
ISSN : 2355-9365 e-Proceeding of Engineering : Vol.12, No.1 Februari 2025 | Page 1590

Pengembangan Backend Dalam Migrasi Aplikasi

Monolitik Ke Microservice Menggunakan

Metode Iterative Incremental Development Pada

Modul Pendaftaran dan Penjadwalan SOFI

1st Muhammad Nurul Afif Maliki

Fakultas Rekayasa Industri

Universitas Telkom

Bandung, Indonesia

muhammadafifjpr@student.telkomuniv

ersity.ac.id

2nd Ekky Novriza Alam

Fakultas Rekayasa Industri

Universitas Telkom

Bandung, Indonesia

ekkynovrizalam@telkomuniversity.ac

.id

3rd Tien Fabrianti Kusumasari

Fakultas Rekayasa Industri

Universitas Telkom

Bandung, Indonesia

tienkusumasari@telkomuniversity.ac.id

Abstrak— Transformasi digital membawa perubahan

signifikan di berbagai bidang, termasuk pendidikan.

Universitas Telkom, sebagai salah satu perguruan tinggi swasta,

mengembangkan aplikasi "SOFI" untuk mendukung kegiatan

akademik di Fakultas Rekayasa Industri (FRI). Meskipun

bermanfaat, aplikasi ini menghadapi masalah skalabilitas.

Penelitian ini bertujuan mengimplementasikan Domain Driven

Design dalam tahap perancangan sistem sehingga dapat

mengetahui seberapa kecil modul pendaftaran dan

penjadwalan yang sudah ada, hal ini dapat menjaga keutuhan

serta konsistensi domain bisnis serta penggunaan metode

Iterative Incremental Development dalam proses

pengembangan backend pada modul pendaftaran dan

penjadwalan yang dipecah menjadi aplikasi microservice untuk

memastikan kesesuaian pengembangan. Hasilnya penerapan

Domain Driven Design pada perancangan sistem terbukti

efektif dalam proses migrasi pada modul pendaftaran dan

penjadwalan. Aplikasi Sidang Fakultas SOFI berhasil

dimigrasikan dari arsitektur monolitik ke microservices

menggunakan Iterative Incremental Development. Enam firur

berhasil dikembangkan. Pengujian terhadap 35 API

menunjukkan hasil load testing yang sangat baik, dengan

tingkat keberhasilan method utama mencapai sekitar 100%

untuk 50 hingga 300 pengguna.

Kata kunci— Domain Driven Design, Iterative Incremental,

Microservices

I. PENDAHULUAN

Transformasi digital yang pesat tidak hanya

mempengaruhi industri bisnis, tetapi juga pendidikan, yang

kini berkembang menuju pendidikan 4.0. Tujuannya adalah

membekali siswa dengan berbagai kemampuan agar siap

menghadapi tantangan revolusi industri 4.0 dan tuntutan

global [1]. Dalam konteks ini, Universitas Telkom telah

mengembangkan aplikasi "SOFI" (Sidang Online Fakultas

Rekayasa Industri) untuk mendukung kegiatan akademik di

Fakultas Rekayasa Industri. SOFI adalah aplikasi berbasis

web yang memfasilitasi pendaftaran, penjadwalan,

pelaksanaan, dan revisi sidang Tugas Akhir (TA).

Pengembangan aplikasi SOFI menggunakan arsitektur

monolitik yang memiliki beberapa keunggulan, seperti

kemudahan pengembangan dan pengujian untuk aplikasi

berskala kecil [2]. Namun, arsitektur ini juga memiliki

kelemahan signifikan, termasuk kesulitan dalam modifikasi

kode, layanan yang tidak independen, waktu mulai aplikasi

yang lama, dan tantangan skalabilitas [3]. Hal ini

menyebabkan masalah skalabilitas yang terbatas, yang

menjadi kendala utama ketika beban pengguna meningkat

[4].

Aplikasi sidang fakultas SOFI mengalami masalah

skalabilitas yang sangat terbatas. Hal ini terbukti dalam sesi

wawancara dengan pengembang aplikasi SOFI, yang dimana

pengembang kesulitan dalam melakukan skalabilitas aplikasi

seperti horizontal scaling pada layanan tertentu yang

memiliki load pengguna yang sangat tinggi dan tidak

menentu.

GAMBAR 1

Daftar Pendaftaran Sidang Sofi

Terlebih lagi, berdasarkan data dari Layanan

Administrasi Akademik Fakultas Rekayasa Industri (LAA

FRI) memperlihatkan fluktuasi jumlah pengajuan mahasiswa

pada SOFI yang tidak menentu pada berbagai periode dan

semester yang digambarkan pada Gambar 1 dengan

puncaknya mencapai 315 pengajuan pada periode ke-4 dan

354 pengajuan pada periode ke-5 di Semester Genap 22/23.

