ISSN : 2355-9365

e-Proceeding of Engineering : Vol.12, No.1 Februari 2025 | Page 1590

Pengembangan Backend Dalam Migrasi Aplikasi
Monolitik Ke Microservice Menggunakan

Metode Iterative Incremental Development Pada
Modul Pendaftaran dan Penjadwalan SOFI

1% Muhammad Nurul Afif Maliki
Fakultas Rekayasa Industri
Universitas Telkom
Bandung, Indonesia
muhammadafifjpr @student.telkomuniv
ersity.ac.id

Abstrak— Transformasi digital membawa perubahan
signifikan di berbagai bidang, termasuk pendidikan.
Universitas Telkom, sebagai salah satu perguruan tinggi swasta,
mengembangkan aplikasi '"'SOFI" untuk mendukung kegiatan
akademik di Fakultas Rekayasa Industri (FRI). Meskipun
bermanfaat, aplikasi ini menghadapi masalah skalabilitas.
Penelitian ini bertujuan mengimplementasikan Domain Driven
Design dalam tahap perancangan sistem sehingga dapat
mengetahui seberapa kecil modul pendaftaran dan
penjadwalan yang sudah ada, hal ini dapat menjaga keutuhan
serta konsistensi domain bisnis serta penggunaan metode
Iterative Incremental Development dalam proses
pengembangan backend pada modul pendaftaran dan
penjadwalan yang dipecah menjadi aplikasi microservice untuk
memastikan kesesuaian pengembangan. Hasilnya penerapan
Domain Driven Design pada perancangan sistem terbukti
efektif dalam proses migrasi pada modul pendaftaran dan
penjadwalan. Aplikasi Sidang Fakultas SOFI berhasil
dimigrasikan dari arsitektur monolitik ke microservices
menggunakan Iterative Incremental Development. Enam firur
berhasil dikembangkan. Pengujian terhadap 35 API
menunjukkan hasil load testing yang sangat baik, dengan
tingkat keberhasilan method utama mencapai sekitar 100%
untuk 50 hingga 300 pengguna.

Kata kunci— Domain Driven Design, Iterative Incremental,
Microservices

I. PENDAHULUAN

Transformasi digital yang pesat tidak hanya
mempengaruhi industri bisnis, tetapi juga pendidikan, yang
kini berkembang menuju pendidikan 4.0. Tujuannya adalah
membekali siswa dengan berbagai kemampuan agar siap
menghadapi tantangan revolusi industri 4.0 dan tuntutan
global [1]. Dalam konteks ini, Universitas Telkom telah
mengembangkan aplikasi "SOFI" (Sidang Online Fakultas
Rekayasa Industri) untuk mendukung kegiatan akademik di
Fakultas Rekayasa Industri. SOFI adalah aplikasi berbasis
web yang memfasilitasi pendaftaran, penjadwalan,
pelaksanaan, dan revisi sidang Tugas Akhir (TA).

Pengembangan aplikasi SOFI menggunakan arsitektur
monolitik yang memiliki beberapa keunggulan, seperti

2" Ekky Novriza Alam
Fakultas Rekayasa Industri
Universitas Telkom
Bandung, Indonesia
ekkynovrizalam @telkomuniversity.ac

3 Tien Fabrianti Kusumasari
Fakultas Rekayasa Industri
Universitas Telkom
Bandung, Indonesia
tienkusumasari @telkomuniversity.ac.id

kemudahan pengembangan dan pengujian untuk aplikasi
berskala kecil [2]. Namun, arsitektur ini juga memiliki
kelemahan signifikan, termasuk kesulitan dalam modifikasi
kode, layanan yang tidak independen, waktu mulai aplikasi
yang lama, dan tantangan skalabilitas [3]. Hal ini
menyebabkan masalah skalabilitas yang terbatas, yang
menjadi kendala utama ketika beban pengguna meningkat
[4].

Aplikasi sidang fakultas SOFI mengalami masalah
skalabilitas yang sangat terbatas. Hal ini terbukti dalam sesi
wawancara dengan pengembang aplikasi SOFI, yang dimana
pengembang kesulitan dalam melakukan skalabilitas aplikasi
seperti horizontal scaling pada layanan tertentu yang
memiliki load pengguna yang sangat tinggi dan tidak
menentu.

