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Abstract—The optimization of Base Transceiver Station (BTS) 
location is a major challenge in current urban areas, owing to 
fast population increase and rising need for high-performance 
communications networks. This paper describes a revolutionary 
strategy to BTS deployment that employs advanced clustering 
algorithms to improve network performance and coverage in 
densely populated urban locations. Four clustering algorithms are 
assessed, including K-Means, DBSCAN, Hierarchical Clustering, 
and K-Medoids, while taking into account urban variables 
such as housing density, land use, and geographic distribution. 
The paper makes two major contributions: dynamic change of 
the K-Means algorithm’s cluster count and efficient centroid 
initialization using real-world urban data. Geodesic distance 
measures are used to examine the spatial relationships between 
BTS locations, resulting in more accurate and efficient tower de- 
ployment. Experimental results show that the modified K-Means 
algorithm beats the other techniques, with a Calinski-Harabasz 
index of 1662.46 and a Davies-Bouldin index of 0.868, showing 
improved cluster cohesiveness and separation. This technique 
lowers deployment costs while improving network coverage, 
resulting in more precise BTS placement and better resource 
use. These findings fill a gap in the literature by providing 
vital insights into data-driven urban optimization methodologies. 
They also have substantial implications for the planning and 
development of smart city infrastructure, furthering the future 
of wireless network architecture in urban contexts. 

Index Terms—telecommunication optimization, base 
transceiver station (BTS), clustering algorithms, geodesic 
measurement. 

 

I. INTRODUCTION 

In Indonesia, the rise of urban populations, expected to 

reach 68% by 2035, intensifies the need for smart cities to 

address urban challenges through advanced infrastructure and 

technology. Cities like Bandung aim to improve the quality 

of life by integrating ICTs for efficient resource management 

and responsive public services [1]. Key initiatives, such as 

Bandung’s Command Center, exemplify steps toward real-time 

urban monitoring, aligning with national goals for sustainable, 

digitally connected cities [2]. 

To meet the growing demands for connectivity, establishing 

robust infrastructure, particularly strategically positioned Base 

Transceiver Station (BTS) towers, is essential. These towers 

are the backbone of telecommunication networks, providing 

critical coverage and data transmission capabilities that enable 

seamless connectivity for millions of users. However, tradi- 

tional methods for tower placement often need help in complex 

urban environments such as Bandung. The city’s diverse 
geography and demographics necessitate adaptive, data-driven 

strategies for optimizing BTS placement. Specifically, these 

systems must consider population density, building layouts, 

and geographic features, significantly influencing coverage and 

signal distribution [3]. 

Clustering algorithms present a powerful method for un- 

covering spatial patterns within large datasets, enabling tele- 

com providers to make informed decisions regarding tower 

placements that maximize coverage, minimize interference, 

and optimize deployment costs. This paper explores four 

prominent clustering techniques: K-Means, DBSCAN, Hierar- 

chical Clustering, and K-Medoids, assessing their scalability, 

efficiency, and applicability to the complex urban environment 

of Bandung. The goal is to determine which method is most 

suited for supporting strategic infrastructure deployment in 

such a setting. 

The appropriate number of clusters may be automatically 

determined, and cluster centers can be dynamically initialized 

thanks to a new addition to the K-Means algorithm, which 

incorporates a noise algorithm. This advancement significantly 

improves clustering performance, particularly in identifying 

urban hotspots more effectively [4], [5]. On the other hand, 

multi-density clustering algorithms like DBSCAN and its vari- 

ants perform well in urban environments with fluctuating pop- 

ulation densities, as they are capable of detecting multiple den- 

sity regions and nested clusters, offering notable advantages 

in complex city layouts [6], [7], [8]. Several methods have 

been proposed to optimize hierarchical clustering, including 

one that uses centroids to represent groups of adjacent points, 

which reduces computational costs without sacrificing perfor- 

mance [9]. Another technique presents a hierarchical clustering 

algorithm that is extremely effective and runs in linear time. 

This method can be thought of as a hierarchical grid-based 

strategy [10]. Additionally, A refined K-Medoids algorithm 
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demonstrates enhanced performance compared to traditional 

methods. It achieves improved accuracy and computational 

efficiency by progressively fine-tuning the medoid selection 

process and optimizing the number of clusters. This approach 

leads to better cluster cohesion and separation, making it 

particularly well-suited for this investigation [11]. 