Keadaan ini menunjukkan bahwa layanan tertentu

mengalami beban yang sangat tinggi secara tiba tiba,

sehingga menyulitkan pengembang untuk meningkatkan

layanan.

mailto:muhammadafifjpr@student.telkomuniversity.ac.id
mailto:muhammadafifjpr@student.telkomuniversity.ac.id
mailto:ekkynovrizalam@telkomuniversity.ac.id
mailto:ekkynovrizalam@telkomuniversity.ac.id
mailto:tienkusumasari@telkomuniversity.ac.id

ISSN : 2355-9365 e-Proceeding of Engineering : Vol.12, No.1 Februari 2025 | Page 1591

Untuk mengatasi masalah ini, migrasi dari arsitektur

monolitik ke arsitektur microservice diusulkan. Pendekatan

berbasis microservice telah terbukti meningkatkan

skalabilitas, ketersediaan, performa, dan mengurangi biaya

pemeliharaan [5][6][7][8]. Meskipun demikian, proses

migrasi ini kompleks dan menghadapi berbagai tantangan,

seperti identifikasi kebutuhan bisnis dan teknis yang

kompleks, serta pengembangan backend yang efektif [3].

Dalam penelitian ini, pendekatan Iterative Incremental

Development dipilih untuk mengembangkan backend

microservice, karena pendekatan ini memungkinkan

pengembangan bertahap dan adaptif terhadap perubahan

kebutuhan [9]. Selain itu, prinsip Domain Driven Design

(DDD) digunakan dalam analisis sistem untuk memastikan

pemecahan sistem yang optimal sesuai dengan kebutuhan

bisnis.

Tujuan dari penelitian ini adalah mengimplementasikan

Domain Driven Design dalam tahap perancangan sistem

sehingga dapat mengetahui seberapa kecil modul pendaftaran

dan penjadwalan yang sudah ada, hal ini dapat menjaga

keutuhan serta konsistensi domain bisnis.

Mengimplementasikan metode Iterative Incremental

Development dalam proses pengembangan backend pada

modul pendaftaran dan penjadwalan yang dipecah menjadi

aplikasi microservice untuk memastikan kesesuaian

pengembangan.

II. KAJIAN TEORI

A. Monolitik

Arsitektur monolitik adalah jenis arsitektur layanan yang

dibangun dengan semua komponennya berjalan dalam satu

blok tunggal. Contoh umumnya adalah aplikasi web yang

terdiri dari lapisan UI, lapisan bisnis, dan lapisan akses data,

yang beroperasi sebagai satu entitas tunggal [10]. Aplikasi

monolitik biasanya memiliki satu kode sumber tunggal, dan

seiring bertumbuhnya ukuran kode, beberapa masalah mulai

muncul seperti kesulitan dalam modifikasi kode, layanan

yang tidak independen, waktu mulai aplikasi yang lama, dan

sulitnya pengembangan [11].

B. Microservice

Arsitektur microservice ditemukan oleh Lewis dan

Fowler, merupakan arsitektur terdistribusi yang

mendekomposisi sistem menjadi beberapa komponen kecil

dan independen yang dapat dipanggil sesuai kebutuhan [12].

Microservice semakin diminati dengan munculnya inovasi

infrastruktur berbasis cloud seperti software-as-a-service dan

function-as-a-service [13]. Perusahaan ternama seperti

Netflix, Amazon, dan Ebay telah beralih ke arsitektur

microservice, di mana layanan berkomunikasi satu sama lain

menggunakan protokol HTTP seperti REST API [3].

C. Iterative Incremental Development

Metode Iterative dan Incremental adalah bagian dari

Feature-Driven Development (FDD), di mana perangkat

lunak dibagi menjadi berbagai fitur yang berbeda, dan setiap

fitur dibangun secara terpisah [14]. Metode ini

direkomendasikan dalam praktik pengembangan perangkat

lunak karena dapat meningkatkan tingkat keberhasilan

proyek dan menghemat anggaran [15].

Metode Iterative Incremental merupakan penyempurnaan

dari metode Waterfall yang dinilai kaku, dengan sifat

Iterative yang memungkinkan pengembangan bertahap dan

penambahan fitur secara perlahan [16]. Meskipun Iterative

dan Incremental tampak serupa, keduanya memiliki

perbedaan mendasar; Iterative mengacu pada tindakan yang

diulang-ulang, sedangkan Incremental mengacu pada

tindakan penambahan yang baru [17]. Metode ini melibatkan

identifikasi persyaratan, analisis, spesifikasi desain,

pemrograman, dan pengumpulan umpan balik dari pemangku

kepentingan sebelum melanjutkan ke fase berikutnya [18].

Setiap iterasi dalam pengembangan menggunakan metode ini

melibatkan perencanaan, analisis dan desain, implementasi,

pengujian, evaluasi, serta deployment [19].

