ISSN : 2355-9365

e-Proceeding of Engineering : Vol.12, No.1 Februari 2025 | Page 1215

Pengembangan Frontend Dalam Migrasi Multi
Page Application Ke Single Page Application
Dengan Pendekatan Iterative Incremental Pada
Studi Kasus Sofi Modul Pengajuan

1% Andrian Saputra
Fakultas Rekayasa Industri
Universitas Telkom
Bandung, Indonesia
andrians @student.telkomuniversity.ac.i
d

Abstrak — Revolusi industri 4.0 mendorong sektor
pendidikan untuk mengadopsi teknologi terkini seperti
pembelajaran jarak jauh dan platform digital. Universitas
Telkom mengembangkan platform SOFI untuk memonitor
Sidang Tugas Akhir di Fakultas Rekayasa Industri. Awalnya
menggunakan arsitektur monolitik dan Multi Page Application
(MPA), aplikasi ini kini memerlukan peningkatan untuk
menangani jumlah pengguna yang besar dan memperbaiki
pengalaman pengguna. Penelitian ini bertujuan
mengembangkan front-end aplikasi SOFI dengan menerapkan
Single Page Application (SPA) dan arsitektur microservices.
SPA dipilih untuk mengurangi waktu respon dan
meningkatkan interaktivitas serta penanganan error,
sedangkan microservices menawarkan fleksibilitas dan
skalabilitas yang lebih tinggi. Metodologi yang digunakan
adalah System Development Life Cycle (SDLC) dengan
pendekatan Iterative Incremental, karena mampu
mengakomodasi umpan balik pengguna dan perubahan
kebutuhan selama proses pengembangan. Hasil penelitian
menunjukkan bahwa migrasi ke SPA dan microservices
meningkatkan performa dan pengalaman pengguna aplikasi
SOFTI serta mempermudah pengembangan dan pemeliharaan
kode. Penelitian ini memberikan kontribusi signifikan terhadap
digitalisasi layanan pendidikan, khususnya dalam efisiensi dan
kenyamanan proses sidang tugas akhir.

Kata kunci — Digitalisasi Pendidikan, Microservices,
Iterative Incrementa, Multi Page Application, Single Page
Application , Systems Development Life Cycle

L PENDAHULUAN

Sektor pendidikan telah mengalami transformasi besar
dengan mengadopsi konsep industri 4.0, yang semakin
dipercepat dengan adanya COVID-19. Kemajuan seperti
pembelajaran jarak jauh, pembelajaran adaptif, dan
penggunaan platform digital telah mengubah cara mahasiswa
dan pendidik berinteraksi dan mengakses informasi,
meningkatkan fleksibilitas dan aksesbilitas. Revolusi industri
4.0 ini menuntut institusi pendidikan untuk terus berkembang
dengan mengikut perkembangan teknologi dan

2md Ekky Novriza Alam
Fakultas Rekayasa Industri
Universitas Telkom
Bandung, Indonesia
ekkynovrizalam @telkomuniversity.ac.id

3" Tien Fabrianti Kusumasari,
Fakultas Rekayasa Industri
Universitas Telkom
Bandung, Indonesia
tienkusumasari @telkomuniversity.ac.id

memanfaatkan teknologi informasi dan komunikasi untuk
mendukung proses belajar mengajar. Salah satu layanan yang
memiliki potensi besar untuk didigitalisasi adalah sidang
tugas akhir, yang merupakan ujian terbuka bagi mahasiswa
untuk penetapan status kemajuan studi mahasiswa.
Digitalisasi sidang tugas akhir tidak hanya memungkinkan
proses yang lebih efisien dan terorganisir tetapi juga
memberikan fleksibilitas dan akses yang lebih besar bagi
mahasiswa, pembimbing, dan penguji, sejalan dengan tren
modern dalam pendidikan tinggi.

Universitas Telkom merupakan salah satu perguruan
tinggi yang telah menyesuaikan diri dengan industri 4.0, dan
salah satu upaya Universitas Telkom dalam menjawab
tantangan ini adalah digitalisasi pada layanan sidang tugas
akhir. Bukti nyata dari digitalisasi ini adalah website SOFI,
sebuah platform berbasis web yang digunakan untuk
memonitor Sidang Tugas Akhir Fakultas Rekayasa Industri
di Universitas Telkom. Beberapa proses bisnis pada aplikasi
SOFI adalah pendaftaran sidang, penjadwalan sidang,
pelaksanaan sidang, revisi sidang, dan penilaian sidang.

Aplikasi SOFI dikembangkan menggunakan arsitektur
monolitik. Penelitian terdahulu yang berjudulkan “A
Comparative Review of Microservices and Monolithic
Architectures” [1] membuktikan bahwa arsitektur monolitik
cocok digunakan jika pengguna masih pada skala yang kecil
dan juga mudah untuk dikembangkan. Namun, arsitektur
monolitik tidak dapat memenuhi kebutuhan website SOFI
yang memerlukan arsitektur kode yang memudahkan
pengembang dalam memahami kode serta mampu
menangani pengguna dalam jumlah besar. Karena website
SOFI tidak memiliki pengembang tetap dan memiliki
pengguna dengan skala yang besar, diperlukan perubahan ke
arsitektur yang lebih fleksibel dan skalabel. Hal ini
menyebabkan aplikasi SOFI sering kali mengalami keluhan
dari pengguna.

