna dalam MPA.

Setiap kali halaman dimuat ulang, ada potensi kehilangan

data yang telah diinput oleh pengguna sebelum error terjadi.

Misalnya, jika terjadi error selama proses pengisian formulir

atau pendaftaran, pengguna mungkin harus mengulangi

seluruh proses dari awal, yang menyebabkan frustrasi dan

ketidakpuasan. Error handling yang tidak efisien ini sering

kali mengakibatkan pengguna kehilangan data yang telah

dimasukkan, memperburuk pengalaman pengguna secara

keseluruhan. Dengan demikian, masalah bandwidth yang

tinggi, transisi halaman yang tidak mulus, dan penanganan

error yang buruk berkontribusi terhadap pengalaman

pengguna yang kurang optimal dalam MPA.

 Pengguna SOFi memiliki rentang usia yang sangat luas,

mencakup mahasiswa muda hingga dosen senior. Karena

perbedaan dalam tingkat keterampilan teknologi dan

preferensi pengguna, penting untuk memperhatikan

kebutuhan dan preferensi dari kedua kelompok ini.

Intuitifitas, responsivitas, dan penanganan error dalam

aplikasi SOFi menjadi semakin penting untuk memastikan

bahwa semua pengguna dapat dengan mudah mengakses dan

menggunakan platform tersebut sesuai dengan kebutuhan

mereka.

 Oleh karena itu, terdapat konsep SPA (Single Page

Application). Aplikasi SPA akan meningkatkan interaktivitas

pengguna karena mereka akan merespon dalam waktu yang

lebih singkat. Ini akan memakan waktu lebih lama saat

mengunggah untuk pertama kalinya tetapi untuk tindakan

berikutnya, waktu yang dibutuhkan kurang dari aplikasi

MPA [3]. Dalam SPA, hanya bagian-bagian tertentu dari

website yang diperbarui saat pengguna berinteraksi, sehingga

tidak perlu memuat ulang seluruh halaman. Keuntungan SPA

bagi pengguna adalah peningkatan performa dan penanganan

error yang lebih efisien. Ketika terjadi error, data yang telah

diinput tidak akan hilang karena halaman tidak perlu dimuat

ulang sepenuhnya, yang mengurangi frustrasi dan

ketidakpuasan pengguna. Namun, kelemahan utama dari

SPA adalah kurangnya keunggulan dalam hal SEO, karena

konten yang terus-menerus diperbarui secara dinamis

mungkin tidak selalu terindeks dengan baik oleh mesin

pencari. Selain itu, aplikasi SOFI juga akan dimigrasi dari

arsitektur monolitik ke microservices, yang memberikan

fleksibilitas dan skalabilitas yang tinggi. Menggabungkan

SPA dengan arsitektur microservices memberikan beberapa

keuntungan. SPA dapat memanfaatkan microservices untuk

memisahkan berbagai komponen aplikasi menjadi layanan-

layanan kecil yang dapat dikembangkan, diimplementasikan,

dan diskalakan secara independen. Hal ini memungkinkan

pengembangan yang lebih cepat dan responsif terhadap

perubahan kebutuhan pengguna, serta penanganan error yang

lebih baik karena setiap layanan dapat dikelola dan diperbaiki

secara terpisah tanpa mempengaruhi keseluruhan aplikasi.

Dengan demikian, kombinasi SPA dan arsitektur

microservices memastikan performa yang optimal dan

pengalaman pengguna yang lebih baik pada aplikasi SOFI.