Daftar Pendaftaran Mahasiswa pada SOF)

Periode

GAMBAR 1
Daftar Pendaftaran Sidang Sofi

Terlebih lagi, berdasarkan data dari Layanan
Administrasi Akademik Fakultas Rekayasa Industri (LAA
FRI) memperlihatkan fluktuasi jumlah pengajuan mahasiswa
pada SOFI yang tidak menentu pada berbagai periode dan
semester yang digambarkan pada Gambar 1 dengan
puncaknya mencapai 315 pengajuan pada periode ke-4 dan
354 pengajuan pada periode ke-5 di Semester Genap 22/23.
Keadaan ini menunjukkan bahwa layanan tertentu
mengalami beban yang sangat tinggi secara tiba tiba,
sehingga menyulitkan pengembang untuk meningkatkan
layanan.

mailto:muhammadafifjpr@student.telkomuniversity.ac.id
mailto:muhammadafifjpr@student.telkomuniversity.ac.id
mailto:ekkynovrizalam@telkomuniversity.ac.id
mailto:ekkynovrizalam@telkomuniversity.ac.id
mailto:tienkusumasari@telkomuniversity.ac.id

ISSN : 2355-9365

Untuk mengatasi masalah ini, migrasi dari arsitektur
monolitik ke arsitektur microservice diusulkan. Pendekatan
berbasis microservice telah terbukti meningkatkan
skalabilitas, ketersediaan, performa, dan mengurangi biaya
pemeliharaan [5][6][7][8]. Meskipun demikian, proses
migrasi ini kompleks dan menghadapi berbagai tantangan,
seperti identifikasi kebutuhan bisnis dan teknis yang
kompleks, serta pengembangan backend yang efektif [3].

Dalam penelitian ini, pendekatan Iferative Incremental
Development dipilih untuk mengembangkan backend
microservice, karena pendekatan ini memungkinkan
pengembangan bertahap dan adaptif terhadap perubahan
kebutuhan [9]. Selain itu, prinsip Domain Driven Design
(DDD) digunakan dalam analisis sistem untuk memastikan
pemecahan sistem yang optimal sesuai dengan kebutuhan
bisnis.

Tujuan dari penelitian ini adalah mengimplementasikan
Domain Driven Design dalam tahap perancangan sistem
sehingga dapat mengetahui seberapa kecil modul pendaftaran
dan penjadwalan yang sudah ada, hal ini dapat menjaga
keutuhan serta konsistensi domain bisnis.
Mengimplementasikan metode [terative Incremental
Development dalam proses pengembangan backend pada
modul pendaftaran dan penjadwalan yang dipecah menjadi
aplikasi microservice untuk memastikan kesesuaian
pengembangan.

II. KAJIAN TEORI

A. Monolitik

Arsitektur monolitik adalah jenis arsitektur layanan yang
dibangun dengan semua komponennya berjalan dalam satu
blok tunggal. Contoh umumnya adalah aplikasi web yang
terdiri dari lapisan Ul, lapisan bisnis, dan lapisan akses data,
yang beroperasi sebagai satu entitas tunggal [10]. Aplikasi
monolitik biasanya memiliki satu kode sumber tunggal, dan
seiring bertumbuhnya ukuran kode, beberapa masalah mulai
muncul seperti kesulitan dalam modifikasi kode, layanan
yang tidak independen, waktu mulai aplikasi yang lama, dan
sulitnya pengembangan [11].

B. Microservice

Arsitektur microservice ditemukan oleh Lewis dan
Fowler, merupakan arsitektur terdistribusi yang
mendekomposisi sistem menjadi beberapa komponen kecil
dan independen yang dapat dipanggil sesuai kebutuhan [12].
Microservice semakin diminati dengan munculnya inovasi
infrastruktur berbasis cloud seperti software-as-a-service dan
function-as-a-service [13]. Perusahaan ternama seperti
Netflix, Amazon, dan Ebay telah beralih ke arsitektur
microservice, di mana layanan berkomunikasi satu sama lain
menggunakan protokol HTTP seperti REST API [3].

C. Iterative Incremental Development

Metode [Iterative dan Incremental adalah bagian dari
Feature-Driven Development (FDD), di mana perangkat
lunak dibagi menjadi berbagai fitur yang berbeda, dan setiap
fitur dibangun secara terpisah [14]. Metode ini
direkomendasikan dalam praktik pengembangan perangkat
lunak karena dapat meningkatkan tingkat keberhasilan
proyek dan menghemat anggaran [15].

e-Proceeding of Engineering : Vol.12, No.1 Februari 2025 | Page 1591

Metode Iterative Incremental merupakan penyempurnaan
dari metode Waterfall yang dinilai kaku, dengan sifat
Iterative yang memungkinkan pengembangan bertahap dan
penambahan fitur secara perlahan [16]. Meskipun Iterative
dan Incremental tampak serupa, keduanya memiliki
perbedaan mendasar; Iterative mengacu pada tindakan yang
diulang-ulang, sedangkan Incremental mengacu pada
tindakan penambahan yang baru [17]. Metode ini melibatkan
identifikasi persyaratan, analisis, spesifikasi desain,
pemrograman, dan pengumpulan umpan balik dari pemangku
kepentingan sebelum melanjutkan ke fase berikutnya [18].
Setiap iterasi dalam pengembangan menggunakan metode ini
melibatkan perencanaan, analisis dan desain, implementasi,
pengujian, evaluasi, serta deployment [19].

