ISSN : 2355-9365

e-Proceeding of Engineering : Vol.12, No.3 Juni 2025 | Page 3860

Implementasi Mikroservis Untuk Monitoring
Kualitas Air Kolam Budidaya Ikan Berbasis IoT

1%t Nathanael Dwi Cahyo
School of Electrical Engineering
Telkom University
Bandung, Indonesia
nathanaeldwi@student.telkomuniversit

y.ac.id

4™ Luthfia Caesa Roselina
School of Electrical Engineering
Telkom University
Bandung, Indonesia

2" Muhammad Rifqi Alhisyam
School of Electrical Engineering
Telkom University
Bandung, Indonesia

alhisyam@student.telkomuniversity.ac.

3" Muhammad Hasbi Nurhadi
School of Electrical Engineering
Telkom University
Bandung, Indonesia
hasbinurhadi@student.telkomuniversity

id

5t Sofia Naning Hertiana
School of Electrical Engineering
Telkom University
Bandung, Indonesia
sofiananing@telkomuniversity.ac.id

.ac.id

6™ Danu Dwi Sanjoyo
School of Electrical Engineering
Telkom University
Bandung, Indonesia

luthfiaacr@student.telkomuniversity.ac.

danudwj@telkomuniversity.ac.id

id

Abstrak — Implementasi sistem monitoring kualitas air
berbasis IoT menjadi penting untuk mendukung ekosistem dan
produktivitas ikan. Metode manual sering tidak efisien,
sementara sistem IoT yang ada kurang fleksibel dan skalabel.
Penelitian ini mengusulkan arsitektur mikroservis berbasis IoT
yang mengintegrasikan sensor pH, suhu, dan kekeruhan dengan
Cloud Firestore untuk penyimpanan data. Mikroservis
membagi tugas ke dalam beberapa container, memungkinkan
pengolahan data yang fleksibel dan terdistribusi. Hasil
pengujian menunjukkan akurasi tinggi (pH 92,47%, suhu
98,27%, kekeruhan 97,46%), penggunaan data rendah (5,8
MB/hari), dan latensi rata-rata 499 ms. Sistem ini efektif dan
berpotensi diterapkan dalam budidaya ikan.

Kata kunci— Budidaya ikan, Internet of Things, Kualitas air,
Mikroservis, Sistem monitoring

I. PENDAHULUAN

A. Latar Belakang

Seiring dengan perkembangan teknologi informasi,
kebutuhan akan pengelolaan jaringan yang efisien dan
fleksibel semakin meningkat. Di tengah tantangan tersebut,
arsitektur jaringan monolitik telah muncul sebagai solusi
yang sangat potensial. Arsitektur monolitik memungkinkan
penempatan semua fungsi dan fitur secara terpusat dalam satu
aplikasi tunggal yang besar. Penggunaan arsitektur monolitik
umumnya digunakan sebagai otak dari seluruh jaringan.
Namun, pendekatan ini memiliki beberapa kelemahan yang
signifikan. Salah satunya adalah ketergantungan pada satu
titik kegagalan tunggal yang dapat menyebabkan kerentanan
kinerja yang buruk dalam skala yang besar. Selain itu,
perubahan dalam konfigurasi atau kebijakan jaringan sering
kali memerlukan pemeliharaan atau peningkatan pada
keseluruhan sistem, yang dapat menjadi proses yang rumit
dan berisiko [1].

Untuk mengatasi kelemahan tersebut, pendekatan baru
telah muncul dengan menggunakan model arsitektur
mikroservis. Dengan model ini, fungsi layanan yang

sebelumnya terkonsentrasi dalam satu kontrol layanan yang
besar, dipisahkan menjadi sejumlah layanan kecil yang
independen [2]. Setiap mikroservis bertanggung jawab atas
tugas-tugas spesifik dalam pengelolaan jaringan, seperti
manajemen layanan atau aliran data. Penggunaan arsitektur
mikroservis membawa beberapa manfaat yang signifikan.
Pertama, memecah fungsi kontrol menjadi layanan kecil yang
dapat mengurangi dampak dari kegagalan tunggal,
meningkatkan keandalan dan ketahanan jaringan secara
keseluruhan. Kedua, memungkinkan perubahan dan
peningkatan pada satu bagian dari sistem tanpa
mempengaruhi keseluruhan jaringan, mempercepat waktu
penerapan dan mengurangi resiko kesalahan. Selain itu,
dengan skala yang lebih kecil dan independen, mikroservis
memfasilitasi penyesuaian dan skalabilitas yang lebih baik
dalam lingkungan jaringan yang berubah dengan cepat [3].