 Untuk mendukung penelitian ini, pendekatan yang

digunakan adalah SDLC (System Development Life Cycle)

dengan metode Iterative Incremental. SDLC adalah model

klasik yang bersifat sistematis dan berurutan dalam

membangun perangkat lunak. Dalam pengembangan sistem,

SDLC sangat penting karena memecah seluruh siklus

pengembangan perangkat lunak menjadi tahapan-tahapan

yang memungkinkan evaluasi setiap bagian dengan lebih

mudah, serta memungkinkan programmer bekerja secara

bersamaan pada setiap tahapannya [4]. Untuk mendukung

penelitian ini, pendekatan yang digunakan adalah SDLC

(System Development Life Cycle) dengan metode Iterative

Incremental. Metode Iterative Incremental dipilih karena

menggabungkan elemen-elemen dari metode waterfall dalam

pendekatan yang iteratif dan fleksibel. Metode ini sangat

sesuai untuk pengembangan perangkat lunak karena

memungkinkan adanya penyesuaian berdasarkan umpan

balik pengguna dan perubahan kebutuhan selama proses

pengembangan. Fleksibilitas ini sangat penting untuk

memastikan setiap iterasi dapat mengakomodasi inovasi dan

ide-ide baru yang muncul, sehingga menghasilkan solusi

yang lebih responsif dan sesuai dengan tujuan akhir.

Penelitian ini menggunakan metode Iterative Incremental

dari SDLC karena keunggulannya dalam memungkinkan

penyesuaian berkelanjutan dan peningkatan terus-menerus

selama siklus pengembangan. Metode ini sangat diperlukan

untuk menangani kompleksitas migrasi arsitektur dan

memastikan performa serta pengalaman pengguna yang

optimal pada website SOFI.

II. KAJIAN TEORI

ISSN : 2355-9365 e-Proceeding of Engineering : Vol.12, No.1 Februari 2025 | Page 1217

A. Single Page Application

GAMBAR 1

Life Cycle Single Page Application

 Single Page Application (SPA) adalah konsep web yang

memuat satu halaman HTML dan memperbarui konten

secara dinamis sesuai interaksi pengguna tanpa memuat

ulang seluruh halaman dari server [5]. SPA menggunakan

teknologi Javascript asynchronous untuk pengembangan

frontend dan backend, memungkinkan interaksi pengguna

tanpa berpindah antar halaman. SPA mempermudah

pengembangan kode karena komponen aplikasi berdiri

sendiri dan tidak saling bergantung, sehingga lebih modular

dan skalabel [6].

SPA meminimalisir ketergantungan pada manipulasi

Document Object Model (DOM) di sisi klien, meningkatkan

performa aplikasi. Secara teknis, SPA berkomunikasi dengan

server melalui Restful JSON API, memperbarui tampilan

halaman tanpa memuat ulang seluruh halaman,

meningkatkan efisiensi dan memberikan pengalaman

pengguna yang lebih responsif [5]. Dibandingkan dengan

aplikasi MPA, SPA menawarkan interaksi yang lebih cepat

dan responsif, karena konten baru dimuat secara dinamis

menggunakan Javascript, sementara MPA memuat ulang

halaman HTML baru untuk setiap perubahan konten [6].

B. Multi Page Application

GAMBAR 2

Life Cycle Multi Page Application

Multi Page Application (MPA) adalah konsep aplikasi

yang memuat ulang seluruh halaman HTML dari server pada

setiap permintaan. Sebelum AJAX diperkenalkan, MPA

sangat populer dengan berbagai bahasa pemrograman server

seperti PHP, Ruby, dan Java yang bertanggung jawab

memuat kerangka langsung di backend dan memberikan

halaman HTML mentah sebagai respon. Dengan AJAX,

pengembang mulai menerapkan pemuatan asinkron untuk

transisi mulus dan interaksi UI yang lebih baik, namun tidak

semua halaman dimuat asinkron. Hal ini menyebabkan

campuran pendekatan pemuatan sinkron dan asinkron serta

peningkatan kode JavaScript yang signifikan di sisi klien,

yang sering kali menjadi sulit dikelola [7].

Usaha oleh library seperti jQuery dan framework sisi

server untuk membuat kode JavaScript lebih mudah dan rapi

masih belum cukup baik dibandingkan dengan apa yang

ditawarkan SPA. Meskipun MPA memiliki keunggulan

dalam kesederhanaan dan kemudahan penerapan awal, MPA

sering kali kalah dalam hal performa dan pengalaman

pengguna dibandingkan dengan SPA [7].