I1I. METODE

A. Kerangka Berpikir

Kerangka berpikir, atau model konseptual, adalah
kegiatan memetakan faktor-faktor untuk memberikan solusi
dari masalah dan dampaknya terhadap target yang dituju.
Kerangka berpikir menjelaskan konsep-konsep atau proposisi
terkait pemecahan masalah yang telah diidentifikasi [20].
Dalam penelitian ini, model kerangka berpikir digunakan
untuk mengilustrasikan fenomena yang diinvestigasi dan
menyediakan solusi. Kerangka berpikir dalam penelitian ini
mengacu pada design science research (Hevner, 2007).
Kerangka ini menyediakan definisi, metodologi, batasan,
panduan terstruktur, dan hasil konsisten untuk perancangan
dan implementasi proyek penelitian. Hal ini juga
meningkatkan kredibilitas penelitian desain ilmiah di
kalangan komunitas yang lebih luas, termasuk teknik,
arsitektur, seni, dan lainnya [21]. Model konseptual migrasi
aplikasi monolitik ke microservice digambarkan pada
Gambar 2.

Lingkungan Relevans| Panaiitian SI Rigor Dasar limu

| Pondasi
Hasil Akhir l

Flost AP
Apiikasi Backend | - Miroserice
wcroservice SOFI | - Database Retasionat
| - UML Diagram

o
Bisnis Didapatkan |
| Metodotogi

| - horatve Inczemontal
| Development

¥
OO — L ransaran onastp oo m———1

GAMBAR 2
Model Konseptual

B. Sistematika Penyelesaian Masalah

Penelitian ini bertujuan untuk melakukan migrasi aplikasi
SOFI yang saat ini menggunakan arsitektur monolitik ke
arsitektur microservices. SOFI berfungsi sebagai perantara
bagi mahasiswa tingkat akhir yang sedang mengerjakan tugas
akhir dengan dosen hal ini digunakan untuk memfasilitasi
proses penyusunan tugas akhir.

Dalam melakukan pengembangan, penyelesaian masalah
yang ada peneliti menggunakan metode Iterative Incremental
Development, yang dimana terdapat beberapa tahap yang
akan dilakukan dalam pelaksanaan pengembangan aplikasi
tersebut yaitu tahap perencanaan, analisis dan perancangan
sistem, implementasi migrasi aplikasi ke microservice,
pengujian sampai dengan tahap deployment. Untuk gambaran
lebih jelas mari liat pada Gambar 3.

ISSN : 2355-9365

GAMBAR 3
Sistematika Penyelesaian Masalah

C. Pengumpulan Data

Dalam penelitian ini penulis melakukan proses
pengumpulan data, dengan fokus utama pada wawancara
mendetail bersama pengembang aplikasi tersebut, yang
dalam konteks ini adalah Bapak Ekky Novriza Alam, S.
Kom., M.T. Tujuan dari pengumpulan data ini adalah untuk
memperoleh wawasan yang komprehensif mengenai
serangkaian fitur yang diintegrasikan dalam aplikasi,
mengidentifikasi berbagai kelompok pengguna yang
memiliki hak akses, serta menganalisis domain-domain
bisnis dari aplikasi. Metode kualitatif dipilih sebagai
pendekatan utama dalam penelitian ini, dengan wawancara
langsung sebagai teknik pengumpulan data utama, sehingga
memungkinkan pengambilan informasi yang mendalam dan
kontekstual langsung dari sumbernya. Setelah wawancara
yang informatif dengan pengembang, langkah selanjutnya
adalah proses penyusunan dan analisis data yang telah
diperoleh.

Iv. HASIL DAN PEMBAHASAN

A. Identifikasi Layanan

Pada identifikasi layanan menggunakan analisis Domain-
Driven Design (DDD), yang dilaksanakan melalui diskusi
intensif dengan domain expert untuk mengaitkan konsep
bisnis secara mendalam dengan implementasi teknis,
ditujukan untuk mempercepat pengembangan perangkat
lunak yang secara langsung terkait dengan domain bisnis
yang kompleks, contohnya aplikasi untuk sidang fakultas
SOFI. Untuk menangani masalah pengguna dan mengatasi
perbedaan dalam konteks domain saat mengembangkan
perangkat lunak skala besar, pendekatan bounded context
digunakan untuk secara eksplisit membagi model besar
menjadi konteks-konteks kecil yang lebih terkelola dan
mendefinisikan hubungan antar mereka. Ini memudahkan
proses pengembangan perangkat lunak dengan
mengeliminasi kebingungan yang mungkin timbul dari
perbedaan kosakata atau konsep ilmiah. Gambar 4
menampilkan hasil dari analisis bounded context yang telah
dilakukan.

e-Proceeding of Engineering : Vol.12, No.1 Februari 2025 | Page 1592

Bouned Content
Master Dats

o][rormona]
T
e 1] e]

GAMBAR 4
Analisis Bounded Context

Gambar 4 menunjukkan analisis bounded context yang
lengkap untuk aplikasi sidang fakultas SOFI. Namun,
terdapat pembatasan dalam pemilihan bounded context
karena keterbatasan waktu pengembangan yang telah
disepakati sebelumnya. Bounded context pendaftaran dan
penjadwalan dipilih sebagai fokus utama karena peran
strategis mereka dalam arsitektur sistem secara keseluruhan.
Adapun bounded context lainnya seperti, master data,
autentikasi, sidang dan penilaian dijadikan sebagai fokus
pada penelitian lebih lanjut. Hal ini dikarenakan proses
pendaftaran dan penjadwalan tidak hanya krusial untuk
operasi bisnis utama, tetapi juga berperan penting sebagai
penghubung data esensial untuk bounded context lainnya,
maka dari itu proses migrasi aristektur monolitik ke
microservice memiliki rencana pemecahan layanan yang
ditunjukan pada Gambar 5.