III. METODE

A. Kerangka Berpikir

Kerangka berpikir, atau model konseptual, adalah

kegiatan memetakan faktor-faktor untuk memberikan solusi

dari masalah dan dampaknya terhadap target yang dituju.

Kerangka berpikir menjelaskan konsep-konsep atau proposisi

terkait pemecahan masalah yang telah diidentifikasi [20].

Dalam penelitian ini, model kerangka berpikir digunakan

untuk mengilustrasikan fenomena yang diinvestigasi dan

menyediakan solusi. Kerangka berpikir dalam penelitian ini

mengacu pada design science research (Hevner, 2007).

Kerangka ini menyediakan definisi, metodologi, batasan,

panduan terstruktur, dan hasil konsisten untuk perancangan

dan implementasi proyek penelitian. Hal ini juga

meningkatkan kredibilitas penelitian desain ilmiah di

kalangan komunitas yang lebih luas, termasuk teknik,

arsitektur, seni, dan lainnya [21]. Model konseptual migrasi

aplikasi monolitik ke microservice digambarkan pada

Gambar 2.

GAMBAR 2

Model Konseptual

B. Sistematika Penyelesaian Masalah

Penelitian ini bertujuan untuk melakukan migrasi aplikasi

SOFI yang saat ini menggunakan arsitektur monolitik ke

arsitektur microservices. SOFI berfungsi sebagai perantara

bagi mahasiswa tingkat akhir yang sedang mengerjakan tugas

akhir dengan dosen hal ini digunakan untuk memfasilitasi

proses penyusunan tugas akhir.

Dalam melakukan pengembangan, penyelesaian masalah

yang ada peneliti menggunakan metode Iterative Incremental

Development, yang dimana terdapat beberapa tahap yang

akan dilakukan dalam pelaksanaan pengembangan aplikasi

tersebut yaitu tahap perencanaan, analisis dan perancangan

sistem, implementasi migrasi aplikasi ke microservice,

pengujian sampai dengan tahap deployment. Untuk gambaran

lebih jelas mari liat pada Gambar 3.

ISSN : 2355-9365 e-Proceeding of Engineering : Vol.12, No.1 Februari 2025 | Page 1592

GAMBAR 3

Sistematika Penyelesaian Masalah

C. Pengumpulan Data

Dalam penelitian ini penulis melakukan proses

pengumpulan data, dengan fokus utama pada wawancara

mendetail bersama pengembang aplikasi tersebut, yang

dalam konteks ini adalah Bapak Ekky Novriza Alam, S.

Kom., M.T. Tujuan dari pengumpulan data ini adalah untuk

memperoleh wawasan yang komprehensif mengenai

serangkaian fitur yang diintegrasikan dalam aplikasi,

mengidentifikasi berbagai kelompok pengguna yang

memiliki hak akses, serta menganalisis domain-domain

bisnis dari aplikasi. Metode kualitatif dipilih sebagai

pendekatan utama dalam penelitian ini, dengan wawancara

langsung sebagai teknik pengumpulan data utama, sehingga

memungkinkan pengambilan informasi yang mendalam dan

kontekstual langsung dari sumbernya. Setelah wawancara

yang informatif dengan pengembang, langkah selanjutnya

adalah proses penyusunan dan analisis data yang telah

diperoleh.

IV. HASIL DAN PEMBAHASAN

A. Identifikasi Layanan

Pada identifikasi layanan menggunakan analisis Domain-

Driven Design (DDD), yang dilaksanakan melalui diskusi

intensif dengan domain expert untuk mengaitkan konsep

bisnis secara mendalam dengan implementasi teknis,

ditujukan untuk mempercepat pengembangan perangkat

lunak yang secara langsung terkait dengan domain bisnis

yang kompleks, contohnya aplikasi untuk sidang fakultas

SOFI. Untuk menangani masalah pengguna dan mengatasi

perbedaan dalam konteks domain saat mengembangkan

perangkat lunak skala besar, pendekatan bounded context

digunakan untuk secara eksplisit membagi model besar

menjadi konteks-konteks kecil yang lebih terkelola dan

mendefinisikan hubungan antar mereka. Ini memudahkan

proses pengembangan perangkat lunak dengan

mengeliminasi kebingungan yang mungkin timbul dari

perbedaan kosakata atau konsep ilmiah. Gambar 4

menampilkan hasil dari analisis bounded context yang telah

dilakukan.

GAMBAR 4

Analisis Bounded Context

Gambar 4 menunjukkan analisis bounded context yang

lengkap untuk aplikasi sidang fakultas SOFI. Namun,

terdapat pembatasan dalam pemilihan bounded context

karena keterbatasan waktu pengembangan yang telah

disepakati sebelumnya. Bounded context pendaftaran dan

penjadwalan dipilih sebagai fokus utama karena peran

strategis mereka dalam arsitektur sistem secara keseluruhan.