Dengan demikian, transisi dari arsitektur monolitik ke
model arsitektur mikroservis menawarkan solusi yang lebih
efisien, handal, dan fleksibel untuk pengelolaan jaringan
modern. Dengan mengadopsi arsitektur mikroservis
penelitian ini melakukan uji coba dengan penerapan
arsitektur mikroservis dalam jaringan internet of things
monitoring kolam budidaya ikan, sehingga jaringan dapat
lebih responsif terhadap perubahan lingkungan kolam ikan,
lebih mudah diatur, dan lebih andal dalam menghadapi
tantangan yang semakin kompleks dalam dunia jaringan yang
terus berkembang. Penelitian ini bertujuan untuk
mengembangkan sistem menggunakan arsitektur
mikroservis. Penelitian ini akan dilakukan di PT Helmi Farm
Mandiri, sebuah kawasan pengembangan budidaya ikan di
Universitas Telkom Bandung, Jawa Barat. Langkah ini tidak
hanya memperbaiki kinerja jaringan, tetapi juga
meningkatkan skalabilitas dan efisiensi operasional secara
keseluruhan, menghadirkan infrastruktur jaringan yang siap
menghadapi tantangan masa depan [4].
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B. Analisis Masalah

Dari hasil latar belakang dapat disimpulkan bahwa ada
beberapa analisa masalah

1. Ketergantungan pada  Arsitektur ~ Monolitik.
Arsitektur monolitik memiliki satu titik kegagalan
yang dapat menyebabkan kinerja jaringan menjadi
tidak stabil, terutama dalam skala besar.

2. Kesulitan dalam Pemeliharaan dan Skalabilitas.
Perubahan atau peningkatan pada sistem monolitik
memerlukan pemeliharaan seluruh sistem, yang
rumit dan berisiko serta menghambat fleksibilitas
dalam pengelolaan jaringan.

3. Kebutuhan akan Jaringan yang Lebih Fleksibel dan
Responsif. Dalam konteks monitoring kolam
budidaya ikan, jaringan harus dapat beradaptasi
dengan perubahan lingkungan dengan cepat, yang
sulit dicapai menggunakan pendekatan monolitik.

C. Tujuan

Berdasarkan latar belakang dan analisis masalah yang
ada, ada beberapa tujuan dibuatnya penelitian terkait
diantaranya, pengembangan layanan IoT dengan arsitektur
mikroservis mengatasi kelemahan arsitektur monolitik
dengan memisahkan fungsi kontrol menjadi layanan
independen. Pendekatan ini meningkatkan keandalan,
fleksibilitas, dan skalabilitas jaringan serta memungkinkan
perubahan tanpa mengganggu sistem secara keseluruhan.
Dengan mikroservis, aplikasi IoT budidaya ikan menjadi
lebih efisien, handal, dan siap menghadapi tantangan jaringan
di masa depan.

II. KAIJIAN TEORI

Implementasi mikroservis dalam layanan budidaya ikan
berbasis IoT harus mempertimbangkan berbagai aspek
penting, termasuk izin dan regulasi, standar teknis, serta
interoperabilitas. Regulasi seperti Peraturan Menteri
Kelautan dan Perikanan Nomor 26 Tahun 2021 mewajibkan
pemantauan kualitas air secara berkala, sementara standar
teknis mikroservis harus memastikan modularitas,
skalabilitas, dan isolasi layanan untuk meningkatkan
keandalan sistem. Selain itu, aspek interoperabilitas perlu
diperhatikan agar layanan dapat berintegrasi dengan
perangkat IoT dan sistem lain sesuai dengan regulasi yang
berlaku.

Monitoring dan manajemen layanan mikroservis juga
menjadi faktor krusial dalam memastikan kinerja sistem tetap
optimal. Sistem ini harus dilengkapi dengan pemantauan rea/
time serta audit berkala untuk memastikan kepatuhan
terhadap regulasi dan standar teknis. Selain itu, konservasi
lingkungan perlu diperhatikan dengan memastikan teknologi
IoT yang diterapkan mendukung pengelolaan sumber daya
air yang berkelanjutan, sejalan dengan prinsip-prinsip
ekologi dalam peraturan perikanan.