C. Software Development Life Cycle

 Software Development Life Cycle (SDLC) adalah

metodologi dengan proses yang didefinisikan untuk

menciptakan perangkat lunak berkualitas tinggi, efektif dari

segi biaya, dan dapat diandalkan. SDLC mencakup berbagai

aktivitas dan tugas selama pengembangan perangkat lunak,

membuat proses lebih sistematis dan terstruktur [8].

 Model SDLC membantu membuat pengembangan

perangkat lunak lebih efisien melalui perencanaan yang tepat,

mencakup identifikasi kebutuhan, pengembangan kasus

bisnis, dan implementasi solusi sistem. Analis sistem,

pengembang, dan desainer menggunakan SDLC untuk

merencanakan dan mengimplementasikan aplikasi,

memastikan pengiriman sistem tepat waktu dan dengan

anggaran murah [9].

 Beberapa model SDLC yang umum digunakan termasuk

Waterfall, Spiral, V, Agile, Iteratif, dan Rapid Application

Development (RAD), masing-masing dengan kelebihan dan

keterbatasannya sendiri [8]. SDLC mencakup tahapan utama

seperti analisis kebutuhan, desain sistem, implementasi,

pengujian, dan pemeliharaan, memastikan setiap iterasi dapat

mengakomodasi inovasi baru untuk menghasilkan solusi

yang lebih responsif dan sesuai dengan tujuan akhir [9].

D. Iterative and Incremental Development

 Iterative and Incremental Development (IID) adalah

metode pengembangan perangkat lunak yang

menggabungkan pendekatan iterative dan incremental. IID,

sebagai bagian dari SDLC, digunakan untuk merencanakan,

mengembangkan, menguji, dan memelihara perangkat lunak,

termasuk dalam model seperti Waterfall, Spiral, V-Model,

dan Agile.

 Pendekatan iterative membangun bagian kecil proyek

secara bertahap, mengungkap masalah lebih awal dan

memungkinkan timbal balik dari stakeholder di setiap iterasi,

sehingga setiap peningkatan didasarkan pada kebutuhan

nyata [10]. Pendekatan incremental menambahkan

fungsionalitas baru pada setiap rilis, mendukung desain,

implementasi, dan pengujian sistem secara bertahap. Fitur

baru diuji dan diverifikasi sebelum digabungkan ke dalam

sistem yang lebih besar, memungkinkan penambahan

kebutuhan baru secara iteratif hingga produk selesai [10].

 Dalam praktiknya, IID melibatkan identifikasi kebutuhan,

analisis, spesifikasi desain, pengkodean, dan pengumpulan

timbal balik dari stakeholder sebelum melanjutkan ke siklus

incremental berikutnya. Komunikasi konstan antara

pengembang dan stakeholder memastikan perangkat lunak

yang dihasilkan berkualitas dan memenuhi kebutuhan

pengguna.

ISSN : 2355-9365 e-Proceeding of Engineering : Vol.12, No.1 Februari 2025 | Page 1218

E. Unified Modeling Language

Unified Modeling Language (UML) adalah bahasa

standar dalam rekayasa perangkat lunak untuk merancang,

menggambarkan, dan mendokumentasikan sistem perangkat

lunak berorientasi objek secara visual. UML digunakan untuk

dua tujuan utama dengan menghasilkan dua jenis diagram:

structural diagrams (seperti class diagram) yang merujuk

pada arsitektur proses atau entitas, dan behavioral diagrams

(seperti use case, sequence, dan activity diagrams) yang

mengacu pada aspek fungsional dari proses atau entitas [11].

 UML dikembangkan sebagai bahasa pemodelan

umum yang terbuka dan berdasarkan kesepakatan mayoritas

komunitas komersial, mampu menangani tantangan

pengembangan perangkat lunak modern seperti skala besar,

distribusi, pola, dan pengembangan tim. UML dirancang

untuk tetap sederhana namun cukup ekspresif untuk

memodelkan berbagai sistem praktis, termasuk konsep

seperti concurrency, distribusi, encapsulation, dan komponen

[11]. Model bisnis yang baik mencakup semua informasi

yang diperlukan untuk memahami struktur bisnis dan mode

operasi, sehingga dapat menemukan solusi yang dapat

diimplementasikan secara real-time [12].