Adapun bounded context lainnya seperti, master data,

autentikasi, sidang dan penilaian dijadikan sebagai fokus

pada penelitian lebih lanjut. Hal ini dikarenakan proses

pendaftaran dan penjadwalan tidak hanya krusial untuk

operasi bisnis utama, tetapi juga berperan penting sebagai

penghubung data esensial untuk bounded context lainnya,

maka dari itu proses migrasi aristektur monolitik ke

microservice memiliki rencana pemecahan layanan yang

ditunjukan pada Gambar 5.

GAMBAR 5

Rencana Migrasi Aplikasi

Kedua konteks ini dirancang untuk mengelola dan

menyediakan informasi yang diperlukan untuk menjalankan

berbagai aktivitas bisnis lain. Integrasi yang cermat antara

pendaftaran dan penjadwalan memungkinkan aplikasi

menyediakan alur kerja yang efisien, memastikan semua

permintaan pengguna diproses dengan akurat. Oleh karena

itu, pengembangan awal pada kedua bounded context ini

dianggap kritikal; tanpanya, aplikasi mengalami kesulitan

beroperasi secara efektif, menghasilkan pengalaman

pengguna yang tidak optimal dan potensi kegagalan dalam

mencapai tujuan bisnis

B. Initial Planning

Pada tahap awal Iterative Incremental Development, yang

dikenal sebagai Initial Planning, dilakukan identifikasi

fungsionalitas aplikasi existing dengan menetapkan fitur atau

kebutuhan yang akan dilakukan migrasi. Selain itu, tahap ini

juga melibatkan analisis proses bisnis dan pendefinisian aktor

yang terlibat.

ISSN : 2355-9365 e-Proceeding of Engineering : Vol.12, No.1 Februari 2025 | Page 1593

Proses bisnis pendaftaran sidang digambarkan pada

Gambar 6 yang dimana berfungsi untuk menggambarkan

proses melakukan pendaftaran sidang akhir pada aplikasi

yang akan di migrasi.

GAMBAR 6

Proses Bisnis Pendaftaran Sidang

Proses bisnis penjadwalan digambarkan pada Gambar 7

yang dimana berfungsi untuk menggambarkan cara kerja dari

penjadwalan sidang mahasiswa yang nantinya akan

dijadwalkan oleh PIC.

GAMBAR 7

Proses Bisnis Penjadwalan Sidang

C. Tahap Perencanaan

Perencanaan yang dilakukan pada tahap awal dalam fase

pertama bertujuan untuk merancang rencana migrasi aplikasi

fakultas SOFI dari arsitektur monolitik ke microservice.

Fungsionalitas pada sistem existing dijabarkan pada Tabel 1.

Hal ini didapatkan berdasarkan percobaan langsung pada

aplikasi existing yang dimana masih menggunakan arsitektur

monolitik.

TABEL 1

Fungsionalitas Sistem Sofi Modul Pendaftaran Dan Penjadwalan

Fitur Method

Kelola Periode

Mendapatkan Seluruh Periode Sidang

Mendapatkan Detail Periode Sidang

Membuat Periode Sidang

Mengubah Periode Sidang

Menghapus Periode Sidang

Kelola Pengajuan Sidang

Mendapatkan Seluruh Pengajuan Sidang

Cek Pengajuan Sidang Pengguna

Membuat Pengajuan Sidang

Mengubah Pengajuan Sidang

Menyetujui Pengajuan Sidang

Menolak Pengajuan Sidang

Kelola Tim Sidang

Mendapatkan Detail Tim Sidang

Mendapatkan Detail Tim Sidang

Pengguna

Membuat Tim Sidang

Membuat Sidang Individu

Menambahkan Anggota Tim Sidang

Keluar Tim Sidang

Ubah Nama Tim Sidang

Kelola Catatan

Dokumen

Mendapatkan Detail Catatan Dokumen

Upload Slide

Kelola Notifikasi
Mendapatkan Notifikasi Pengguna

Ubah Notifikasi

Kelola Penjadwalan

Sidang

Mendapatkan Seluruh Jadwal Sidang

Mendapatkan Detail Jadwal Sidang

Membuat Jadwal Sidang

Mengubah Jadwal Sidang

Menandai Jadwal Sidang

Menghapus Jadwal Sidang

D. Tahap Analisis dan Perancangan

Tahap kedua, yaitu analisis dan perancagan, dilakukan

untuk menganalisis sistem existing yang dimana akan

dilakukan migrasi ke arsitektur microservice serta merancang

sistem yang akan dilakukan refactoring ke arsitektur

microservice. Pada perancangan akan terdapat perubahan

pada hasil analisis sistem existing guna memastikan bahwa

migrasi ke arsitektur microservice berjalan dengan baik

kebutuhan yang telah ditetapkan pada fase sebelumnya. Pada

tahap analisis, menghasilkan use case diagram, entity

relationship diagram, deployment diagram existing. Namun

pada percangan sistem terjadi perubahan pada deployment

diagram yang dimana akan disesuaikan untuk aplikasi

microservice yang akan di implementasikan.