GAMBAR 5
Rencana Migrasi Aplikasi

Kedua konteks ini dirancang untuk mengelola dan
menyediakan informasi yang diperlukan untuk menjalankan
berbagai aktivitas bisnis lain. Integrasi yang cermat antara
pendaftaran dan penjadwalan memungkinkan aplikasi
menyediakan alur kerja yang efisien, memastikan semua
permintaan pengguna diproses dengan akurat. Oleh karena
itu, pengembangan awal pada kedua bounded context ini
dianggap kritikal; tanpanya, aplikasi mengalami kesulitan
beroperasi secara efektif, menghasilkan pengalaman
pengguna yang tidak optimal dan potensi kegagalan dalam
mencapai tujuan bisnis

B. Initial Planning

Pada tahap awal Iterative Incremental Development, yang
dikenal sebagai [Initial Planning, dilakukan identifikasi
fungsionalitas aplikasi existing dengan menetapkan fitur atau
kebutuhan yang akan dilakukan migrasi. Selain itu, tahap ini
juga melibatkan analisis proses bisnis dan pendefinisian aktor
yang terlibat.

ISSN : 2355-9365

Proses bisnis pendaftaran sidang digambarkan pada
Gambar 6 yang dimana berfungsi untuk menggambarkan
proses melakukan pendaftaran sidang akhir pada aplikasi
yang akan di migrasi.

GAMBAR 6
Proses Bisnis Pendaftaran Sidang

Proses bisnis penjadwalan digambarkan pada Gambar 7
yang dimana berfungsi untuk menggambarkan cara kerja dari
penjadwalan sidang mahasiswa yang nantinya akan
dijadwalkan oleh PIC.

Dosen

Penjodwalen Sidang
Mahasiows

St AR

GAMBAR 7
Proses Bisnis Penjadwalan Sidang

C. Tahap Perencanaan

Perencanaan yang dilakukan pada tahap awal dalam fase
pertama bertujuan untuk merancang rencana migrasi aplikasi
fakultas SOFI dari arsitektur monolitik ke microservice.
Fungsionalitas pada sistem existing dijabarkan pada Tabel 1.
Hal ini didapatkan berdasarkan percobaan langsung pada
aplikasi existing yang dimana masih menggunakan arsitektur
monolitik.

TABEL 1
Fungsionalitas Sistem Sofi Modul Pendaftaran Dan Penjadwalan
Fitur Method

Mendapatkan Seluruh Periode Sidang

Mendapatkan Detail Periode Sidang
Membuat Periode Sidang
Mengubah Periode Sidang
Menghapus Periode Sidang
Mendapatkan Seluruh Pengajuan Sidang
Cek Pengajuan Sidang Pengguna
Membuat Pengajuan Sidang
Mengubah Pengajuan Sidang
Menyetujui Pengajuan Sidang
Menolak Pengajuan Sidang
Mendapatkan Detail Tim Sidang
Mendapatkan Detail Tim Sidang
Pengguna

Membuat Tim Sidang

Membuat Sidang Individu
Menambahkan Anggota Tim Sidang
Keluar Tim Sidang

Ubah Nama Tim Sidang

Kelola Periode

Kelola Pengajuan Sidang

Kelola Tim Sidang

e-Proceeding of Engineering : Vol.12, No.1 Februari 2025 | Page 1593

Kelola Catatan Mendapatkan Detail Catatan Dokumen
Dokumen Upload Slide
e Mendapatkan Notifikasi Pengguna
Kelola Notifikasi Ubah Notifikasi

Mendapatkan Seluruh Jadwal Sidang

Mendapatkan Detail Jadwal Sidang
Membuat Jadwal Sidang
Mengubah Jadwal Sidang
Menandai Jadwal Sidang
Menghapus Jadwal Sidang

Kelola Penjadwalan
Sidang

D. Tahap Analisis dan Perancangan

Tahap kedua, yaitu analisis dan perancagan, dilakukan
untuk menganalisis sistem existing yang dimana akan
dilakukan migrasi ke arsitektur microservice serta merancang
sistem yang akan dilakukan refactoring ke arsitektur
microservice. Pada perancangan akan terdapat perubahan
pada hasil analisis sistem existing guna memastikan bahwa
migrasi ke arsitektur microservice berjalan dengan baik
kebutuhan yang telah ditetapkan pada fase sebelumnya. Pada
tahap analisis, menghasilkan use case diagram, entity
relationship diagram, deployment diagram existing. Namun
pada percangan sistem terjadi perubahan pada deployment
diagram yang dimana akan disesuaikan untuk aplikasi
microservice yang akan di implementasikan.