F. User Acceptance Testing

User Acceptance Testing (UAT) adalah pengujian akhir

dalam pengembangan aplikasi untuk memvalidasi bahwa

sistem sesuai dengan kebutuhan dan harapan pengguna. UAT

memungkinkan tim uji, termasuk sponsor, untuk

mengevaluasi kinerja perangkat lunak dan memastikan

persyaratan sponsor diterjemahkan dengan akurat ke dalam

desain sistem, sesuai dengan dokumen persyaratan yang

disetujui [13]. UAT membantu dalam memvalidasi

kebutuhan pengguna dengan memastikan aplikasi yang

dikembangkan sesuai dengan kebutuhan dan harapan

pengguna. Melalui UAT, bug dan masalah yang belum

terdeteksi selama tahapan pengujian sebelumnya dapat

diidentifikasi dan diperbaiki sebelum dideploy. Selain itu,

UAT membantu dalam mengurangi risiko dan biaya dengan

mengidentifikasi dan memperbaiki masalah sebelum aplikasi

diluncurkan, sehingga mengurangi risiko kegagalan dan

biaya tambahan untuk perbaikan setelah peluncuran.

Terakhir, UAT juga membantu dalam meningkatkan

kepuasan pengguna dengan melibatkan mereka secara

langsung dalam pengembangan aplikasi, sehingga

memastikan bahwa aplikasi yang dihasilkan sesuai dengan

kebutuhan dan harapan mereka.

III. METODE

GAMBAR 3

 Model Konseptual

 Pada Gambar 3 dijelaskan kerangka berpikir yang

digunakan pada penelitian ini, yang bertujuan untuk

menghasilkan aplikasi SOFI berbasis SPA dengna

menggunakan library React Js. Penelitian ini menggunakan

metode Iterative Incremental untuk pengembangan bertahap

dan berulang, serta evaluasi melalui black box yaitu UAT

guna memastikan setiap fungsionalitas berjalan dengan baik

dan memenuhi kebutuhan pengguna. Kerangka ini terdiri dari

tiga bagian utama: Lingkungan, yang melibatkan mahasiswa

tingkat akhir, dosen, dan penguji dari Fakultas Rekayasa

Industri serta teknologi seperti React JS, Bootstrap, dan

Postman; Penelitian SI, yang berfokus pada pengembangan

dan penilaian aplikasi; dan Dasar Ilmu, yang melibatkan

konsep-konsep seperti microservices, SPA, dan diagram

UML, dengan metodologi Iterative Incremental untuk

meningkatkan pengetahuan dasar yang diperoleh selama

penelitian.

GAMBAR 4

Sistematika Penyelesaian Masalah

 Pada Gambar 4 menjelaskan metode penelitian Iterative

Incremental yang digunakan dalam pengembangan aplikasi.

Proses ini dimulai pada tahap perencanaa, dimana kebutuhan

dan tujuan ditentukan. Selanjutnya, dilakukan analisis dan

desain untuk merancang solusi teknis untuk memenuhi

kebutuhan yang telah diidentifikasi. Tahap berikutnya adalah

pengembangan, di mana aplikasi dibangun secara bertahap

dan berulang. Setelah itu, dilakukan pengujian untuk

memastikan setiap fungsionalitas iterasi dapat bebas dari

kesalahan. Evaluasi dilakukan untuk menilai kinerja dan

kualitas aplikasi. Jika diperlukan, proses itasi akan terus

berulang sampai setiap fungsionalitas dapat berjalan lancar

dan sesuai dengan kebutuhan pengguna. Setelah evaluasi

berhasil, aplikasi masuk ke tahap deployment. Di akhir,

penelitian ini disimpulkan dengan memberikan kesimpulan

dan saran berdasarkan hasil yang diperoleh salama

pengembangan aplikasi.