Use case diagram digunakan untuk menggambarkan

fungsi-fungsi yang tersedia bagi pengguna dalam aplikasi

sidang fakultas SOFI. Perancangan use case diagram ini

didasarkan pada fitur aplikasi existing. Diagram ini dibuat

untuk mengilustrasikan hubungan antara aktor pengguna

dengan sistem. Use case diagram yang telah dibuat

digambarkan pada Gambar 8.

GAMBAR 8

Use Case Diagram Modul Pendaftaran Dan Penjadwalan

Deployment diagram existing memberikan gambaran

mengenai struktur infrastruktur SOFI yang saat ini. Diagram

ini menggambarkan bahwa aplikasi SOFI saat ini yang

berjalan pada arsitektur monolitik. Deployment diagram

existing digambarkan pada Gambar 9.

ISSN : 2355-9365 e-Proceeding of Engineering : Vol.12, No.1 Februari 2025 | Page 1594

GAMBAR 9

Deployment Diagram Monolitik

Ketika aplikasi monolitik akan dilakukan migrasi ke

arsitektur microservice maka terjadi perubahan pula terhadap

Deployment diagram yang sudah ada, yang dimana layanan-

layanan tertentu dilakukan deployment secara terpisah. Hal

ini berdampak pada fleksibilitas dalam peningkatan

skalabilitas sistem karena kedua layanan ini telah terpisah

dari layanan lainnya, yang dimana ketika layanan

<Pendaftaran= dan <Penjadwalan= menginginkan
peningkatan performa pada server yang sedang berjalan,

maka hanya kedua layanan tersebut yang mengalami

peningkatan performa tanpa melibatkan layanan lain.

Deployment diagram targeting digambarkan pada Gambar

10.

GAMBAR 10

Deployment Diagram Microservice

Entity Relationship Diagram (ERD) adalah suatu metode

perancangan yang digunakan untuk menggambarkan struktur

basis data yang terlibat dalam proses migrasi aplikasi sidang

fakultas SOFI. ERD aplikasi yang akan di lakukan migrasi

digambarkan pada Gambar 11.

GAMBAR 11

Entity Relationship Diagram

E. Tahap Pengembangan

Tahap ketiga dalam Iterative Incremental Development

adalah tahap pengembangan. Pada tahap ini, backend

dikembangkan berdasarkan fungsionalitas sistem existing

yang telah dianalisis, rancangan UML, dan ERD yang telah

disiapkan sebelumnya dari tahap perencanaan, analisis, dan

perancangan. Pengembangan dilakukan melalui kolaborasi

dengan tim frontend menggunakan repository di GitHub.

Bahasa pemrograman Golang digunakan untuk

mengembangkan backend dengan menerapkan konsep

Domain Driven Design, yang bertujuan untuk memisahkan

logika bisnis dari logika aplikasi itu sendiri. Pada Gambar 12

merupakan API dari aplikasi yang telah dilakukan migrasi.

GAMBAR 12

Dokumentasi Api

F. Tahap Pengujian

Setelah tahap pengembangan selesai untuk dilaksanakan,

maka tahap selanjutnya adalah pengujian terhadap sistem

yang sudah di lakukan migrasi, yang dimana hal ini bertujuan

agar mengetahui apakah method yang telah di migrasi

berjalan sesuai harapan atau tidak. Pengujian ini dilakukan

menggunakan fitur yang ada di aplikasi postman yaitu fitur

<integration testing=. Pada Tabel 2 menjabarkan mengenai

integration testing dari migrasi layanan yang telah dilakukan.

Integration testing dilakukan menggunakan aplikasi

postman.

ISSN : 2355-9365 e-Proceeding of Engineering : Vol.12, No.1 Februari 2025 | Page 1595