Aplikasi SOFI membutuhkan teknologi yang dapat
menangangi jumlah pengguna yang tinggi secara bersamaan,
arsitektur monolitik tidak dapat memenuhi kebututuhan
tersebut. Oleh karena itu, arsitektur yang diharapkan dapat
memenuhi kebutuhan website SOFI adalah arsitektur

ISSN : 2355-9365

microservice, arsitektur microservice adalah arsitektur
aplikasi dengan memecah basis kode menjadi unit pecahan
yang lebih kecil dan spesifik. Penelitian terdahulu yang
berjudulkan “The Comparison of Microservice and
Monolithic Architecture” [2] membuktikan bahwa arsitektur
microservice lebih efisien jika aplikasi harus menangani
pengguna dalam jumlah yang besar. Penelitian tersebut juga
membuktikan bahwa arsitektur microservice lebih mudah
untuk di pelihara oleh pengembang, karena lebih mudah
untuk dipahami oleh pengembang, setiap fungsi utama
terpisah dan kesalahan fungsi microservice hanya
mempengaruhi microservice itu sendiri.

Saat ini, website SOFI juga masih menggunakan konsep
MPA (Multi Page Application). Dalam konsep MPA, setiap
kali pengguna melakukan navigasi antar halaman, seluruh
konten website harus dimuat ulang. Hal ini menyebabkan
website menjadi lebih berat dan memperpanjang waktu muat.
Namun, MPA memiliki keunggulan dalam hal SEO, yang
memudahkan website untuk ditemukan diinternet. Meskipun
demikian, kelebihan MPA dalam hal SEO seringkali
bertentangan dengan kebutuhan untuk meningkatkan
pengalaman pengguna. Terlebih bagi, untuk website yang
hanya digunakan secara internal oleh organisasi, keunggulan
SEO tersebut menjadi kurang relevan. Kelemahan lain dari
MPA dari sisi pengguna termasuk peningkatan penggunaan
bandwidth karena setiap navigasi memuat ulang halaman
sepenuhnya, yang bisa menjadi masalah bagi pengguna
dengan koneksi internet lambat. Selain itu, transisi antar
halaman yang tidak mulus dapat mengganggu kenyamanan
pengguna dan membuat interaksi terasa lambat dan terputus-
putus. Kelemahan-kelemahan ini juga berkorelasi dengan
masalah penanganan error dari sisi pengguna dalam MPA.
Setiap kali halaman dimuat ulang, ada potensi kehilangan
data yang telah diinput oleh pengguna sebelum error terjadi.
Misalnya, jika terjadi error selama proses pengisian formulir
atau pendaftaran, pengguna mungkin harus mengulangi
seluruh proses dari awal, yang menyebabkan frustrasi dan
ketidakpuasan. Error handling yang tidak efisien ini sering
kali mengakibatkan pengguna kehilangan data yang telah
dimasukkan, memperburuk pengalaman pengguna secara
keseluruhan. Dengan demikian, masalah bandwidth yang
tinggi, transisi halaman yang tidak mulus, dan penanganan
error yang buruk berkontribusi terhadap pengalaman
pengguna yang kurang optimal dalam MPA.

Pengguna SOFi memiliki rentang usia yang sangat luas,
mencakup mahasiswa muda hingga dosen senior. Karena

perbedaan dalam tingkat keterampilan teknologi dan
preferensi pengguna, penting untuk memperhatikan
kebutuhan dan preferensi dari kedua kelompok ini.

Intuitifitas, responsivitas, dan penanganan error dalam
aplikasi SOFi menjadi semakin penting untuk memastikan
bahwa semua pengguna dapat dengan mudah mengakses dan
menggunakan platform tersebut sesuai dengan kebutuhan
mereka.

Oleh karena itu, terdapat konsep SPA (Single Page
Application). Aplikasi SPA akan meningkatkan interaktivitas
pengguna karena mereka akan merespon dalam waktu yang
lebih singkat. Ini akan memakan waktu lebih lama saat
mengunggah untuk pertama kalinya tetapi untuk tindakan
berikutnya, waktu yang dibutuhkan kurang dari aplikasi
MPA [3]. Dalam SPA, hanya bagian-bagian tertentu dari
website yang diperbarui saat pengguna berinteraksi, sehingga