Aspek hak dan kewajiban pengguna juga perlu diperjelas
melalui edukasi yang memadai agar pemanfaatan layanan
IoT dapat dilakukan dengan benar dan sesuai aturan. Dengan
mempertimbangkan semua aspek ini secara menyeluruh,
implementasi mikroservis dalam budidaya ikan berbasis IoT
diharapkan tidak hanya memenuhi standar keamanan dan
regulasi, tetapi juga mendorong inovasi serta keberlanjutan
industri perikanan di Indonesia.
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A. Batasan dan Spesifikasi

1. Sensor mikrokontroler dapat mengumpulkan data,
perangkat mikrokontroler harus mampu
mengumpulkan data mengenai kondisi air di kolam
ikan melalui sensor pH, sensor suhu, dan sensor
kekeruhan air. Selain itu, mikrokontroler dapat
memproses data dengan kecepatan lebih dari 160
MHz, dan akurasi lebih dari 90% memastikan
analisis yang cepat dan efisien.

2. Perangkat mikrokontroler dapat terhubung dengan
internet, perangkat mikrokontroler harus terhubung
dengan koneksi internet, dengan kecepatan
pengiriman data lebih dari 150 Mbps.

3. Perangkat mikrokontroler terintegrasi dengan
database,  perangkat  mikrokontroler  harus
terintegrasi dengan database agar dapat mengirim
data yang telah didapatkan ke database kurang dari
500 milidetik [5].

4. Website dapat menampilkan data secara real time,
Dalam pembudidayaan ikan mengetahui kualitas air
secara real time sangatlah penting, oleh karena itu
sensor harus dapat mengirim data ke database
secara real time dan website dapat menampilkan
data yang didapatkan oleh sensor mikrokontroler
secara real time kepada pengguna dengan latensi
kurang dari 1 detik [6].

5. Website membagi layanan dan database secara
terpisah, penggunaan arsitektur mikroservis atau
bisa disebut membagi layanan secara terpisah, dapat
sangat berguna dalam pengembangan budidaya ikan
berbasis 10T, karena jika salah satu layanan dari
sistem mengalami masalah, masalah tersebut tidak
akan mempengaruhi komponen-komponen lainnya.

6. Mikroservis, adalah pendekatan arsitektur perangkat
lunak yang membagi aplikasi menjadi layanan kecil,
independen, dan modular. Setiap layanan memiliki
tanggung jawabnya sendiri dan berkomunikasi
dengan layanan lain melalui API (d4pplication
Programming  Interface).  Pendekatan  ini
menawarkan beberapa keuntungan untuk sistem
pemantauan kualitas air real time, yaitu dari segi
skalabilitas, ketahanan dan kemudahan

pengembangan dan pemeliharaan. Dengan waktu
autoregenerasi kurang dari 13 detik.

B. Metode Uji Pengukuran Spesifikasi

TABEL 1
(Spesifikasi dan Verifikasi)
S Mekanisme Prosedur
Pengukuran Pengukuran
Mikrokontroler Uji  kecepatan | Hubungkan sensor
mengumpulkan data | dan akurasi data | ke mikrokontroler,
sensor pH, suhu, amati kecepatan
dan kekeruhan pengambilan dan
(>160 MHz, akurasi pemrosesan data
>90%)
Mikrokontroler Cek koneksi | Instal Arduino IDE,
harus terkoneksi | melalui  serial | hubungkan
internet (>150 | monitor di | mikrokontroler, atur
Mbps) Arduino IDE baud rate, amati
status koneksi
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Mikrokontroler Uji pengiriman | Program

mengirim data ke | data dengan | mikrokontroler

database  dalam | HTTP GET kirim  permintaan

<500 ms GET, amati respons
database

Sensor  mengirim | Uji  kecepatan | Hubungkan sensor,
data real time | pengiriman data | amati latensi dan
dengan delay <1 | ke database dan | pemrosesan data

detik tampilan di
website
Menggunakan Monitor lalu | Gunakan  Docker,

mikroservis untuk | lintas
ketahanan sistem

layanan | cek status layanan
dan database dan alokasi sumber

daya
Mikroservis Evaluasi kinerja | Pantau latensi antar-
autoregenerasi dan skalabilitas | mikroservis,
dalam <13 detik sistem sinkronisasi data,
dan ketersediaan
layanan
III. METODE

A. Desain Sistem

Desain sistem yang akan dirancang terdiri dari tiga
subsistem utama yaitu subsistem hardware sebagai masukan,
lalu subsistem pengiriman data ke database, yang terakhir
subsistem aplikasi atau web application sebagai keluaran.
Berikut merupakan hubungan antar subsistem yang
dirancang menjadi satu sistem.