Use case diagram digunakan untuk menggambarkan
fungsi-fungsi yang tersedia bagi pengguna dalam aplikasi
sidang fakultas SOFI. Perancangan use case diagram ini
didasarkan pada fitur aplikasi existing. Diagram ini dibuat
untuk mengilustrasikan hubungan antara aktor pengguna
dengan sistem. Use case diagram yang telah dibuat
digambarkan pada Gambar 8.

Use Case SOFI J

Kelola Catatan
Dokumen

N

PIC ke Tnisins \

Kelola Penjadwalan Sidang

Mahasiswa

Kelola Pengajuan
f é o >ﬁ
Dosen

Staff LAA Kelola Notifikasi

Kelola Periode

GAMBAR 8
Use Case Diagram Modul Pendaftaran Dan Penjadwalan

Deployment diagram existing memberikan gambaran
mengenai struktur infrastruktur SOFI yang saat ini. Diagram
ini menggambarkan bahwa aplikasi SOFI saat ini yang
berjalan pada arsitektur monolitik. Deployment diagram
existing digambarkan pada Gambar 9.

ISSN : 2355-9365

r ~Comganant=
= SORIAPP SOFI DB

e Reipona |

GAMBAR 9
Deployment Diagram Monolitik

Ketika aplikasi monolitik akan dilakukan migrasi ke
arsitektur microservice maka terjadi perubahan pula terhadap
Deployment diagram yang sudah ada, yang dimana layanan-
layanan tertentu dilakukan deployment secara terpisah. Hal
ini berdampak pada fleksibilitas dalam peningkatan
skalabilitas sistem karena kedua layanan ini telah terpisah
dari layanan lainnya, yang dimana ketika layanan
“Pendaftaran” dan “Penjadwalan” menginginkan
peningkatan performa pada server yang sedang berjalan,
maka hanya kedua layanan tersebut yang mengalami
peningkatan performa tanpa melibatkan layanan lain.
Deployment diagram targeting digambarkan pada Gambar
10.

GAMBAR 10
Deployment Diagram Microservice

Entity Relationship Diagram (ERD) adalah suatu metode
perancangan yang digunakan untuk menggambarkan struktur
basis data yang terlibat dalam proses migrasi aplikasi sidang
fakultas SOFI. ERD aplikasi yang akan di lakukan migrasi
digambarkan pada Gambar 11.

document_logs

schedules

status_logs

LrdrawS0L

GAMBAR 11
Entity Relationship Diagram

E. Tahap Pengembangan

Tahap ketiga dalam [terative Incremental Development
adalah tahap pengembangan. Pada tahap ini, backend
dikembangkan berdasarkan fungsionalitas sistem existing
yang telah dianalisis, rancangan UML, dan ERD yang telah

e-Proceeding of Engineering : Vol.12, No.1 Februari 2025 | Page 1594

disiapkan sebelumnya dari tahap perencanaan, analisis, dan
perancangan. Pengembangan dilakukan melalui kolaborasi
dengan tim frontend menggunakan repository di GitHub.
Bahasa pemrograman Golang digunakan untuk
mengembangkan backend dengan menerapkan konsep
Domain Driven Design, yang bertujuan untuk memisahkan
logika bisnis dari logika aplikasi itu sendiri. Pada Gambar 12
merupakan API dari aplikasi yang telah dilakukan migrasi.

GAMBAR 12
Dokumentasi Api

F. Tahap Pengujian

Setelah tahap pengembangan selesai untuk dilaksanakan,
maka tahap selanjutnya adalah pengujian terhadap sistem
yang sudah di lakukan migrasi, yang dimana hal ini bertujuan
agar mengetahui apakah method yang telah di migrasi
berjalan sesuai harapan atau tidak. Pengujian ini dilakukan
menggunakan fitur yang ada di aplikasi postman yaitu fitur
“integration testing”. Pada Tabel 2 menjabarkan mengenai
integration testing dari migrasi layanan yang telah dilakukan.
Integration testing dilakukan menggunakan aplikasi
postman.