The study’s objectives are to conduct a comparative analysis 

and determine the best clustering technique to maximize 

telecom tower placement within the unique urban environ- 

ment of Bandung. The findings suggest potential for broader 

applications in urban planning, offering adaptable and scal- 

able solutions to support the ongoing development of digital 

infrastructure in Indonesia and globally. 

II. RELATED WORK 

 

A major research topic is optimizing BTS locations in 

urban environments, particularly to optimize coverage while 

reducing interference in densely populated regions. Numerous 

clustering methods have been investigated to enhance this pro- 

cedure. For instance, Li et al. added noise-handling capabilities 

to the classic K-Means algorithm, improving its stability in 

crowded conditions and enabling it to detect urban hotspots 

[4]. 

To overcome the drawbacks of the standard DBSCAN 

method, which is sensitive to factors like ϵ and minPts, Liu 

et al. developed Multi-Scaled DBSCAN (M-DBSCAN). M- 

DBSCAN, an enhanced version of DBSCAN, adjusts these 

parameters locally to better handle clusters of varying densities 

and sizes. This approach reduces uncertainty in cluster identifi- 

cation and minimizes noise. When the technique was applied 

to geotagged data from cities like Madison, Wisconsin, and 

Washington, D.C., it demonstrated an efficient identification 

of sparse clusters, improving clustering accuracy in urban 

environments [8]. 

The computing efficiency of hierarchical clustering al- 

gorithms has increased recently. Innovations such as grid- 

based and centroid-based hierarchical algorithms have re- 

duced the computing load without compromising accuracy, 

even though classic hierarchical clustering can be resource- 

intensive. Bouguettaya et al. presented a centroid-based ag- 

glomerative hierarchical clustering method that effectively 

manages large datasets, making it highly suitable for appli- 

cations in urban planning [9]. 

The K-Medoids technique also works well for BTS place- 

ment optimization. Yu et al. suggested an enhanced version 

of K-Medoids that gradually improves medoid selection to 

increase clustering efficiency while maintaining placement 

accuracy. This makes the technique especially useful in urban 

settings, where selecting accurate cluster centers is crucial for 

successful BTS deployment [11]. 

Although these methods have contributed to BTS location 

optimization, a clear gap exists in terms of dynamic cluster 

count determination and centroid initialization for urban en- 

vironments. While methods like K-Means, DBSCAN, and K- 

Medoids have been extensively studied, they do not address the 

challenges of automatic determination of the optimal number 

of clusters or real-time adjustment of cluster centers, which are 

essential for urban areas with fluctuating population densities 

and complex spatial layouts. Furthermore, while M-DBSCAN 

and hierarchical clustering algorithms have been explored for 

handling different densities, none have fully integrated dy- 

namic parameter adjustments specific to urban hotspot identifi- 

cation. This study aims to bridge these gaps by introducing an 

enhanced K-Means algorithm with dynamic cluster count de- 

termination and centroid optimization, incorporating geodesic 

measurements for more accurate spatial clustering in urban 

environments. This approach offers significant improvements 

in clustering quality and BTS placement accuracy, particularly 

in complex urban landscapes such as Bandung. 

This research compares these clustering algorithms to eval- 

uate their applicability to Bandung’s urban landscape. The 
study aims to provide important data-driven insights to help 

optimize telecommunications infrastructure in accordance with 

Indonesia’s smart city development goals. 
 

III. MATERIAL AND RESEARCH METHOD 

 

A. Datasets 

This study uses two primary datasets from Open Data 

Bandung for optimizing telecommunication tower placement 

in Bandung’s urban environment: 
1. Telecommunication Tower Data: This dataset includes 

detailed information about the locations, types, and tech- 

nical specifications of telecommunication towers in Ban- 

dung. It is essential for spatial analysis, helping assess the 

distribution of BTS and their effectiveness in network 

coverage. This dataset is the foundation for optimizing 

tower placement to improve connectivity [12]. 

2. Residential Data: Sourced from Open Data Bandung, this 

dataset contains information on the number and distribution 

of residential buildings across Bandung. It provides vital 

insights into population density, a critical factor for 

assessing the demand for telecommunication services. This 

dataset also includes geographical coordi- nates, building 

heights, and floor area data. It is used to model the 

distribution of people and their proximity to existing 

telecommunication towers, which is crucial for strategically 

positioning BTS towers. The data was cleaned and 

normalized to ensure consistency, and miss- ing values were 

imputed based on statistical methods to ensure 

completeness [13]. 