Ameabene Halamarn Wabisie

GAMBAR 1
(Desain Sistem secara Umum)

Pada Gambar 1, sistem pemantauan kualitas air kolam
ikan berbasis [oT terdiri dari tiga subsistem utama: hardware,
pengiriman data, dan aplikasi. Subsistem hardware
menggunakan sensor pH, suhu, dan kekeruhan untuk
mengumpulkan data kualitas air, yang kemudian dikirimkan
secara real time melalui subsistem pengiriman data
menggunakan ESP32 ke database terintegrasi. Selanjutnya,
subsistem aplikasi mengolah dan menampilkan data melalui
dashboard web untuk memudahkan pengguna dalam analisis
dan pengambilan keputusan. Metode penelitian mencakup
perancangan, implementasi, dan pengujian setiap subsistem
guna memastikan akurasi sensor, keandalan transmisi data,
serta efektivitas visualisasi informasi. Integrasi ketiga
subsistem ini menciptakan sistem pemantauan yang efisien
dan mudah diakses guna mendukung keberlanjutan budidaya
ikan.

i. Subsistem Hardware
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1 Pengambilan
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H
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Keduaran
GAMBAR 2
(Subsistem Hardware)

Berdasarkan Gambar 2, subsistem hardware
berperan dalam pengumpulan data awal dari sensor pH,
suhu, dan kekeruhan. Data yang dihasilkan berupa nilai
mentah ADC (Analog-to-Digital Conversion) kemudian
dikonversi oleh ESP32 menjadi satuan yang dapat
digunakan, seperti suhu (°C), kekeruhan (NTU), dan pH.
Proses ini memastikan data yang akurat dan terkalibrasi
untuk tahap pengolahan berikutnya, mendukung
pengambilan keputusan yang tepat.

ii. Subsistem Pengiriman Data

Database Resull (ph.
subhu, kekeruhan}

ESP32 t Database sansor

Database sensaf ph | kakerunan

Dalabase senzor
suhy

GAMBAR 3
(Subsistem Pengiriman Data)

Berdasarkan Gambar 3 yang menunjukkan bahwa
data yang telah diolah oleh ESP32 akan dikirimkan ke
masing-masing database sensor, yaitu database sensor
pH, database sensor suhu, database sensor kekeruhan,
dan database result untuk menyimpan 3 nilai sensor
dalam satu waktu, maka subsistem ini mencerminkan
pendekatan  arsitektur berbasis mikroservis yang
terdistribusi.

iii. Subsistem Aplikasi
Pada subsistem aplikasi, akan dibagi menjadi dua
bagian utama, yaitu frontend dan backend, yang masing-
masing memiliki peran dan fungsi spesifik untuk
mendukung operasional aplikasi secara keseluruhan.

1. Frontend

Bagian ini berfungsi sebagai antarmuka
pengguna (UI/UX) yang memungkinkan interaksi
langsung dengan sistem. Frontend dirancang agar
intuitif dan responsif, menampilkan data real time,
grafik visualisasi kualitas air (pH, suhu, kekeruhan),
serta notifikasi status. Selanjutnya, diagram alir
akan menjelaskan alur interaksi pengguna dengan
aplikasi, merinci langkah-langkah utama dalam
operasional sistem.
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GAMBAR 4
(Alur Penggunaan Aplikasi)

Pada diagram alur di Gambar 4, proses dimulai
dari landing page, di mana pengguna dapat memilih
untuk log in atau mendaftar jika belum memiliki
akun. Setelah masuk, pengguna diarahkan ke menu
utama yang menyediakan berbagai fitur aplikasi.
Jika memilih log out, sistem akan mengembalikan
pengguna ke landing page untuk keluar dengan
aman. Diagram ini menggambarkan jalur navigasi
yang jelas, memastikan pengalaman pengguna yang
lancar dan intuitif.