ISSN : 2355-9365

TABEL 2
Hasil Integration Testing Microservice
Status
No | Method Code Result
1 Mendapatkan Seluruh Periode Sidang 200 Pass
2 Mendapatkan Detail Periode Sidang 200 pass
3. | Membuat Periode Sidang 201 pass
4. | Mengubah Periode Sidang 200 pass
5 Menghapus Periode Sidang 200 pass
Mendapatkan Seluruh Pengajuan Sidang
6 | (Stff LAA) 200 pass
7 Mendapatkan Seluruh Pengajuan Sidang 200 o
(Dosen)
3 Mendapatkan Seluruh Pengajuan Sidang 200 e
(PIC)
9. | Cek Pengajuan Sidang Pengguna 200 pass
10. | Membuat Pengajuan Sidang 201 Pass
11. | Mengubah Pengajuan Sidang 200 pass
12. | Menyetujui Pengajuan Sidang 200 Pass
13. | Menolak Pengajuan Sidang 200 pass
14. | Mendapatkan Detail Tim Sidang 200 pass
1. Mendapatkan Detail Tim Sidang 200 RS
Pengguna
16. | Membuat Tim Sidang 201 Pass
17. | Membuat Sidang Individu 201 pass
18. | Menambahkan Anggota Tim Sidang 200 pass
19. | Keluar Tim Sidang 200 pass
20. | Ubah Nama Tim Sidang 200 pass
21. | Mendapatkan Detail Catatan Dokumen 200 pass
22. | Upload Slide 201 Pass
23. | Mendapatkan Notifikasi Pengguna 200 pass
24. | Ubah Notifikasi 200 pass
Mendapatkan Seluruh Jadwal Sidang (
25. Staff LAA) 200 pass
26. Mendapatkan Seluruh Jadwal Sidang (200 Pass
PIC)
27 Mendapatkan Seluruh Jadwal Sidang 200 e
(Dosen)
Mendapatkan Detail Jadwal Sidang
28- | (Staff LAA, PIC dan Dosen) 200 Pass
Mendapatkan Detail Jadwal Sidang
29. (Mahasiswa) 200 pass
30. | Membuat Jadwal Sidang 200 Pass
31. | Mengubah Jadwal Sidang 200 pass
32. | Menandai Jadwal Sidang 200 pass
33. | Menghapus Jadwal Sidang 200 pass

Setelah tahap pengujian “Integration Testing” selesai
maka tahap pengujian selanjutnya adalah Load Testing
Pengujian ini bertujuan untuk mengukur seberapa baik sistem
dapat menangani beban tertentu dengan berbagai tingkat
penggunaan yang diharapkan. Untuk mencapai ini, simulasi
dilakukan dengan jumlah pengguna yang berbeda secara
bersamaan, yaitu 50, 100 dan 200, 300 dan 400 pengguna.

Penggunaan 400 pengguna dalam simulasi ini didasarkan
pada data yang telah digambarkan pada Gambar 1. Grafik
tersebut memperlihatkan jumlah pengajuan mahasiswa pada
SOFI yang dapat mencapai puncaknya hingga 354 pengajuan
pada periode ke-5 Semester Genap 22/23. Angka ini
memberikan dasar yang kuat untuk mensimulasikan beban
400 pengguna secara bersamaan, guna memastikan bahwa
sistem dapat menangani puncak beban yang tinggi.

Hasil pengujian load testing terlihat pada Gambar 13 yang
dimana digunakan untuk menganalisis respons dan kinerja
sistem. Dalam rangka membuktikan fleksibilitas dan
independensi aplikasi, pengujian dilakukan pada virtual
machine.

e-Proceeding of Engineering : Vol.12, No.1 Februari 2025 | Page 1595

Grafik Hasil Load Testing

: ‘

2000

|

50 Use

GAMBAR 13
Hasil Load Testing

Grafik pada Gambar 13 menggambarkan hasil dari load
testing aplikasi ketika diakses oleh 50, 100, 200, 300, dan 400
pengguna simultan. Sumbu horizontal menampilkan jumlah
pengguna, sementara sumbu vertikal menunjukkan waktu
rata-rata (dalam milidetik) yang diperlukan untuk
menyelesaikan setiap method aplikasi, seperti Membuat
Periode Sidang, Membuat Pengajuan Sidang, Mengubah
Pengajuan Sidang, Menyetujui Pengajuan Sidang, Menolak
Pengajuan Sidang, Membuat Tim Sidang, Membuat Sidang
Individu, Upload Slide, Membuat Jadwal Sidang, dan
Mengubah Jadwal Sidang. Analisis grafik menunjukkan
bahwa waktu eksekusi meningkat seiring bertambahnya
jumlah pengguna, dengan method Membuat Jadwal Sidang
dan Mengubah Jadwal Sidang memerlukan waktu terlama,
terutama pada 300 dan 400 pengguna. Method Membuat
Periode Sidang dan Upload Slide memiliki waktu eksekusi
tercepat.

Peningkatan waktu eksekusi yang konsisten pada semua
method mencerminkan pola kinerja yang dapat diprediksi
saat beban meningkat. Hasil ini menekankan pentingnya
optimisasi aplikasi atau peningkatan infrastruktur untuk
memastikan kinerja yang baik saat jumlah pengguna
bertambah. Namun, pada pengujian load testing dengan 400
pengguna, terjadi error pada dua method, yaitu Membuat
Jadwal Sidang dan Mengubah Jadwal Sidang. Error ini
terjadi pada 176 pengguna atau sekitar 22% dari total 800
pengguna. Penting untuk dicatat bahwa kedua methpd ini
hanya dapat diakses oleh pengguna PIC. Dalam kasus
sebenarnya, PIC di aplikasi hanya dimiliki sekitar 10
pengguna. Oleh karena itu, hal ini tidak berdampak signifikan
pada aplikasi saat diakses oleh 400 pengguna secara
bersamaan. Berdasarkan hasil tersebut secara keseluruhan,
aplikasi berjalan dengan baik dan stabil untuk jumlah
pengguna antara 50 hingga 300 pengguna.