TABEL 2

Hasil Integration Testing Microservice

No Method
Status

Code
Result

1. Mendapatkan Seluruh Periode Sidang 200 Pass

2. Mendapatkan Detail Periode Sidang 200 pass

3. Membuat Periode Sidang 201 pass

4. Mengubah Periode Sidang 200 pass

5. Menghapus Periode Sidang 200 pass

6.
Mendapatkan Seluruh Pengajuan Sidang

(Staff LAA)
200 pass

7.
Mendapatkan Seluruh Pengajuan Sidang

(Dosen)
200 pass

8.
Mendapatkan Seluruh Pengajuan Sidang

(PIC)
200 pass

9. Cek Pengajuan Sidang Pengguna 200 pass

10. Membuat Pengajuan Sidang 201 Pass

11. Mengubah Pengajuan Sidang 200 pass

12. Menyetujui Pengajuan Sidang 200 Pass

13. Menolak Pengajuan Sidang 200 pass

14. Mendapatkan Detail Tim Sidang 200 pass

15.
Mendapatkan Detail Tim Sidang

Pengguna
200 pass

16. Membuat Tim Sidang 201 Pass

17. Membuat Sidang Individu 201 pass

18. Menambahkan Anggota Tim Sidang 200 pass

19. Keluar Tim Sidang 200 pass

20. Ubah Nama Tim Sidang 200 pass

21. Mendapatkan Detail Catatan Dokumen 200 pass

22. Upload Slide 201 Pass

23. Mendapatkan Notifikasi Pengguna 200 pass

24. Ubah Notifikasi 200 pass

25.
Mendapatkan Seluruh Jadwal Sidang (

Staff LAA)
200 pass

26.
Mendapatkan Seluruh Jadwal Sidang (

PIC)
200 Pass

27.
Mendapatkan Seluruh Jadwal Sidang

(Dosen)
200 pass

28.
Mendapatkan Detail Jadwal Sidang

(Staff LAA, PIC dan Dosen)
200 Pass

29.
Mendapatkan Detail Jadwal Sidang

(Mahasiswa)
200 pass

30. Membuat Jadwal Sidang 200 Pass

31. Mengubah Jadwal Sidang 200 pass

32. Menandai Jadwal Sidang 200 pass

33. Menghapus Jadwal Sidang 200 pass

Setelah tahap pengujian <Integration Testing= selesai
maka tahap pengujian selanjutnya adalah Load Testing

Pengujian ini bertujuan untuk mengukur seberapa baik sistem

dapat menangani beban tertentu dengan berbagai tingkat

penggunaan yang diharapkan. Untuk mencapai ini, simulasi

dilakukan dengan jumlah pengguna yang berbeda secara

bersamaan, yaitu 50, 100 dan 200, 300 dan 400 pengguna.

Penggunaan 400 pengguna dalam simulasi ini didasarkan

pada data yang telah digambarkan pada Gambar 1. Grafik

tersebut memperlihatkan jumlah pengajuan mahasiswa pada

SOFI yang dapat mencapai puncaknya hingga 354 pengajuan

pada periode ke-5 Semester Genap 22/23. Angka ini

memberikan dasar yang kuat untuk mensimulasikan beban

400 pengguna secara bersamaan, guna memastikan bahwa

sistem dapat menangani puncak beban yang tinggi.

Hasil pengujian load testing terlihat pada Gambar 13 yang

dimana digunakan untuk menganalisis respons dan kinerja

sistem. Dalam rangka membuktikan fleksibilitas dan

independensi aplikasi, pengujian dilakukan pada virtual

machine.

GAMBAR 13

Hasil Load Testing

Grafik pada Gambar 13 menggambarkan hasil dari load

testing aplikasi ketika diakses oleh 50, 100, 200, 300, dan 400

pengguna simultan. Sumbu horizontal menampilkan jumlah

pengguna, sementara sumbu vertikal menunjukkan waktu

rata-rata (dalam milidetik) yang diperlukan untuk

menyelesaikan setiap method aplikasi, seperti Membuat

Periode Sidang, Membuat Pengajuan Sidang, Mengubah

Pengajuan Sidang, Menyetujui Pengajuan Sidang, Menolak

Pengajuan Sidang, Membuat Tim Sidang, Membuat Sidang

Individu, Upload Slide, Membuat Jadwal Sidang, dan

Mengubah Jadwal Sidang. Analisis grafik menunjukkan

bahwa waktu eksekusi meningkat seiring bertambahnya

jumlah pengguna, dengan method Membuat Jadwal Sidang

dan Mengubah Jadwal Sidang memerlukan waktu terlama,

terutama pada 300 dan 400 pengguna. Method Membuat

Periode Sidang dan Upload Slide memiliki waktu eksekusi

tercepat.

Peningkatan waktu eksekusi yang konsisten pada semua

method mencerminkan pola kinerja yang dapat diprediksi

saat beban meningkat. Hasil ini menekankan pentingnya

optimisasi aplikasi atau peningkatan infrastruktur untuk

memastikan kinerja yang baik saat jumlah pengguna

bertambah. Namun, pada pengujian load testing dengan 400

pengguna, terjadi error pada dua method, yaitu Membuat

Jadwal Sidang dan Mengubah Jadwal Sidang. Error ini

terjadi pada 176 pengguna atau sekitar 22% dari total 800

pengguna. Penting untuk dicatat bahwa kedua methpd ini

hanya dapat diakses oleh pengguna PIC. Dalam kasus

sebenarnya, PIC di aplikasi hanya dimiliki sekitar 10

pengguna. Oleh karena itu, hal ini tidak berdampak signifikan

pada aplikasi saat diakses oleh 400 pengguna secara

bersamaan. Berdasarkan hasil tersebut secara keseluruhan,

aplikasi berjalan dengan baik dan stabil untuk jumlah

pengguna antara 50 hingga 300 pengguna.