. E—
ol Mo Login
‘)—*— Bust sk
axsukan emai yang /
.-" teiah toutstar | T

Masuik n."a [

untuk mengubah

password yang
eskrimkan pacs emal

_T

Mas _r ka manuy

GAMBAR 5
(Alur Menu Login)

Diagram alur pada Gambar 5 menunjukkan
langkah-langkah  setelah pengguna membuka
halaman log in. Pengguna dapat memilih untuk
memulihkan kata sandi, mendaftar akun baru, atau
langsung masuk dengan kredensial yang benar.
Setelah berhasil masuk, pengguna diarahkan ke
menu utama untuk mengakses fitur aplikasi. Proses
ini dirancang agar fleksibel, memastikan akses yang
mudah dan aman sesuai kondisi akun masing-
masing.
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Landing page

GAMBAR 6
(Alur Menu Utama)

Diagram alur pada Gambar 6 menunjukkan
menu utama aplikasi yang menampilkan informasi
real time tentang pH, suhu, dan kekeruhan air
kolam. Pengguna dapat memantau kualitas air dan
mengakses fitur history untuk melihat data sensor
dalam bentuk tabel serta analisis yang menyajikan
tren perubahan dalam grafik. Jika pengguna memilih
log out, mereka akan diarahkan kembali ke landing
page. Dengan tata letak yang terorganisir dan
antarmuka intuitif, aplikasi ini mempermudah
pemantauan dan pengelolaan kualitas air kolam.

2. Backend

Bagian backend bertanggung jawab mengelola
lalu lintas data antara mikroservis sensor, database,
dan API yang terhubung ke frontend. Backend
memastikan data dari ESP32 diproses, disimpan,
serta disediakan melalui API yang aman dan efisien.
Selain itu, backend menangani validasi data,
autentikasi pengguna, konfigurasi sistem, dan
komunikasi antar-mikroservis. Dalam Docker,
setiap mikroservis dikemas dalam container untuk
memastikan layanan berjalan terpisah tetapi tetap
terintegrasi. Gambar 3.7 menggambarkan interaksi
antar-mikroservis melalui API dalam mengelola
data sensor, database, dan antarmuka pengguna.

-
user

i

GAMBAR 7
(Alur Data dan Pembagian Mikroservis)

Diagram alur pada Gambar 7 menunjukkan
alur data dan pembagian mikroservis dalam sistem.
Data dari ESP32 dikirim ke masing-masing
database sensor (pH, suhu, kekeruhan, dan hasil
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keseluruhan). Setelah disimpan, server hosting
mendistribusikan  layanan melalui mikroservis
terisolasi, yaitu mikroservis frontend, turbidity,
temperature, dan pH. Masing-masing mikroservis
mengelola dan mengolah data spesifik (kekeruhan,
suhu, dan pH) dan berinteraksi dengan pengguna
melalui frontend. Sistem ini modular,
memungkinkan pengembangan dan pengujian
independen dari setiap mikroservis, yang
meningkatkan keandalan dan kinerja aplikasi secara
keseluruhan.

B.  Implementasi

} Cloud
& '/e Firestore % ‘&

ESPIZ Database |

PR
F P\ S

BHSemo: TevperaturSemer oo Lo

Pembagian Mikroservice

User
Web Application

5 =¥

GAMBAR 8
(Desain Sistem Keseluruhan)

Lele Fish Fond

Pada Gambar 8 di atas, implementasi sistem ini
memanfaatkan perangkat keras dan perangkat lunak yang
diintegrasikan secara menyeluruh guna memberikan
pemantauan real time terhadap kondisi air kolam. Komponen
utama yang digunakan mencakup perangkat keras seperti
mikrokontroler dan sensor, serta perangkat lunak yang
diorganisasikan melalui arsitektur mikroservis dengan
kontainerisasi Docker. Desain alur pada gambar tersebut
menunjukkan keseluruhan proses implementasi mikroservis
untuk monitoring kualitas air kolam budidaya ikan berbasis
IoT.

Perangkat monitoring diletakkan, seperti yang
ditunjukkan pada Gambar 9, di lokasi yang strategis di dekat
kolam budidaya ikan. Pastikan perangkat terhubung ke
sumber listrik yang stabil untuk menjaga kelancaran
operasional. Selain itu, pastikan perangkat telah tersambung
ke jaringan Wi-Fi yang telah dikonfigurasi sebelumnya
dalam program ESP32. Koneksi Wi-Fi yang stabil sangat
penting untuk memastikan data dari sensor dapat dikirimkan
secara real time ke server dan ditampilkan pada aplikasi.
Sebelum pemasangan, lakukan verifikasi ulang terhadap
konfigurasi jaringan, seperti SSID dan password Wi-Fi, agar
perangkat dapat terhubung secara otomatis tanpa gangguan.
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GAMBAR 9
(Desain dan Implementasi Alat)