e-Proceeding of Engineering : Vol.12, No.1 Februari 2025 | Page 1216

tidak perlu memuat ulang seluruh halaman. Keuntungan SPA
bagi pengguna adalah peningkatan performa dan penanganan
error yang lebih efisien. Ketika terjadi error, data yang telah
diinput tidak akan hilang karena halaman tidak perlu dimuat
ulang sepenuhnya, yang mengurangi frustrasi dan
ketidakpuasan pengguna. Namun, kelemahan utama dari
SPA adalah kurangnya keunggulan dalam hal SEO, karena
konten yang terus-menerus diperbarui secara dinamis
mungkin tidak selalu terindeks dengan baik oleh mesin
pencari. Selain itu, aplikasi SOFI juga akan dimigrasi dari
arsitektur monolitik ke microservices, yang memberikan
fleksibilitas dan skalabilitas yang tinggi. Menggabungkan
SPA dengan arsitektur microservices memberikan beberapa
keuntungan. SPA dapat memanfaatkan microservices untuk
memisahkan berbagai komponen aplikasi menjadi layanan-
layanan kecil yang dapat dikembangkan, diimplementasikan,
dan diskalakan secara independen. Hal ini memungkinkan
pengembangan yang lebih cepat dan responsif terhadap
perubahan kebutuhan pengguna, serta penanganan error yang
lebih baik karena setiap layanan dapat dikelola dan diperbaiki
secara terpisah tanpa mempengaruhi keseluruhan aplikasi.
Dengan demikian, kombinasi SPA dan arsitektur
microservices memastikan performa yang optimal dan
pengalaman pengguna yang lebih baik pada aplikasi SOFI.

Untuk mendukung penelitian ini, pendekatan yang
digunakan adalah SDLC (System Development Life Cycle)
dengan metode [ferative Incremental. SDLC adalah model
klasik yang bersifat sistematis dan berurutan dalam
membangun perangkat lunak. Dalam pengembangan sistem,
SDLC sangat penting karena memecah seluruh siklus
pengembangan perangkat lunak menjadi tahapan-tahapan
yang memungkinkan evaluasi setiap bagian dengan lebih
mudah, serta memungkinkan programmer bekerja secara
bersamaan pada setiap tahapannya [4]. Untuk mendukung
penelitian ini, pendekatan yang digunakan adalah SDLC
(System Development Life Cycle) dengan metode Iterative
Incremental. Metode Iterative Incremental dipilih karena
menggabungkan elemen-elemen dari metode waterfall dalam
pendekatan yang iteratif dan fleksibel. Metode ini sangat
sesuai untuk pengembangan perangkat lunak karena
memungkinkan adanya penyesuaian berdasarkan umpan
balik pengguna dan perubahan kebutuhan selama proses
pengembangan. Fleksibilitas ini sangat penting untuk
memastikan setiap iterasi dapat mengakomodasi inovasi dan
ide-ide baru yang muncul, sehingga menghasilkan solusi
yang lebih responsif dan sesuai dengan tujuan akhir.
Penelitian ini menggunakan metode Iferative Incremental
dari SDLC karena keunggulannya dalam memungkinkan
penyesuaian berkelanjutan dan peningkatan terus-menerus
selama siklus pengembangan. Metode ini sangat diperlukan
untuk menangani kompleksitas migrasi arsitektur dan
memastikan performa serta pengalaman pengguna yang
optimal pada website SOFI.

IL KAJIAN TEORI

ISSN : 2355-9365

A. Single Page Application

SPA Lifecycle

Initial Request

.
v

| 1 HIML

Client Server
AJAX o
=

- JSON

GAMBAR 1
Life Cycle Single Page Application

Single Page Application (SPA) adalah konsep web yang
memuat satu halaman HTML dan memperbarui konten
secara dinamis sesuai interaksi pengguna tanpa memuat
ulang seluruh halaman dari server [5]. SPA menggunakan
teknologi Javascript asynchronous untuk pengembangan
frontend dan backend, memungkinkan interaksi pengguna
tanpa berpindah antar halaman. SPA mempermudah
pengembangan kode karena komponen aplikasi berdiri
sendiri dan tidak saling bergantung, sehingga lebih modular
dan skalabel [6].

SPA meminimalisir ketergantungan pada manipulasi
Document Object Model (DOM) di sisi klien, meningkatkan
performa aplikasi. Secara teknis, SPA berkomunikasi dengan
server melalui Restful JSON API, memperbarui tampilan
halaman tanpa memuat ulang seluruh halaman,
meningkatkan efisiensi dan memberikan pengalaman
pengguna yang lebih responsif [5]. Dibandingkan dengan
aplikasi MPA, SPA menawarkan interaksi yang lebih cepat
dan responsif, karena konten baru dimuat secara dinamis
menggunakan Javascript, sementara MPA memuat ulang
halaman HTML baru untuk setiap perubahan konten [6].

B. Multi Page Application

Traditional Page Lifecycle
=< ——
Initial Request -~
=
[j HIML
Client Form POST . Server
r o
Page HTML
Reload!
T —
GAMBAR 2

Life Cycle Multi Page Application

Multi Page Application (MPA) adalah konsep aplikasi
yang memuat ulang seluruh halaman HTML dari server pada
setiap permintaan. Sebelum AJAX diperkenalkan, MPA
sangat populer dengan berbagai bahasa pemrograman server
seperti PHP, Ruby, dan Java yang bertanggung jawab
memuat kerangka langsung di backend dan memberikan
halaman HTML mentah sebagai respon. Dengan AJAX,
pengembang mulai menerapkan pemuatan asinkron untuk
transisi mulus dan interaksi Ul yang lebih baik, namun tidak
semua halaman dimuat asinkron. Hal ini menyebabkan
campuran pendekatan pemuatan sinkron dan asinkron serta

e-Proceeding of Engineering : Vol.12, No.1 Februari 2025 | Page 1217

peningkatan kode JavaScript yang signifikan di sisi klien,
yang sering kali menjadi sulit dikelola [7].