G. Tahap Evaluasi

Berdasarkan hasil pengujian yang dilakukan pada tahap-

tahap sebelumnya, dapat disimpulkan bahwa pada siklus

migrasi semua fitur telah berjalan dengan baik. Pengguna

dapat menjalankan semua fitur yang dilakukan migrasi.

Setiap komponen dari aplikasi atau sistem telah memenuhi

kriteria yang ditentukan dan tidak ada masalah yang

signifikan ditemukan selama pengujian. Oleh karena itu,

diputuskan bahwa fase iterasi dapat dihentikan.

ISSN : 2355-9365 e-Proceeding of Engineering : Vol.12, No.1 Februari 2025 | Page 1596

H. Tahap Deployment

Tahap deployment dilaksanakan setelah menyelesaikan

proses Iterative Incremental Development. Langkah ini

dilakukan setelah semua iterasi dalam Iterative Incremental

Development selesai. Deployment dilakukan menggunakan

platform idCloudHost, yang menyediakan layanan virtual

private server untuk memastikan aplikasi dapat diakses oleh

semua pengguna. Dengan menggunakan layanan compute

engine untuk menjalankan aplikasi sidang fakultas SOFI dan

database MySQL secara global, dengan spesifikasi 8 vCPU

(4 core) dan 32 gigabyte memori. Aplikasi server

ditempatkan di Jakarta. idCloudHost tidak menyediakan

layanan secara gratis. Namun, idCloudHost menggunakan

konsep <Pay as you go= yang memungkinkan pengguna
membayar resource hanya saat digunakan.

V. KESIMPULAN

Penelitian ini menunjukkan bahwa penerapan Domain

Driven Design pada perancangan sistem terbukti efektif

dalam proses migrasi pada modul pendaftaran dan

penjadwalan. Hal ini dapat membantu dalam pemecahan

sistem menjadi konteks yang lebih kecil dan terkelola.

Pendekatan ini memungkinkan pengembangan yang lebih

terstruktur dan menjaga konsistensi domain bisnis yang ada.

Selain itu, pada modul pendaftaran dan penjadwalan sidang

aplikasi SOFI yang awalnya memiliki arsitektur monolitik

telah berhasil dimigrasikan ke arsitektur microservice dengan

mengimplementasikan metode Iterative Incremental

Development. Terdapat enam fitur yang berhasil

dikembangkan. Melalui pengujian fungsionalitas terhadap 35

API yang telah dibuat, hasil load testing menunjukkan tingkat

keberhasilan yang sangat baik, dengan fitur utama mencapai

tingkat keberhasilan sekitar 100% untuk 50 hingga 300

pengguna. Namun, ketika jumlah pengguna mencapai 400,

tingkat keberhasilan sistem menurun menjadi 97,8%. Hal ini

terjadi karena dua method, yaitu "Membuat Jadwal Sidang"

dan "Mengubah Jadwal Sidang" masing-masing memiliki

tingkat error sebesar 11%. Namun, hal ini tidak akan menjadi

masalah karena method tersebut hanya bisa diakses oleh PIC,

yang pada kenyataannya hanya mencapai 10 pengguna. Oleh

karena itu, seluruh hasil pengujian fungsionalitas memenuhi

standar yang diharapkan, menegaskan bahwa sistem yang

telah dimigrasikan mampu memberikan layanan yang handal

dan sesuai dengan kebutuhan pengguna.

REFERENSI

[1] K. K. Katyeudo and R. A. C. de Souza, <Digital
Transformation towards Education 4.0,= Informatics

in Education, vol. 21, no. 2, pp. 283–309, 2022, doi:

10.15388/infedu.2022.13.
[2] L. De Lauretis, <From monolithic architecture to

microservices architecture,= in Proceedings - 2019

IEEE 30th International Symposium on Software

Reliability Engineering Workshops, ISSREW 2019,

Institute of Electrical and Electronics Engineers Inc.,

Oct. 2019, pp. 93–96. doi:

10.1109/ISSREW.2019.00050.

[3] A. Trichur Ramachandran, Abhishek, Mamatha,

Rashmi, Badrinath, and M. Parmar, <Understanding
Migration from Monolithic to Microservice

Architecture and its Challenges,= International

Journal of Scientific Research and Engineering

Development, vol. 4, no. 3, 2021, [Online].

Available: www.ijsred.com

[4] O. Al-Debagy and P. Martinek, <A Comparative
Review of Microservices and Monolithic

Architectures,= 2018.
[5] G. Munawar and A. Hodijah, <Analisis Model

Arsitektur Microservice Pada Sistem Informasi

DPLK,= Publikasi Jurnal & Penelitian Teknik

Informatika, vol. 3, no. 1, 2018.