Thg

i.  Perangkat Keras (Hardware)

GAMBAR 10
(Sirkuit Diagram)

Pada Gambar 10 di atas, adalah sirkuit diagram dari
projek ini, sirkuit dirancang untuk membaca parameter
kualitas air seperti suhu, pH, dan tingkat kekeruhan
(NTU) menggunakan sensor yang terhubung ke
mikrokontroler ESP32. Data yang diperoleh kemudian
ditampilkan pada layar LCD dan dikirimkan secara
berkala ke Firestore melalui koneksi Wi-Fi. ESP32 diatur
untuk berkomunikasi dengan berbagai sensor dan
komponen melalui pin digital maupun analog. Beberapa
pin penting yang digunakan adalah pin GPIOS untuk
koneksi data sensor suhu DS18B20 melalui protokol
OneWire, pin GPIO33 untuk membaca tegangan dari
sensor pH melalui input analog, pin GPIO34 untuk
membaca tegangan dari sensor kekeruhan melalui input
analog, pin GPIO18 (SDA) dan GPIO19 (SCL) untuk
komunikasi I2C dengan LCD 12C.
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GAMBAR /1
(Implementasi Sirkuit Diagram)

Pada Gambar 11 diatas, merupakan implementasi
dari sirkuit diagram yang telah dirancang seperti pada
Gambar 10. Sensor suhu DS18B20 menggunakan
protokol OneWire untuk komunikasi data. Data dari
sensor diteruskan melalui pin digital GPIOS pada ESP32,
yang terhubung ke jalur data sensor suhu. Sensor pH
menghasilkan tegangan analog yang sesuai dengan
tingkat keasaman air. Tegangan ini dibaca melalui pin
analog GP1033 pada ESP32. Nilai ADC kemudian diolah
menggunakan persamaan kalibrasi untuk menghasilkan
nilai pH yang sebenarnya. Sensor kekeruhan bekerja
dengan prinsip fotodioda untuk mendeteksi jumlah
cahaya yang tersebar akibat partikel di dalam air. Nilai
tegangan dari sensor ini dibaca melalui pin analog
GPIO34 dan kemudian dikonversi menjadi nilai NTU
menggunakan fungsi pemetaan dalam kode. LCD I2C
menggunakan  protokol komunikasi I2C  untuk
menampilkan data. LCD ini dihubungkan ke pin SDA
(GPIO18) dan SCL (GPIO19) pada ESP32. Dengan
konfigurasi alamat I2C 0x27, ESP32 dapat mengirimkan
perintah dan data ke LCD untuk menampilkan informasi
yang diperlukan.

Aplikasi (Sofiware)

Pada Gambar 7 Arsitektur sistem berbasis
mikroservis ini dirancang untuk pemantauan kualitas air
kolam ikan menggunakan sensor pH, suhu, dan
kekeruhan. Data dari sensor diproses oleh ESP32 dan
disimpan dalam empat database terpisah, termasuk satu
untuk pemantauan real time. Sistem backend berbasis
mikroservis terdiri dari container-container yang
menangani frontend dan pemrosesan data tiap sensor
secara independen. Keunggulan arsitektur ini terletak
pada skalabilitas, fleksibilitas, dan keandalannya,
memungkinkan  pengembangan, perbaikan, serta
penskalaan tanpa mengganggu keseluruhan sistem.

GAMBAR 13
(Tampilan Landing page 2)

Pada Gambar 12 dan 13 adalah website fishervice yang
dirancang sebagai implementasi sistem pemantauan kualitas
air kolam ikan berbasis mikroservis. Website ini memiliki
beberapa halaman utama yang menyediakan informasi
tambahan. Pada halaman Monitoring, data real time dari
sensor suhu, pH, dan kekeruhan air ditampilkan dan
diperbarui secara otomatis melalui Firebase. Dengan
demikian, pengguna dapat langsung melihat kondisi terkini
kolam ikan. Selain itu, fitur Analyst menyediakan indikator
visual yang membantu dalam memahami tingkat optimal
masing-masing parameter kualitas air.