Usaha oleh library seperti jQuery dan framework sisi
server untuk membuat kode JavaScript lebih mudah dan rapi
masih belum cukup baik dibandingkan dengan apa yang
ditawarkan SPA. Meskipun MPA memiliki keunggulan
dalam kesederhanaan dan kemudahan penerapan awal, MPA
sering kali kalah dalam hal performa dan pengalaman
pengguna dibandingkan dengan SPA [7].

C. Software Development Life Cycle

Software Development Life Cycle (SDLC) adalah
metodologi dengan proses yang didefinisikan untuk
menciptakan perangkat lunak berkualitas tinggi, efektif dari
segi biaya, dan dapat diandalkan. SDLC mencakup berbagai
aktivitas dan tugas selama pengembangan perangkat lunak,
membuat proses lebih sistematis dan terstruktur [8].

Model SDLC membantu membuat pengembangan
perangkat lunak lebih efisien melalui perencanaan yang tepat,
mencakup identifikasi kebutuhan, pengembangan kasus
bisnis, dan implementasi solusi sistem. Analis sistem,
pengembang, dan desainer menggunakan SDLC untuk
merencanakan dan mengimplementasikan aplikasi,
memastikan pengiriman sistem tepat waktu dan dengan
anggaran murah [9].

Beberapa model SDLC yang umum digunakan termasuk
Waterfall, Spiral, V, Agile, Iteratif, dan Rapid Application
Development (RAD), masing-masing dengan kelebihan dan
keterbatasannya sendiri [8]. SDLC mencakup tahapan utama
seperti analisis kebutuhan, desain sistem, implementasi,
pengujian, dan pemeliharaan, memastikan setiap iterasi dapat
mengakomodasi inovasi baru untuk menghasilkan solusi
yang lebih responsif dan sesuai dengan tujuan akhir [9].

D. Iterative and Incremental Development

Iterative and Incremental Development (IID) adalah
metode pengembangan perangkat lunak yang
menggabungkan pendekatan iterative dan incremental. 11D,
sebagai bagian dari SDLC, digunakan untuk merencanakan,
mengembangkan, menguji, dan memelihara perangkat lunak,
termasuk dalam model seperti Waterfall, Spiral, V-Model,
dan Agile.

Pendekatan iterative membangun bagian kecil proyek
secara bertahap, mengungkap masalah lebih awal dan
memungkinkan timbal balik dari stakeholder di setiap iterasi,
sehingga setiap peningkatan didasarkan pada kebutuhan
nyata [10]. Pendekatan incremental menambahkan
fungsionalitas baru pada setiap rilis, mendukung desain,
implementasi, dan pengujian sistem secara bertahap. Fitur
baru diuji dan diverifikasi sebelum digabungkan ke dalam
sistem yang lebih besar, memungkinkan penambahan
kebutuhan baru secara iteratif hingga produk selesai [10].

Dalam praktiknya, IID melibatkan identifikasi kebutuhan,
analisis, spesifikasi desain, pengkodean, dan pengumpulan
timbal balik dari stakeholder sebelum melanjutkan ke siklus
incremental Dberikutnya. Komunikasi konstan antara
pengembang dan stakeholder memastikan perangkat lunak
yang dihasilkan berkualitas dan memenuhi kebutuhan
pengguna.

ISSN : 2355-9365

E. Unified Modeling Language
Unified Modeling Language (UML) adalah bahasa
standar dalam rekayasa perangkat lunak untuk merancang,
menggambarkan, dan mendokumentasikan sistem perangkat
lunak berorientasi objek secara visual. UML digunakan untuk
dua tujuan utama dengan menghasilkan dua jenis diagram:
structural diagrams (seperti class diagram) yang merujuk
pada arsitektur proses atau entitas, dan behavioral diagrams
(seperti use case, sequence, dan activity diagrams) yang
mengacu pada aspek fungsional dari proses atau entitas [11].
UML dikembangkan sebagai bahasa pemodelan
umum yang terbuka dan berdasarkan kesepakatan mayoritas
komunitas komersial, mampu menangani tantangan
pengembangan perangkat lunak modern seperti skala besar,
distribusi, pola, dan pengembangan tim. UML dirancang
untuk tetap sederhana namun cukup ekspresif untuk
memodelkan berbagai sistem praktis, termasuk konsep
seperti concurrency, distribusi, encapsulation, dan komponen
[11]. Model bisnis yang baik mencakup semua informasi
yang diperlukan untuk memahami struktur bisnis dan mode
operasi, sehingga dapat menemukan solusi yang dapat
diimplementasikan secara real-time [12].