The datasets were carefully processed, cleaned, and inte- 

grated to ensure alignment, establishing a solid foundation for 

the subsequent evaluation. 

 

B. Data Collection and Preprocessing 

The datasets used in this study were sourced from Open 

Data Bandung, which provides geospatial information related 

to telecommunication tower locations and residential areas 

within Bandung. The preprocessing of these datasets involved 

several key steps to ensure data quality and suitability for 

clustering analysis. 
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K 

Σ Σ 

1. Data Cleaning: The raw datasets were subjected to a 

comprehensive cleaning process to eliminate any anomalies. 

Outliers and erroneous entries, such as inaccurate geographic 

coordinates or invalid technical specifications of telecommu- 

nication towers, were identified and rectified. Missing values 

in the residential dataset were addressed by suitable impu- 

tation methods, specifically mean imputation for continuous 

variables and mode imputation for categorical variables. This 

step ensured the integrity and consistency of the data for 

subsequent analysis. 

2. Normalization: To address the issue of disparate data 

scales, particularly the geographic coordinates and technical 

specifications, normalization techniques were applied. The 

geographical data were normalized using min-max scaling to 

bring all values into a comparable range. For the technical 

specifications of the telecommunication towers, Z-score nor- 

malization was employed to standardize the data distribution. 

This preprocessing step was essential in averting characteris- 

tics with greater numerical ranges from significantly affecting 

the clustering outcomes. 

3. Data Integration: Following the preprocessing steps, the 

telecommunication tower and residential data were inte- 

grated within a Geographic Information System (GIS). This 

integration facilitated spatial analysis and allowed for the 

visualization of the data in relation to geographic proximity 

and population density. By combining these datasets in a 

GIS environment, a comprehensive spatial understanding of 

the urban infrastructure was achieved, providing a robust 

foundation for the clustering analysis aimed at optimizing 

telecommunication tower placement. 

C. Overview of Clustering Algorithms 

 This study employs four clustering techniques: K-Means, 

Hierarchical Clustering, DBSCAN, and K-Medoids, each uti- 

lizing a distinct approach for partitioning the data: 

1. K-Means: By minimizing the objective function, the K- 

Means algorithm seeks to divide data into K clusters, as 

shown in: 

K 

min xj − ci 
 2 (1) 

c1,...,cK 

i=1 xj ∈Si 

In this formulation, K denotes the total number of 

clusters, where Si represents the i-th cluster, xj refers to 

a data point in cluster Si, and ci stands for the centroid of 

Si. The term  xj −ci 
 2 represents the squared Euclidean 

distance between the data point xj and its associated 

centroid ci. The clustering process aims to minimize the 
objective function in (1). 

2. DBSCAN: DBSCAN uses the density of data points to 

find clusters. According to this method, a core point is 

comprised of at least MinPts points at a specific radius 

ϵ. The core distance p of a point is defined as follows: 

where Nϵ(p) represents the neighborhood of p within 

radius ϵ, and the Euclidean distance between points p and 

q is  p −q  . The core distance is calculated as shown in 

(2). 

3. Hierarchical Clustering: By repeatedly combining the 

nearest clusters according to a distance measure, hi- 

erarchical clustering creates a structure resembling a 

tree (dendrogram). The following formula determines the 

separation between two points xi and xj: 

D(i, j) =  xi − xj  2 (3) 

where the Euclidean distance is indicated by  ·  2. Every 

data point is first regarded as a separate cluster. Until the 

required number of clusters is achieved, the algorithm 

then gradually merges the closest clusters according to 

the smallest pairwise distance, as indicated in (3). 

4. K-Medoids: K-Medoids clustering, like K-Means clus- 

tering, uses real data points, or medoids, to indicate 

the cluster center instead of the mean. Reducing the 

overall dissimilarity within the clusters is the goal. The 

K-Medoids cost function has the following definition: 

J′ = 
Σ Σ 

δ(x, mk) (4) 

k=1 x∈Sk 

In this formulation, K denotes the total number of 

clusters, and Sk denotes the set of data points within 

the k-th cluster. Each point x within Sk is evaluated 

against the cluster’s medoid mk. The function δ(x, mk) 

quantifies the dissimilarity between a data point x and its 

corresponding medoid mk. By minimizing J′ in (4), this 

approach seeks to reduce the overall dissimilarity within 
clusters, leading to more compact and representative 

clusters. 