Halaman Home berfungsi sebagai landing page yang
memperkenalkan Fishervice serta menjelaskan pentingnya
pemantauan kualitas air dalam budidaya ikan. Selain itu,
halaman ini juga menyajikan berbagai artikel informatif,
seperti fakta menarik dan tips dalam menjaga kualitas air
kolam. Dengan arsitektur berbasis mikroservis dan integrasi
Firebase, Fishervice memastikan sistem berjalan secara
efisien, memungkinkan pemantauan kondisi air yang akurat
dan mendukung pengelolaan kolam ikan secara lebih efektif.

IV. HASIL DAN PEMBAHASAN

A. Pengujian Sensor

TABEL 2
(Akurasi dan Error Sensor)
Nilai

Sensor :
Rata-rata Error Rata-rata Akurasi

Ph 7,53% 92,47%

Suhu 1,72% 98,28%

Kekeruhan 2,54% 97,46%
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Tabel 2 menunjukkan hasil pengujian tiga jenis sensor
yang digunakan dalam sistem pemantauan kualitas air
berbasis IoT. Setiap sensor diuji dengan 240 data
pengukuran, lalu dibandingkan dengan alat referensi pada
setiap sensor. Hasil perbandingan ini dihitung berdasarkan
rata-rata error dan rata-rata akurasi dari masing-masing
sensor.

e Sensor Suhu (DSI18B20) diuji  dengan
membandingkan  hasilnya  dengan  Digital
Thermometer. Hasil pengujian menunjukkan rata-
rata error 1,72%, dengan akurasi mencapai 98,28%.

e Sensor pH (PH-4502C) diuji terhadap pH Air
Analyzer. Sensor ini memiliki rata-rata error 7,53%,
dengan akurasi sebesar 92,47%.

e Sensor Kekeruhan  (Turbidity = SEN-0175)
dibandingkan dengan Turbidity Air Analyzer,
menghasilkan rata-rata error 2,54%, dengan akurasi
97,46%.

B.  Pengujian Penggunaan Kuota

TABEL 3
(Penggunaan Kuota Sensor)

60,19 KB/15 Menit 239,91 KB/Jam

Tabel 3 merupakan hasil dari 240 data, rata-rata
penggunaan kuota tercatat 60,19 KB/15 menit atau 239,91
KB/jam. Variasi pemakaian disebabkan oleh perbedaan
jumlah parameter yang diukur, fluktuasi data (suhu, pH,
kekeruhan), serta kestabilan koneksi internet. Sinyal lemah
dapat meningkatkan retransmisi, tetapi fluktuasi ini masih
wajar dan tidak mengganggu sistem. Dengan estimasi 175
MB/bulan untuk operasional penuh, sistem ini hemat dan
ideal untuk budidaya ikan. Kuota yang ringan
memungkinkan penggunaan paket data terjangkau serta
integrasi lebih banyak perangkat tanpa meningkatkan biaya
internet secara signifikan.

C. Pengujian Latensi

TABEL 4
(Latensi Sensor)

Latensi Latensi
Parameter Rata-rata Maksimum Minimum
(ms) (s) (ms)
Kekeruhan 502 1,096 102
Suhu 489 1,229 111
pH 507 1,370 101
Gabungan 499 1,370 101

Pada tabel 4 diatas, dilakukan selama 5 hari dengan 180
sample data. Hasilnya menunjukkan bahwa rata-rata latensi
untuk pengukuran kekeruhan adalah 502 milidetik, dengan
latensi maksimum 1,096 detik dan minimum 102 milidetik.
Untuk suhu, rata-rata latensi tercatat 489 milidetik, dengan
nilai tertinggi 1,229 detik dan terendah 111 milidetik.
Sementara itu, pengukuran pH memiliki rata-rata latensi 507
milidetik, dengan latensi maksimum 1,370 detik dan
minimum 101 milidetik. Secara keseluruhan, rata-rata latensi
gabungan adalah 499 milidetik, dengan latensi maksimum
1,370 detik dan minimum 101 milidetik. Hasil ini
menunjukkan bahwa sensor memiliki performa yang baik,
dengan latensi di bawah 1 detik yang masih sesuai untuk
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aplikasi monitoring kualitas air secara real time. Selain itu,
kestabilan latensi terlihat dari rentang nilai yang konsisten
tanpa anomali ekstrem, memastikan data dapat diproses tanpa
jeda yang mengganggu.