IV. HASIL DAN PEMBAHASAN

Pengembangan migrasi aplikasi SOFI dari MPA ke

menggunakan metode pengembangan iterative incremental

dengan penerapan Domain-Driven Design. Pendekatan ini

menjamin solusi yang tidak hanya fungsional tetapi juga

berfokus pada pengguna dengan memperhatikan kebutuhan

bisnis secara mendalam. Domain-Driven Design

memungkinkan pengembangan yang lebih fleksibel dan

adaptif terhadap perubahan, dengan pemahaman yang

mendalam tentang domain bisnis yang memungkinkan

kolaborasi lebih efektif antara tim pengembang dan

pemangku kepentingan.dan pengalaman secara mendalam.

A. Identifikasi Layanan

Analisis Domain-Driven Design (DDD) melibatkan

diskusi intensif dengan ahli domain untuk mengaitkan konsep

bisnis dengan implementasi teknis secara mendalam. Tujuan

ISSN : 2355-9365 e-Proceeding of Engineering : Vol.12, No.1 Februari 2025 | Page 1219

utama DDD adalah mempercepat pengembangan perangkat

lunak yang berkaitan erat dengan domain bisnis yang

kompleks, seperti aplikasi sidang fakultas SOFI. Dalam

menangani masalah pengguna dan mengatasi perbedaan

dalam konteks domain saat mengembangkan perangkat lunak

skala besar, pendekatan bounded context digunakan.

Pendekatan ini membagi model besar menjadi konteks-

konteks kecil yang lebih mudah dikelola dan mendefinisikan

hubungan antar setiap konteks.

GAMBAR 5

Analisis Domain Driven Design

GAMBAR 6

Alur Migrasi Aplikasi Sofi

Pada Gambar 5 dan Gambar 6, menunjukkan hasil

analisis DDD dengan bounded context pada aplikasi SOFI,

dengan fokus pada bounded context Pengajuan dan

Penjadwalan karena peran strategisnya dalam arsitektur

sistem. Proses pengajuan dan penjadwalan tidak hanya

penting untuk operasi bisnis utama tetapi juga berfungsi

sebagai penghubung data penting untuk fungsi sistem

lainnya. Penelitian ini berfokus pada pengembangan bounded

context Pengajuan berdasarkan diskusi dengan ahli domain.

Pengembangan awal bounded context Pengajuan dianggap

kritis untuk memastikan aplikasi beroperasi secara efektif dan

mencapai tujuan bisnis.

B. Initial Planning

 Tahap Initial Planning merupkana tahap identifikasi

kebutuhan fungsional untuk pengembangan aplikasi dengan

menetapkan kebutuhan fungsionalitas atau kebutuhan

aplikasi. Selain menetapkan kebutuhan fungsional, tahap ini

juga mencakup analisis proses bisnis.

GAMBAR 7

Proses Bisnis Pengajuan Sidang

Pada Gambar 7, menjelaskan proses bisnis pengajuan

sidang akhir pada aplikasi, dimana proses bisnis ini

menggambarkan proses melakukan pengajuan sidang akhir

pada aplikasi.

C. Tahap Perencanaan

 Pada setiap fase iterasi, dilakukan tahap perencanaan

yang bertujuan untuk merancang rencana migrasi aplikasi

SOFI dari konsep MPA ke SPA. Kebutuhan fungsional

aplikasi, yang tercantum dalam Tabel 1, diidentifikasi

berdasarkan percobaan langsung pada aplikasi eksisting yang

masih menggunakan konsep SPA. Tahap perencanaan ini

memastikan setiap iterasi migrasi direncanakan dengan hati-

hati agar transisi ke SPA berjalan lancar dan efisien, serta

kebutuhan fungsional dapat terpenuhi sesuai dengan analisis

mendalam dari aplikasi yang ada.