The applied clustering algorithms segment the data, facili- 

tating its analysis to determine the optimal placement of Base 

Transceiver Stations (BTS) by leveraging both telecommuni- 

cation tower and residential datasets. The outcomes of the 

four AI-based models are effectively illustrated in Fig. 1, 

demonstrating their performance in partitioning the data for 

enhanced network planning. 

 

D. Geodesic Measurement Method 

The Vincenty formula is used in this study to determine the 

geodesic distance between telecom towers [19]. This method 

accounts for the Earth’s ellipsoidal shape, providing a more 
accurate measurement than traditional Euclidean distance cal- 

culations. The formula is implemented in Python using the 

geopy library. 

The Vincenty formula calculates the separation distance d 

between two locations on the Earth’s surface based on their 
latitudinal and longitudinal coordinates (ϕ1, λ1) and (ϕ2, λ2), 

as shown in (5). 

CoreDist(p) = min 
{q∈Nϵ(p)} 

p – q  (2) 
 

d = geodesic(ϕ1, λ1, ϕ2, λ2) (5) 
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(a) K-Means clustering result (b) DBSCAN clustering result 

 

© Hierarchical clustering result (d) K-Medoids clustering result 

FIG. 1.  

Visualization of various clustering techniques: (a) K- Means, (b) DBSCAN, 

(c) Hierarchical, (d) K-Medoids. 

 

Where ϕ1, λ1 represent the latitude and longitude of the first 

point, and ϕ2, λ2 correspond to the second point. The resulting 

distance is provided in kilometers. 

Table I presents sample distances between Tower 1479 and 

several neighboring towers, all calculated using the Vincenty 

geodesic method. 
TABLE I:  

Sample Distances Between Tower 1479 and Neigh- boring Towers 
 

Tower ID 1 Tower ID 2 Distance (km) 
1479 1530 8.08 
1479 1531 11.07 
1479 1532 6.29 
1479 1533 2.52 
1479 1534 0.38 
1479 1535 4.78 
1479 1536 10.54 
1479 1537 10.88 
1479 1538 5.98 
1479 1539 8.93 
1479 1540 9.54 
1479 1541 4.81 
1479 1542 8.09 

1479 1543 8.50 

The spatial relationships between the towers are further 

illustrated through a heatmap Fig. 2. This heatmap visually 

represents the distance matrix, with shorter distances in darker 

shades, allowing for easy identification of nearby towers. 

 

E. Evaluation Metrics 

The clustering models’ performance was assessed using 
several widely used Evaluation measures, including Davies- 

Bouldin, Calinski-Harabasz, and Silhouette. These measures 

add to our understanding of the quality and effectiveness 

of clustering results. Fig. 3 summarizes the performance 

outcomes 

 

 

 

 

 

 

 

 

 
FIG. 2.  

Distance matrix heatmap for telecommunication towers. 

 

 

1. Silhouette Score: The silhouette is frequently used in 

k-means clustering to figure out how many groups are 

appropriate. A higher Silhouette Score indicates well- 

defined clusters, with the best value of k yielding the 

highest score, thereby ensuring optimal clustering perfor- 

mance [14], [15]. 

2. Calinski-Harabasz Score: In order to evaluate the qual- 

ity of clustering, this metric calculates the separation 

between clusters as well as the compactness inside them. 

Better performance is shown by higher values, which 

show that the clusters are closer together and more 

distinct from one another. [16], [17]. 

3. Davies-Bouldin Score: By computing the average sim- 

ilarity between each cluster and its closest comparable 

counterpart, the Davies-Bouldin Score assesses how dif- 

ferent a cluster is. Better separation between clusters is 

shown by a lower Davies-Bouldin Score, which shows 

the clusters are more distinct and less alike. [18]. 

 

Fig. 3. Clustering performance comparison using Silhouette, 

Calinski-Harabasz, and Davies-Bouldin metrics, highlighting 

K-means as the best method. 
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Compared to other models, the K-means clustering method 

performs better across all evaluation criteria, as shown in Fig. 

3. K-means, in particular, had the highest Calinski-Harabasz 

Score, suggesting improved cluster separation and cohesion. 

It also had the lowest Silhouette and Davies-Bouldin Scores, 

demonstrating its capacity to create clear, distinct clusters. 