G. Tahap Evaluasi

Berdasarkan hasil pengujian yang dilakukan pada tahap-
tahap sebelumnya, dapat disimpulkan bahwa pada siklus
migrasi semua fitur telah berjalan dengan baik. Pengguna
dapat menjalankan semua fitur yang dilakukan migrasi.
Setiap komponen dari aplikasi atau sistem telah memenuhi
kriteria yang ditentukan dan tidak ada masalah yang
signifikan ditemukan selama pengujian. Oleh karena itu,
diputuskan bahwa fase iterasi dapat dihentikan.

ISSN : 2355-9365

H. Tahap Deployment

Tahap deployment dilaksanakan setelah menyelesaikan
proses lIterative Incremental Development. Langkah ini
dilakukan setelah semua iterasi dalam lterative Incremental
Development selesai. Deployment dilakukan menggunakan
platform idCloudHost, yang menyediakan layanan virfual
private server untuk memastikan aplikasi dapat diakses oleh
semua pengguna. Dengan menggunakan layanan compute
engine untuk menjalankan aplikasi sidang fakultas SOFI dan
database MySQL secara global, dengan spesifikasi 8 vCPU
(4 core) dan 32 gigabyte memori. Aplikasi server
ditempatkan di Jakarta. idCloudHost tidak menyediakan
layanan secara gratis. Namun, idCloudHost menggunakan
konsep “Pay as you go” yang memungkinkan pengguna
membayar resource hanya saat digunakan.

V. KESIMPULAN

Penelitian ini menunjukkan bahwa penerapan Domain
Driven Design pada perancangan sistem terbukti efektif
dalam proses migrasi pada modul pendaftaran dan
penjadwalan. Hal ini dapat membantu dalam pemecahan
sistem menjadi konteks yang lebih kecil dan terkelola.
Pendekatan ini memungkinkan pengembangan yang lebih
terstruktur dan menjaga konsistensi domain bisnis yang ada.
Selain itu, pada modul pendaftaran dan penjadwalan sidang
aplikasi SOFI yang awalnya memiliki arsitektur monolitik
telah berhasil dimigrasikan ke arsitektur microservice dengan
mengimplementasikan metode Iterative Incremental
Development. Terdapat enam fitur yang berhasil
dikembangkan. Melalui pengujian fungsionalitas terhadap 35
API yang telah dibuat, hasil load testing menunjukkan tingkat
keberhasilan yang sangat baik, dengan fitur utama mencapai
tingkat keberhasilan sekitar 100% untuk 50 hingga 300
pengguna. Namun, ketika jumlah pengguna mencapai 400,
tingkat keberhasilan sistem menurun menjadi 97,8%. Hal ini
terjadi karena dua method, yaitu "Membuat Jadwal Sidang"
dan "Mengubah Jadwal Sidang" masing-masing memiliki
tingkat error sebesar 11%. Namun, hal ini tidak akan menjadi
masalah karena method tersebut hanya bisa diakses oleh PIC,
yang pada kenyataannya hanya mencapai 10 pengguna. Oleh
karena itu, seluruh hasil pengujian fungsionalitas memenuhi
standar yang diharapkan, menegaskan bahwa sistem yang
telah dimigrasikan mampu memberikan layanan yang handal
dan sesuai dengan kebutuhan pengguna.

REFERENSI

[1] K. K. Katyeudo and R. A. C. de Souza, “Digital
Transformation towards Education 4.0,” Informatics
in Education, vol. 21, no. 2, pp. 283-309, 2022, doi:
10.15388/infedu.2022.13.

[2] L. De Lauretis, “From monolithic architecture to
microservices architecture,” in Proceedings - 2019
IEEE 30th International Symposium on Software
Reliability Engineering Workshops, ISSREW 2019,
Institute of Electrical and Electronics Engineers Inc.,
Oct. 2019, Pp- 93-96. doi:
10.1109/ISSREW.2019.00050.

(3]

(4]

(5]

(6]

(7]

(8]

(9]

(10]

(11]

(12]

[13]

[14]

e-Proceeding of Engineering : Vol.12, No.1 Februari 2025 | Page 1596

A. Trichur Ramachandran, Abhishek, Mamatha,
Rashmi, Badrinath, and M. Parmar, “Understanding
Migration from Monolithic to Microservice
Architecture and its Challenges,” International
Journal of Scientific Research and Engineering
Development, vol. 4, no. 3, 2021, [Online].
Available: www.ijsred.com

O. Al-Debagy and P. Martinek, “A Comparative
Review of Microservices and Monolithic
Architectures,” 2018.

G. Munawar and A. Hodijah, “Analisis Model
Arsitektur Microservice Pada Sistem Informasi
DPLK,” Publikasi Jurnal & Penelitian Teknik
Informatika, vol. 3, no. 1, 2018.