TABEL 1

Kebutuhan Fungsional

ID Kebutuhan

REQ-02.01 Get all thesis defense submission

REQ-02.02 Check thesis defense submission user

REQ-02.03 Create new thesis defense submission

REQ-02.04 Update thesis defense submission

REQ-03.01 Approve thesis defense submission

REQ-03.02 Rejected thesis defense submission

REQ-04.01 Get detail team

REQ-04.02 Get team user logged in

REQ-04.03 Create new team

REQ-04.04 Create individual

REQ-04.05 Add new member

REQ-04.06 Leave the team

REQ-04.07 Edit team name

REQ-05.01 Get detail document logs

REQ-05.02 Upload slide

REQ-06.01 Get user notification

REQ-06.02 Update notification

D. Tahap Analisis

 Tahap kedua dalam Iterative Incremental adalah tahap

Analisis. Pada tahap ini, dilakukan analisis mendalam serta

perancangan kebutuhan yang telah ditetapkan pada tahap

sebelumnya. Analisis ini bertujuan untuk memahami secara

detail kebutuhan fungsional yang harus dipenuhi oleh

aplikasi, dan menghasilkan output berupa use case diagram.

 Use case diagram digunakan untuk menggambarkan

fitur-fitur yang tersedia bagi setiap pengguna dalam aplikasi

SOFI. Perancangan use case diagram ini dibuat berdasarkan

kelompok kebutuhan fungsional yang sudah ditetapkan,

memberikan gambaran visual yang jelas tentang interaksi

pengguna dengan sistem serta fitur-fitur yang dapat diakses

oleh setiap jenis pengguna. Use case diagram aplikasi SOFI

tercantum pada Gambar 8.

ISSN : 2355-9365 e-Proceeding of Engineering : Vol.12, No.1 Februari 2025 | Page 1220

GAMBAR 8

Use Case Diagram

E. Tahap Pengembangan

 Tahap ketiga dalam Iterative Incremental adalah tahap

Pengembangan. Pada tahap ini, frontend dikembangkan

sesuai dengan kebutuhan fungsional, serta rancangan UML

yang telah disiapkan pada tahap perencanaan, analisis, dan

perancangan sebelumnya. Pengembangan frontend dilakukan

menggunakan bahasa pemrograman Javacript dengan library

React js.

 Proses pengembangan ini melibatkan kolaborasi dengan

tim frontend, menggunakan repository di GitHub untuk

memfasilitasi kerja sama dan pengelolaan kode.

F. Tahap Pengujian

 Setelah tahap pengembangan selesai, tahap berikutnya

adalah pengujian terhadap sistem yang telah dimigrasi.

Pengujian ini bertujuan untuk memastikan bahwa

fungsionalitas yang telah dimigrasi berjalan sesuai harapan.