These results demonstrate how well K-means clusters con- 

sistently outperform other models in clustering quality across 

all three parameters. 

The comparative analysis decisively demonstrates that K- 

means provides this dataset’s most effective clustering solu- 

tion. It routinely beats other algorithms in terms of cluster 

cohesiveness & separation, making it the ideal candidate for 

this investigation. 

IV. RESULTS AND DISCUSSION 

This section provides an analytical assessment of the cluster- 

ing performance on the telecom tower dataset. Davies-Bouldin, 

Calinski-Harabasz, and Silhouette were the three evaluation 

metrics used. Every metric offers a different perspective on 

how cohesive, distinct, and separated the clusters are. 

A. Clustering Model Evaluation 

The efficiency of four cluster methods 4 K-means, Hierar- 

chical, DBSCAN, and K-Medoids4was evaluated, as shown 

in Table II. With the lowest Davies-Bouldin Score and the 

highest Calinski-Harabasz and Silhouette Scores, K-means 

continuously outperformed the others, demonstrating its ability 

to create distinct clusters. 
TABLE II:  

Comparison of Clustering Model Performance Across Evaluation Metrics 
 

Model Silhouette Calinski-Harabasz Davies-Bouldin 
K-means 0.446 1662.46 0.868 
DBSCAN -1.000 -1.000 -1.000 

Hierarchical 0.377 1622.11 0.885 

K-Medoids 0.441 1642.85 0.877 

 

B. Discussion 

Fig. 4 illustrates the spatial distribution of telecommuni- 

cation towers based on the results of K-means clustering 

applied to the dataset. The figure highlights the geographic 

distribution of the towers, plotted according to their latitude 

and longitude, with distinct clusters representing regions of 

high residential density. These clusters offer insight into the 

strategic placement of towers and how they are influenced by 

population distribution, ensuring optimal network coverage. 

The K-means algorithm partitions the towers into meaningful 

groups that align with urban residential patterns, allowing for 

more efficient network planning. 

The K-means clustering algorithm effectively groups 

telecommunication towers based on proximity to residential 

areas and coverage potential. It identifies optimal tower lo- 

cations in densely populated areas, with taller towers placed 

strategically to extend signal coverage, considering geograph- 

ical factors like elevation. 

 

 
FIG. 4.  

Spatial distribution of telecommunication towers: re- sults of K-means 

clustering. 

 

 

The analysis of the x-axis (longitude) and y-axis (latitude) in 

the plot can guide the identification of potential sites for future 

tower placements. This approach underscores K-means’ capa- 

bility to integrate both geographic and demographic variables, 

offering actionable insights for informed decision-making in 

telecommunication infrastructure development. 

 

FIG. 5.  

Elbow method for determining the optimal number of clusters (K = 4). 

 

The Elbow approach, a crucial strategy for figuring out the 

ideal number of clusters for K-means, as illustrated in Fig. 5. 

The curve shows an inflection point at K = 4, which indicates 

the ideal number of clusters to balance computing efficiency 

and clustering quality. This value of K was selected to refine 

the clustering process and improve the precision of tower 

placement recommendations, thereby enhancing the overall 

network planning and coverage optimization. 
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V. CONCLUSION 

This study demonstrates that the enhanced K-Means clus- 

tering algorithm outperforms DBSCAN, Hierarchical Cluster- 

ing, and K-Medoids in optimizing telecommunication tower 

placement in urban environments. The evaluation measures, in- 

cluding the Calinski-Harabasz index (1662.46) and the Davies- 

Bouldin index (0.868), reveal that K-Means has superior intra- 

cluster cohesiveness and inter-cluster separation. By consider- 

ing factors such as population density, geographic features, and 

urban infrastructure, this approach improves network coverage 

and signal distribution. The findings suggest that K-Means is 

a robust method for strategic telecommunication planning and 

can play a significant role in smart city development. 

This work highlights the potential of the K-Means algorithm 

for optimizing telecommunications infrastructure, which is 

crucial for enhancing network reliability and coverage in com- 

plex urban settings. Future research could focus on integrating 

real-time data analytics for dynamic adaptation to changing 

urban environments. Furthermore, combining K-Means with 

reinforcement learning techniques for long-term optimization 

and applying this method to other cities could expand its appli- 

cability. AI-driven predictive models for urban growth could 

also enhance the accuracy of tower placement, contributing to 

the effective development of telecommunication infrastructure 

globally. 
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