F. User Acceptance Testing

User Acceptance Testing (UAT) adalah pengujian akhir
dalam pengembangan aplikasi untuk memvalidasi bahwa
sistem sesuai dengan kebutuhan dan harapan pengguna. UAT
memungkinkan tim uji, termasuk sponsor, untuk
mengevaluasi kinerja perangkat lunak dan memastikan
persyaratan sponsor diterjemahkan dengan akurat ke dalam
desain sistem, sesuai dengan dokumen persyaratan yang
disetujui [13]. UAT membantu dalam memvalidasi
kebutuhan pengguna dengan memastikan aplikasi yang
dikembangkan sesuai dengan kebutuhan dan harapan
pengguna. Melalui UAT, bug dan masalah yang belum
terdeteksi selama tahapan pengujian sebelumnya dapat
diidentifikasi dan diperbaiki sebelum dideploy. Selain itu,
UAT membantu dalam mengurangi risiko dan biaya dengan
mengidentifikasi dan memperbaiki masalah sebelum aplikasi
diluncurkan, sehingga mengurangi risiko kegagalan dan
biaya tambahan untuk perbaikan setelah peluncuran.
Terakhir, UAT juga membantu dalam meningkatkan
kepuasan pengguna dengan melibatkan mereka secara
langsung dalam pengembangan aplikasi, sehingga
memastikan bahwa aplikasi yang dihasilkan sesuai dengan
kebutuhan dan harapan mereka.

III. METODE

Dasar limu

Lingkungan Relevansi Penelitian SI Riger

Qutput:

ol raniend

Single Page Apglieznon SOF]

Kebutuhan | [g
Bisnis di dapatkan
Metodologi
Evaluasi:
Reratve icemental
Slack Sox Testing
ki g fep

GAMBAR 3
Model Konseptual

e-Proceeding of Engineering : Vol.12, No.1 Februari 2025 | Page 1218

Pada Gambar 3 dijelaskan kerangka berpikir yang
digunakan pada penelitian ini, yang bertujuan untuk
menghasilkan aplikasi SOFI berbasis SPA dengna
menggunakan /ibrary React Js. Penelitian ini menggunakan
metode [ferative Incremental untuk pengembangan bertahap
dan berulang, serta evaluasi melalui black box yaitu UAT
guna memastikan setiap fungsionalitas berjalan dengan baik
dan memenuhi kebutuhan pengguna. Kerangka ini terdiri dari
tiga bagian utama: Lingkungan, yang melibatkan mahasiswa
tingkat akhir, dosen, dan penguji dari Fakultas Rekayasa
Industri serta teknologi seperti React JS, Bootstrap, dan
Postman; Penelitian SI, yang berfokus pada pengembangan
dan penilaian aplikasi; dan Dasar Ilmu, yang melibatkan
konsep-konsep seperti microservices, SPA, dan diagram
UML, dengan metodologi [terative Incremental untuk
meningkatkan pengetahuan dasar yang diperoleh selama
penelitian.

GAMBAR 4
Sistematika Penyelesaian Masalah

Pada Gambar 4 menjelaskan metode penelitian Iterative
Incremental yang digunakan dalam pengembangan aplikasi.
Proses ini dimulai pada tahap perencanaa, dimana kebutuhan
dan tujuan ditentukan. Selanjutnya, dilakukan analisis dan
desain untuk merancang solusi teknis untuk memenuhi
kebutuhan yang telah diidentifikasi. Tahap berikutnya adalah
pengembangan, di mana aplikasi dibangun secara bertahap
dan berulang. Setelah itu, dilakukan pengujian untuk
memastikan setiap fungsionalitas iterasi dapat bebas dari
kesalahan. Evaluasi dilakukan untuk menilai kinerja dan
kualitas aplikasi. Jika diperlukan, proses itasi akan terus
berulang sampai setiap fungsionalitas dapat berjalan lancar
dan sesuai dengan kebutuhan pengguna. Setelah evaluasi
berhasil, aplikasi masuk ke tahap deployment. Di akhir,
penelitian ini disimpulkan dengan memberikan kesimpulan
dan saran berdasarkan hasil yang diperoleh salama
pengembangan aplikasi.

Iv. HASIL DAN PEMBAHASAN

Pengembangan migrasi aplikasi SOFI dari MPA ke
menggunakan metode pengembangan iterative incremental
dengan penerapan Domain-Driven Design. Pendekatan ini
menjamin solusi yang tidak hanya fungsional tetapi juga
berfokus pada pengguna dengan memperhatikan kebutuhan
bisnis secara mendalam. Domain-Driven Design
memungkinkan pengembangan yang lebih fleksibel dan
adaptif terhadap perubahan, dengan pemahaman yang
mendalam tentang domain bisnis yang memungkinkan
kolaborasi lebih efektif antara tim pengembang dan
pemangku kepentingan.dan pengalaman secara mendalam.