Dari sisi frontend, pengujian ini dilakukan menggunakan

metode User Acceptance Testing (UAT). Tabel 2 hingga

Tabel 8 menjelaskan hasil pengujian UAT dari layanan yang

telah dimigrasi.
TABEL 2

Hasil Uat Fase Pertama

Test Case ID ID Status

TC-01.01

REQ-02.01

Pass

TC-01.02 Pass

TC-01.03 Pass

TC-01.04 REQ-02.02 Pass

TC-01.05 REQ-02.03 Pass

TC-01.06 REQ-02.04 Pass

TC-02.01
REQ-03.01

Pass

TC-02.02 Pass

TC-02.03
REQ-03.02

Pass

TC-02.04 Pass

TABEL 3

Hasil Uat Fase Kedua

Test Case ID ID Status

TC-02.01 REQ-04.02 Pass

TC-02.02 REQ-04.03 Pass

TC-02.03
REQ-04.04

Pass

TC-02.04 Pass

TC-02.05
REQ-04.05

Pass

TC-02.06 Pass

TC-02.07 REQ-04.06 Pass

TC-02.08 Pass

TC-02.09 REQ-04.07 Pass

TC-02.10 REQ-05.01 Pass

TC-02.11 REQ-05.02 Pass

TC-02.12 REQ-06.01 Pass

TC-02.13 REQ-06.02 Pass

Berdasarkan hasil UAT yang telah dilakukan, dapat

disimpulkan bahwa semua fitur yang dikembangkan pada

fase pertama dan kedua telah berfungsi dengan baik sesuai

dengan fungsionalitas dan tujuan yang telah ditetapkan

sebelumnya. Hasil pengujian yang dijelaskan pada Tabel 2

dan Tabel 3 menunjukkan bahwa semua test case yang diuji

telah berhasil mencapai tingkat keberhasilan 100% dalam

memenuhi kebutuhan pengguna. Dengan demikian, fase

berikutnya akan difokuskan pada pengembangan

fungsionalitas atau tujuan yang telah ditetapkan untuk fase

tersebut, memastikan setiap aspek sistem yang sedang

dikembangkan memenuhi ekspektasi dan kebutuhan

pengguna dengan sempurna. Iterasi akan dilanjutkan jika di

masa mendatang ditemukan fitur baru yang perlu

dikembangkan kembali.

G. Tahap Evaluasi

 Berdasarkan hasil UAT dengan metode iterative

incremental, dapat disimpulkan bahwa semua fitur yang

dikembangkan pada fase pertama telah berfungsi dengan baik

sesuai dengan tujuan yang telah ditetapkan sebelumnya.

Hasil pengujian menunjukkan bahwa setiap test case yang

diuji berhasil memenuhi kebutuhan pengguna, sebagaimana

dijelaskan dalam Tabel 2, dengan tingkat keberhasilan

mencapai 100%. Hal ini menunjukkan bahwa semua

fungsionalitas yang diharapkan dari sistem telah terpenuhi

tanpa kekurangan atau bug yang signifikan, sehingga tim

pengembang dapat melanjutkan ke fase berikutnya.

 Pada tahap pengujian fase kedua, hasil evaluasi

menunjukkan bahwa semua fitur yang dikembangkan telah

berfungsi dengan baik dan sesuai dengan kebutuhan serta

fungsionalitas yang diharapkan oleh pengguna. Semua test

case yang diuji juga berhasil mencapai tingkat keberhasilan

100%, sebagaimana dijelaskan dalam Tabel 3. Dengan

demikian, fase kedua ini dinyatakan selesai karena semua

fitur yang direncanakan telah berhasil diimplementasikan dan

diuji dengan sukses. Iterasi berikutnya akan tetap

menggunakan pendekatan iterative incremental untuk

memastikan setiap fitur baru memenuhi standar dan

kebutuhan pengguna dengan baik, terus meningkatkan

kualitas sistem di setiap iterasi.

H. Tahap Deployment

ISSN : 2355-9365 e-Proceeding of Engineering : Vol.12, No.1 Februari 2025 | Page 1221

Tahap Deployment dalam iterative incremental dilakukan

setelah semua iterasi selesai. Aplikasi SOFI di-deploy

menggunakan platform Vercel, yang menyediakan hosting

gratis untuk aplikasi web modern dengan spesifikasi

termasuk bandwidth, build, serverless functions, dan

penyimpanan yang memadai untuk skala kecil. Integrasi

dengan GitHub memungkinkan proses build dan deployment

otomatis. Vercel menyediakan dashboard untuk memantau

status deployment dan logs, serta opsi peningkatan sistem

melalui model "pay as you go" untuk skalabilitas yang lebih

besar seiring perkembangan aplikasi.

V. KESIMPULAN

Penelitian ini menunjukkan bahwa migrasi aplikasi SOFI

dari MPA ke SPA berhasil dan memenuhi kebutuhan

pengguna, terbukti dari hasil UAT yang menunjukkan 100%

keberhasilan test case pada dua iterasi. Penerapan metode

Iterative Incremental efektif dalam memfasilitasi migrasi,

memastikan pengembangan yang terstruktur dan sesuai

dengan kebutuhan bisnis. Dengan memecah sistem menjadi

bagian-bagian kecil yang dapat dikelola, setiap langkah dapat

dievaluasi dan disesuaikan secara berkelanjutan,

meningkatkan kemampuan aplikasi untuk menanggapi

perubahan kebutuhan bisnis dan umpan balik pengguna

secara fleksibel.