[6] T. Prasandy, Titan, F. D. Mirad, and T. Darwis,

<Migrating Application from Monolith to
Microservices,= Migrating application from

monolith to microservices, 2020.

[7] D. Kuryazov, D. Jabborov, and B. Khujamuratov,

<Towards Decomposing Monolithic Applications
into Microservices,= in 14th IEEE International

Conference on Application of Information and

Communication Technologies, AICT 2020 -

Proceedings, Institute of Electrical and Electronics

Engineers Inc., Oct. 2020. doi:

10.1109/AICT50176.2020.9368571.

[8] S. Salii, J. Ajdari, and X. Zenuni, <Migrating to a
microservice architecture: benefits and challenges,=
2023.

[9] A. Rahmatulloh, D. W. Sari, R. N. Shofa, and I.

Darmawan, <Microservices-based IoT Monitoring

Application with a Domain-driven Design

Approach,= in 2021 International Conference

Advancement in Data Science, E-Learning and

Information Systems, ICADEIS 2021, Institute of

Electrical and Electronics Engineers Inc., 2021. doi:

10.1109/ICADEIS52521.2021.9701966.

[10] V. Velepucha and P. Flores, <Monoliths to
microservices-Migration Problems and Challenges:

A SMS,= in Proceedings - 2021 2nd International

Conference on Information Systems and Software

Technologies, ICI2ST 2021, Institute of Electrical

and Electronics Engineers Inc., Mar. 2021, pp. 135–
142. doi: 10.1109/ICI2ST51859.2021.00027.

[11] G. Blinowski, A. Ojdowska, and A. Przybylek,

<Monolithic vs. Microservice Architecture: A
Performance and Scalability Evaluation,= IEEE

Access, vol. 10, pp. 20357–20374, 2022, doi:

10.1109/ACCESS.2022.3152803.

[12] A. Suljkanović, B. Milosavljević, V. Indić, and I.
Dejanović, <Developing Microservice-Based

Applications Using the Silvera Domain-Specific

Language,= Applied Sciences (Switzerland), vol. 12,

no. 13, Jul. 2022, doi: 10.3390/app12136679.

[13] Y. Abgaz et al., <Decomposition of Monolith
Applications Into Microservices Architectures: A

Systematic Review,= IEEE Transactions on Software

Engineering, vol. 49, no. 8, pp. 4213–4242, Aug.

2023, doi: 10.1109/TSE.2023.3287297.

[14] M. Al-Zewairi, M. Biltawi, W. Etaiwi, and A.

Shaout, <Agile Software Development
Methodologies: Survey of Surveys,= Journal of

ISSN : 2355-9365 e-Proceeding of Engineering : Vol.12, No.1 Februari 2025 | Page 1597

Computer and Communications, vol. 05, no. 05, pp.

74–97, 2017, doi: 10.4236/jcc.2017.55007.

[15] C. Larman and V. R. Basili, <Iterative and
Incremental Development: A Brief History,= 2003.

[16] A. Alshamrani and A. Bahattab, <A Comparison
Between Three SDLC Models Waterfall Model,

Spiral Model, and Incremental/Iterative Model,= A

Comparison Between Three SDLC Models Waterfall

Model, Spiral Model, and Incremental/Iterative

Model , vol. 12, no. 1, 2015, [Online]. Available:

www.IJCSI.org

[17] E. S. Prasatya, C. M. Saputra, and P. Djoko,

<Pengembangan Sistem Informasi Data Pasien Seksi
Rehabilitasi BNN Kota Malang Menggunakan

Metode Iterative Incremental,= Pengembangan

Teknologi Informasi dan Ilmu Komputer, vol. 2, no.

12, pp. 6587–6596, 2018, [Online]. Available:

http://j-ptiik.ub.ac.id

[18] K. Petersen and C. Wohlin, <A Comparison of Issues
and Advantages in Agile and Incremental

Development between State of the Art and an

Industrial Case,= 2009, [Online]. Available:

www.ericsson.com

[19] A. B. M. Moniruzzaman and A. S. D. Hossain,

<Comparative Study on Agile software development
methodologies,= 2013.

[20] E. Lisna Rahmadani, H. Sulistiani, and F. Hamidy,

<RANCANG BANGUN SISTEM INFORMASI
AKUNTANSI JASA CUCI MOBIL (STUDI

KASUS : CUCIAN GADING PUTIH),= Jurnal

Teknologi dan Sistem Informasi (JTSI), vol. 1, no. 1,

pp. 22–30, 2020, [Online]. Available:

http://jim.teknokrat.ac.id/index.php/sisteminformasi

[21] A. R. Hevner, <A Three Cycle View of Design
Science Research,= 2007.