A. Identifikasi Layanan

Analisis Domain-Driven Design (DDD) melibatkan
diskusi intensif dengan ahli domain untuk mengaitkan konsep
bisnis dengan implementasi teknis secara mendalam. Tujuan

ISSN : 2355-9365

utama DDD adalah mempercepat pengembangan perangkat
lunak yang berkaitan erat dengan domain bisnis yang
kompleks, seperti aplikasi sidang fakultas SOFI. Dalam
menangani masalah pengguna dan mengatasi perbedaan
dalam konteks domain saat mengembangkan perangkat lunak
skala besar, pendekatan bounded context digunakan.
Pendekatan ini membagi model besar menjadi konteks-
konteks kecil yang lebih mudah dikelola dan mendefinisikan
hubungan antar setiap konteks.

GAMBAR 5
Analisis Domain Driven Design

GAMBAR 6
Alur Migrasi Aplikasi Sofi

Pada Gambar 5 dan Gambar 6, menunjukkan hasil
analisis DDD dengan bounded context pada aplikasi SOFI,
dengan fokus pada bounded context Pengajuan dan
Penjadwalan karena peran strategisnya dalam arsitektur
sistem. Proses pengajuan dan penjadwalan tidak hanya
penting untuk operasi bisnis utama tetapi juga berfungsi
sebagai penghubung data penting untuk fungsi sistem
lainnya. Penelitian ini berfokus pada pengembangan bounded
context Pengajuan berdasarkan diskusi dengan ahli domain.
Pengembangan awal bounded context Pengajuan dianggap
kritis untuk memastikan aplikasi beroperasi secara efektif dan
mencapai tujuan bisnis.

B. Initial Planning

Tahap Initial Planning merupkana tahap identifikasi
kebutuhan fungsional untuk pengembangan aplikasi dengan
menetapkan kebutuhan fungsionalitas atau kebutuhan
aplikasi. Selain menetapkan kebutuhan fungsional, tahap ini
juga mencakup analisis proses bisnis.

GAMBAR 7
Proses Bisnis Pengajuan Sidang

Pada Gambar 7, menjelaskan proses bisnis pengajuan
sidang akhir pada aplikasi, dimana proses bisnis ini

e-Proceeding of Engineering : Vol.12, No.1 Februari 2025 | Page 1219

menggambarkan proses melakukan pengajuan sidang akhir
pada aplikasi.
C. Tahap Perencanaan

Pada setiap fase iterasi, dilakukan tahap perencanaan
yang bertujuan untuk merancang rencana migrasi aplikasi
SOFI dari konsep MPA ke SPA. Kebutuhan fungsional
aplikasi, yang tercantum dalam Tabel 1, diidentifikasi
berdasarkan percobaan langsung pada aplikasi eksisting yang
masih menggunakan konsep SPA. Tahap perencanaan ini
memastikan setiap iterasi migrasi direncanakan dengan hati-
hati agar transisi ke SPA berjalan lancar dan efisien, serta
kebutuhan fungsional dapat terpenuhi sesuai dengan analisis
mendalam dari aplikasi yang ada.

TABEL 1
Kebutuhan Fungsional
ID Kebutuhan
REQ-02.01 Get all thesis defense submission
REQ-02.02 | Check thesis defense submission user
REQ-02.03 | Create new thesis defense submission
REQ-02.04 Update thesis defense submission
REQ-03.01 Approve thesis defense submission
REQ-03.02 Rejected thesis defense submission
REQ-04.01 Get detail team
REQ-04.02 Get team user logged in
REQ-04.03 Create new team
REQ-04.04 Create individual
REQ-04.05 Add new member
REQ-04.06 Leave the team
REQ-04.07 Edit team name
REQ-05.01 Get detail document logs
REQ-05.02 Upload slide
REQ-06.01 Get user notification
REQ-06.02 Update notification

D. Tahap Analisis

Tahap kedua dalam [ferative Incremental adalah tahap
Analisis. Pada tahap ini, dilakukan analisis mendalam serta
perancangan kebutuhan yang telah ditetapkan pada tahap
sebelumnya. Analisis ini bertujuan untuk memahami secara
detail kebutuhan fungsional yang harus dipenuhi oleh
aplikasi, dan menghasilkan output berupa use case diagram.

Use case diagram digunakan untuk menggambarkan
fitur-fitur yang tersedia bagi setiap pengguna dalam aplikasi
SOFI. Perancangan use case diagram ini dibuat berdasarkan
kelompok kebutuhan fungsional yang sudah ditetapkan,
memberikan gambaran visual yang jelas tentang interaksi
pengguna dengan sistem serta fitur-fitur yang dapat diakses
oleh setiap jenis pengguna. Use case diagram aplikasi SOFI
tercantum pada Gambar 8.

ISSN : 2355-9365

GAMBAR 8
Use Case Diagram

E. Tahap Pengembangan

Tahap ketiga dalam Iferative Incremental adalah tahap
Pengembangan. Pada tahap ini, frontend dikembangkan
sesuai dengan kebutuhan fungsional, serta rancangan UML
yang telah disiapkan pada tahap perencanaan, analisis, dan
perancangan sebelumnya. Pengembangan frontend dilakukan
menggunakan bahasa pemrograman Javacript dengan library
React js.