REFERENSI

[1] O. Al-Debagy and P. Martinek, <A comparative
review of microservices and monolithic

architectures,= in 2018 IEEE 18th International

Symposium on Computational Intelligence and

Informatics (CINTI), IEEE, 2018, pp. 149–154.
[2] K. Gos and W. Zabierowski, <The Comparison of

Microservice and Monolithic Architecture,= in
International Conference on Perspective

Technologies and Methods in MEMS Design, 2020,

pp. 150–153. doi:

10.1109/MEMSTECH49584.2020.9109514.

[3] N. S. T. R. Sangati, <Web Application Development
using SpringBoot and Angular,= INTERANTIONAL

JOURNAL OF SCIENTIFIC RESEARCH IN

ENGINEERING AND MANAGEMENT, vol. 06, no.

06, 2022, doi: 10.55041/ijsrem14292.

[4] O. J. Okesola, A. A. Adebiyi, A. A. Owoade, O.

Adeaga, O. Adeyemi, and I. Odun-Ayo, Software

Requirement in Iterative SDLC Model, vol. 1224

AISC, no. November. Springer International

Publishing, 2020. doi: 10.1007/978-3-030-51965-

0_2.

[5] H. Asrohah, M. Khusnu Milad, A. T. Wibowo, and

E. I. Rhofita, <Improvement of Academic Services
using Mobile Technology based on Single Page

Application,= Telfor Journal, vol. 12, no. 1, pp. 62–
66, 2020, doi: 10.5937/TELFOR2001062A.

[6] S. Abrahamsson, <A model to evaluate front-end

frameworks for single page appli- cations written in

JavaScript,= 2023, [Online]. Available:

https://www.diva-

portal.org/smash/get/diva2:1758858/FULLTEXT01.

pdf

[7] I. Khadka, <Converting Multipage Application to
Single Page Application,= no. March, 2016, [Online].
Available:

https://www.theseus.fi/bitstream/handle/10024/1067

70/Coverting+Multipage+Application+to+Single+P

age+Application.pdf?sequence=1

[8] A. Gupta, A. Rawal, and Y. Barge, <Comparative
Study of Different SDLC Models,= no. November,
2021.

[9] O. E. Olorunshola and F. N. Ogwueleka, <Review of
system development life cycle (SDLC) models for

effective application delivery,= in Information and

Communication Technology for Competitive

Strategies (ICTCS 2020) ICT: Applications and

Social Interfaces, vol. 1, no. Ictcs, Springer

Singapore, 2022, pp. 281–289. [Online]. Available:

https://d1wqtxts1xzle7.cloudfront.net/78365340/Co

mparative_Study_of_Different_SDLC_Models-

libre.pdf?1641675307=&response-content-

disposition=inline%3B+filename%3DComparative_

Study_of_Different_SDLC_Mode.pdf&Expires=17

20777392&Signature=AfVC9YrRXCxrb22i8g4

[10] I. M. Ibrahim, O. F. Nonyelum, and I. R. Saidu,

<Iterative and Incremental Development Analysis
Study of Vocational Career Information Systems,=
International Journal of Software Engineering &

Applications, vol. 11, no. 5, pp. 13–24, 2020, doi:

10.5121/ijsea.2020.11502.

[11] J. R. G. Jacobson, L., & Booch, The unified modeling

language reference manual., vol. 44, no. 8. 2021. doi:

10.1088/1751-8113/44/8/085201.

[12] C. A. Borcosi, <The importance of business modeling
using the unified modeling language (UML),= vol. 2,
no. November, pp. 91–101, 2022, doi:

10.38173/RST.2022.24.2.7.

[13] S. Gordon et al., <Best Practice Recommendations:
User Acceptance Testing for Systems Designed to

Collect Clinical Outcome Assessment Data

Electronically,= Ther Innov Regul Sci, vol. 56, no. 3,

2022, doi: 10.1007/s43441-021-00363-z.

.