T. Prasandy, Titan, F. D. Mirad, and T. Darwis,
“Migrating Application from Monolith to
Microservices,” Migrating application from
monolith to microservices, 2020.

D. Kuryazov, D. Jabborov, and B. Khujamuratov,
“Towards Decomposing Monolithic Applications
into Microservices,” in [/4th IEEE International
Conference on Application of Information and
Communication Technologies, AICT 2020 -
Proceedings, Institute of Electrical and Electronics
Engineers Inc., Oct. 2020. doi:
10.1109/AICT50176.2020.9368571.

S. Salii, J. Ajdari, and X. Zenuni, “Migrating to a
microservice architecture: benefits and challenges,”
2023.

A. Rahmatulloh, D. W. Sari, R. N. Shofa, and I
Darmawan, “Microservices-based IoT Monitoring
Application with a Domain-driven = Design
Approach,” in 2021 International Conference
Advancement in Data Science, E-Learning and
Information Systems, ICADEIS 2021, Institute of
Electrical and Electronics Engineers Inc., 2021. doi:
10.1109/ICADEIS52521.2021.9701966.

V. Velepucha and P. Flores, “Monoliths to
microservices-Migration Problems and Challenges:
A SMS,” in Proceedings - 2021 2nd International
Conference on Information Systems and Software
Technologies, ICI2ST 2021, Institute of Electrical
and Electronics Engineers Inc., Mar. 2021, pp. 135—
142. doi: 10.1109/IC12ST51859.2021.00027.

G. Blinowski, A. Ojdowska, and A. Przybylek,
“Monolithic vs. Microservice Architecture: A
Performance and Scalability Evaluation,” [EEE
Access, vol. 10, pp. 20357-20374, 2022, doi:
10.1109/ACCESS.2022.3152803.

A. Suljkanovi¢, B. Milosavljevi¢, V. Indi¢, and L
Dejanovié, “Developing ~ Microservice-Based
Applications Using the Silvera Domain-Specific
Language,” Applied Sciences (Switzerland), vol. 12,
no. 13, Jul. 2022, doi: 10.3390/app12136679.

Y. Abgaz et al, “Decomposition of Monolith
Applications Into Microservices Architectures: A
Systematic Review,” IEEE Transactions on Software
Engineering, vol. 49, no. 8, pp. 42134242, Aug.
2023, doi: 10.1109/TSE.2023.3287297.

M. Al-Zewairi, M. Biltawi, W. Etaiwi, and A.
Shaout, “Agile Software Development
Methodologies: Survey of Surveys,” Journal of

ISSN : 2355-9365

[15]

[16]

[17]

Computer and Communications, vol. 05, no. 05, pp.
74-97, 2017, doi: 10.4236/jcc.2017.55007.

C. Larman and V. R. Basili, “Iterative and
Incremental Development: A Brief History,” 2003.
A. Alshamrani and A. Bahattab, “A Comparison
Between Three SDLC Models Waterfall Model,
Spiral Model, and Incremental/Iterative Model,” A
Comparison Between Three SDLC Models Waterfall
Model, Spiral Model, and Incremental/lterative
Model , vol. 12, no. 1, 2015, [Online]. Available:
www.IJCSILorg

E. S. Prasatya, C. M. Saputra, and P. Djoko,
“Pengembangan Sistem Informasi Data Pasien Seksi
Rehabilitasi BNN Kota Malang Menggunakan
Metode Iterative Incremental,” Pengembangan
Teknologi Informasi dan llmu Komputer, vol. 2, no.
12, pp. 6587-6596, 2018, [Online]. Available:
http://j-ptiik.ub.ac.id

(18]

[19]

(20]

(21]

e-Proceeding of Engineering : Vol.12, No.1 Februari 2025 | Page 1597

K. Petersen and C. Wohlin, “A Comparison of Issues
and Advantages in Agile and Incremental
Development between State of the Art and an
Industrial Case,” 2009, [Online]. Available:
WWWw.ericsson.com

A. B. M. Moniruzzaman and A. S. D. Hossain,
“Comparative Study on Agile software development
methodologies,” 2013.

E. Lisna Rahmadani, H. Sulistiani, and F. Hamidy,
“RANCANG BANGUN SISTEM INFORMASI
AKUNTANSI JASA CUCI MOBIL (STUDI
KASUS: CUCIAN GADING PUTIH),” Jurnal
Teknologi dan Sistem Informasi (JTSI), vol. 1, no. 1,
pp- 22-30, 2020, [Online]. Available:
http://jim.teknokrat.ac.id/index.php/sisteminformasi
A. R. Hevner, “A Three Cycle View of Design
Science Research,” 2007.