Proses pengembangan ini melibatkan kolaborasi dengan
tim frontend, menggunakan repository di GitHub untuk
memfasilitasi kerja sama dan pengelolaan kode.

F. Tahap Pengujian

Setelah tahap pengembangan selesai, tahap berikutnya
adalah pengujian terhadap sistem yang telah dimigrasi.
Pengujian ini bertujuan untuk memastikan bahwa
fungsionalitas yang telah dimigrasi berjalan sesuai harapan.
Dari sisi frontend, pengujian ini dilakukan menggunakan
metode User Acceptance Testing (UAT). Tabel 2 hingga
Tabel 8 menjelaskan hasil pengujian UAT dari layanan yang

telah dimigrasi.
TABEL 2
Hasil Uat Fase Pertama

TC-01.01 Pass
TC-01.02 REQ-02.01 Pass
TC-01.03 Pass
TC-01.04 REQ-02.02 Pass
TC-01.05 REQ-02.03 Pass
TC-01.06 REQ-02.04 Pass
TC-02.01 Pass
REQ-03.01 —————
TC-02.02 Pass
TC-02.03 Pass
REQ-03.02
TC-02.04 Pass
TABEL 3

Hasil Uat Fase Kedua

e-Proceeding of Engineering : Vol.12, No.1 Februari 2025 | Page 1220

TC-02.01 REQ-04.02 Pass
TC-02.02 REQ-04.03 Pass
TC-02.03 Pass
REQ-04.04
TC-02.04 Pass
TC-02.05 REQ-04.05 Pass
TC-02.06 Pass
TC-02.07 REQ-04.06 Pass
TC-02.08 Pass
TC-02.09 REQ-04.07 Pass
TC-02.10 REQ-05.01 Pass
TC-02.11 REQ-05.02 Pass
TC-02.12 REQ-06.01 Pass
TC-02.13 REQ-06.02 Pass

Berdasarkan hasil UAT yang telah dilakukan, dapat
disimpulkan bahwa semua fitur yang dikembangkan pada
fase pertama dan kedua telah berfungsi dengan baik sesuai
dengan fungsionalitas dan tujuan yang telah ditetapkan
sebelumnya. Hasil pengujian yang dijelaskan pada Tabel 2
dan Tabel 3 menunjukkan bahwa semua fest case yang diuji
telah berhasil mencapai tingkat keberhasilan 100% dalam
memenuhi kebutuhan pengguna. Dengan demikian, fase
berikutnya akan difokuskan pada pengembangan
fungsionalitas atau tujuan yang telah ditetapkan untuk fase
tersebut, memastikan setiap aspek sistem yang sedang
dikembangkan memenuhi ekspektasi dan kebutuhan
pengguna dengan sempurna. Iterasi akan dilanjutkan jika di
masa mendatang ditemukan fitur baru yang perlu
dikembangkan kembali.

G. Tahap Evaluasi

Berdasarkan hasil UAT dengan metode iferative
incremental, dapat disimpulkan bahwa semua fitur yang
dikembangkan pada fase pertama telah berfungsi dengan baik
sesuai dengan tujuan yang telah ditetapkan sebelumnya.
Hasil pengujian menunjukkan bahwa setiap test case yang
diuji berhasil memenuhi kebutuhan pengguna, sebagaimana
dijelaskan dalam Tabel 2, dengan tingkat keberhasilan
mencapai 100%. Hal ini menunjukkan bahwa semua
fungsionalitas yang diharapkan dari sistem telah terpenuhi
tanpa kekurangan atau bug yang signifikan, sehingga tim
pengembang dapat melanjutkan ke fase berikutnya.

Pada tahap pengujian fase kedua, hasil evaluasi
menunjukkan bahwa semua fitur yang dikembangkan telah
berfungsi dengan baik dan sesuai dengan kebutuhan serta
fungsionalitas yang diharapkan oleh pengguna. Semua test
case yang diuji juga berhasil mencapai tingkat keberhasilan
100%, sebagaimana dijelaskan dalam Tabel 3. Dengan
demikian, fase kedua ini dinyatakan selesai karena semua
fitur yang direncanakan telah berhasil diimplementasikan dan
diuji dengan sukses. Iterasi berikutnya akan tetap
menggunakan pendekatan iterative incremental untuk
memastikan setiap fitur baru memenuhi standar dan
kebutuhan pengguna dengan baik, terus meningkatkan
kualitas sistem di setiap iterasi.

H. Tahap Deployment

ISSN : 2355-9365

Tahap Deployment dalam iterative incremental dilakukan
setelah semua iterasi selesai. Aplikasi SOFI di-deploy
menggunakan platform Vercel, yang menyediakan hosting
gratis untuk aplikasi web modern dengan spesifikasi
termasuk bandwidth, build, serverless functions, dan
penyimpanan yang memadai untuk skala kecil. Integrasi
dengan GitHub memungkinkan proses build dan deployment
otomatis. Vercel menyediakan dashboard untuk memantau
status deployment dan logs, serta opsi peningkatan sistem
melalui model "pay as you go" untuk skalabilitas yang lebih
besar seiring perkembangan aplikasi.

V. KESIMPULAN

Penelitian ini menunjukkan bahwa migrasi aplikasi SOFI
dari MPA ke SPA berhasil dan memenuhi kebutuhan
pengguna, terbukti dari hasil UAT yang menunjukkan 100%
keberhasilan test case pada dua iterasi. Penerapan metode
Iterative Incremental efektif dalam memfasilitasi migrasi,
memastikan pengembangan yang terstruktur dan sesuai
dengan kebutuhan bisnis. Dengan memecah sistem menjadi
bagian-bagian kecil yang dapat dikelola, setiap langkah dapat
dievaluasi dan disesuaikan secara berkelanjutan,
meningkatkan kemampuan aplikasi untuk menanggapi
perubahan kebutuhan bisnis dan umpan balik pengguna
secara fleksibel.

REFERENSI

[1] O. Al-Debagy and P. Martinek, “A comparative
review of microservices and monolithic
architectures,” in 2018 IEEE 18th International
Symposium on Computational Intelligence and
Informatics (CINTI), IEEE, 2018, pp. 149—-154.

[2] K. Gos and W. Zabierowski, “The Comparison of
Microservice and Monolithic Architecture,” in
International Conference on Perspective
Technologies and Methods in MEMS Design, 2020,
pp- 150-153. doi:
10.1109/MEMSTECH49584.2020.9109514.

[3] N. S. T. R. Sangati, “Web Application Development
using SpringBoot and Angular,” INTERANTIONAL
JOURNAL OF SCIENTIFIC RESEARCH IN
ENGINEERING AND MANAGEMENT, vol. 06, no.
06, 2022, doi: 10.55041/ijsrem14292.

[4] 0. J. Okesola, A. A. Adebiyi, A. A. Owoade, O.
Adeaga, O. Adeyemi, and 1. Odun-Ayo, Software
Requirement in Iterative SDLC Model, vol. 1224
AISC, no. November. Springer International
Publishing, 2020. doi: 10.1007/978-3-030-51965-
0_2.

(5]

(6]

(7]

(8]

(9]

(10]

(11]

[12]

[13]

e-Proceeding of Engineering : Vol.12, No.1 Februari 2025 | Page 1221

H. Asrohah, M. Khusnu Milad, A. T. Wibowo, and
E. I. Rhofita, “Improvement of Academic Services
using Mobile Technology based on Single Page
Application,” Telfor Journal, vol. 12, no. 1, pp. 62—
66, 2020, doi: 10.5937/TELFOR2001062A.

S. Abrahamsson, “A model to evaluate front-end
frameworks for single page appli- cations written in
JavaScript,” 2023, [Online]. Available:
https://www.diva-
portal.org/smash/get/diva2:1758858/FULLTEXTO1.
pdf

I. Khadka, “Converting Multipage Application to
Single Page Application,” no. March, 2016, [Online].
Available:
https://www.theseus.fi/bitstream/handle/10024/1067
70/Coverting+Multipage+Application+to+Single+P
age+Application.pdf?sequence=1

A. Gupta, A. Rawal, and Y. Barge, “Comparative
Study of Different SDLC Models,” no. November,
2021.

O. E. Olorunshola and F. N. Ogwueleka, “Review of
system development life cycle (SDLC) models for
effective application delivery,” in Information and
Communication Technology for Competitive
Strategies (ICTCS 2020) ICT: Applications and
Social Interfaces, vol. 1, no. Ictcs, Springer
Singapore, 2022, pp. 281-289. [Online]. Available:
https://d1wqtxts1xzle7.cloudfront.net/78365340/Co
mparative_Study_of_Different_ SDLC_Models-
libre.pdf?1641675307=&response-content-
disposition=inline%3B+filename%3DComparative_
Study_of_Different_ SDLC_Mode.pdf&Expires=17
20777392&Signature=AfVCIYrRXCxrb22i8g4

I. M. Ibrahim, O. F. Nonyelum, and I. R. Saidu,
“Iterative and Incremental Development Analysis
Study of Vocational Career Information Systems,”
International Journal of Software Engineering &
Applications, vol. 11, no. 5, pp. 13-24, 2020, doi:
10.5121/ijsea.2020.11502.

J.R. G. Jacobson, L., & Booch, The unified modeling
language reference manual., vol. 44, no. 8. 2021. doi:
10.1088/1751-8113/44/8/085201.

C. A. Borcosi, “The importance of business modeling
using the unified modeling language (UML),” vol. 2,
no. November, pp. 91-101, 2022, doi:
10.38173/RST.2022.24.2.7.

S. Gordon et al., “Best Practice Recommendations:
User Acceptance Testing for Systems Designed to
Collect Clinical Outcome Assessment Data
Electronically,” Ther Innov Regul Sci, vol. 56, no. 3,
2022, doi: 10.1007/s43441-021-00363-z.