D. Pengujian Penggunaan Memori dan CPU ESP32

Pada pengujian ini, akan dilakukan pengukuran terhadap
penggunaan memori dan beban kerja CPU ESP32 selama
proses pengambilan, pengolahan, dan pengiriman data dari
sensor pH, kekeruhan, dan suhu hingga data tampil di LCD
dan dikirmkan ke database. Pengujian penggunaan memori
bertujuan untuk mengetahui efisiensi alokasi memori agar
sistem berjalan optimal tanpa mengalami kehabisan sumber
daya. Sementara itu, pengujian penggunaan CPU dilakukan
untuk memantau beban kerja prosesor ESP32, guna
memastikan kinerja tetap stabil dan tidak mengalami
overload selama operasional.

TABEL 5
(Penggunaan Memori dan CPU ESP32)
Parameter Rata-rata
Penggunaan Memori Internal (Byte) 299176
Penggunaan Memori Eksternal (Byte) 2691030

Penggunaan CPU (%) 49,3

Berdasarkan hasil pengujian pada Tabel 5 diatas dengan
90 sampel data, rata-rata penggunaan memori internal pada
ESP32 mencapai 299 KB, yang digunakan untuk eksekusi
program, penyimpanan variabel, dan data sementara. Memori
eksternal rata-rata tercatat sebesar 2,69 MB, berfungsi untuk
menyimpan data lebih besar seperti file dalam SPIFFS atau
LittleFS. Sementara itu, rata-rata penggunaan CPU sebesar
49,3% menunjukkan pemanfaatan prosesor dalam menangani
komunikasi, pengolahan data sensor, dan eksekusi algoritma.
Hasil ini menunjukkan bahwa penggunaan memori dan CPU
pada ESP32 cukup optimal untuk sistem monitoring real time
multi-database.

E.  Pengujian Layanan Mikroservis

Pengujian layanan mikroservis dilakukan untuk
mengevaluasi performa dan stabilitas dari setiap container.
Pengujian dilakukan sebanyak 30 kali yang menghasilkan
data berupa tabel berikut.

TABEL 6
(Uji Layanan Mikroservis)

Waktu  Waktu Status Walktu
Nama Container | autoregen
. Startup | Shutdown . 3
Container (detik) (detik) Berjalan erasi
(Ya/Tidak) (detik)
Jrontend__| 3 4 22 Ya 48
app
user_db 1.9 2.1 Ya 32
user db_a | g 2.4 Ya 3.6
dmin
ph_page 3.4 2.6 Ya 4.6
turbidity_ -\ 3 23 Ya 45
page
femperati | = g 22 Ya 45
re_page
redis 1.6 0.5 Ya 2.0

Berdasarkan Tabel 6, merupakan rata-rata hasil
pengujian menunjukkan bahwa semua container beroperasi



ISSN : 2355-9365

dengan stabil. 'Redis’ memiliki waktu startup tercepat (1.6
detik) dan shutdown tercepat (0.5 detik), sementara container
lainnya berkisar antara 1.9 hingga 3.4 detik untuk startup dan
2.1 hingga 2.6 detik untuk shutdown. Waktu autoregenerasi
tertinggi tercatat pada ‘frontend app’ (4.8 detik), sedangkan
‘redis’ paling cepat pulih (2.0 detik). Semua container tetap
berjalan selama pengujian.

F.  Pengujian Penggunaan Sumber Daya Mikroservis

Pengujian penggunaan sumber daya dilakukan dengan
menambahkan 1 hingga 10 pengguna secara bertahap,
dengan mencatat performa setiap container secara terpisah.
Selain itu, kami melakukan pengujian terhadap masing-
masing container 5 kali untuk 1 user, dan berkelanjutan
hingga 10 user, hingga total pengujian ada 350 data dengan
hasil rata-rata pengujian seperti berikut.

CPU Usage Percentage

CPU Usage (%)
5 8

Jumlah User

s fronitend_app —temperature_page ph_page

turbidity_page 15 m—ser_db

527 _ il _admin

GAMBAR 14
(CPU Usage Percentage)

Berdasarkan Gambar 14, user db_admin memiliki
penggunaan CPU tertinggi, mencapai 37% pada 10
pengguna, diikuti oleh frontend _app yang meningkat hingga
31%. user_db menunjukkan kenaikan stabil dari 3% ke
13%, sementara temperature_page, ph_page,
turbidity page, dan redis tetap rendah dan konstan di
kisaran 0-2%.

Memory Usage
BOO
500
400

g 300

200

100

. —
1 4 6 7 -4 9 10
lumilah User
—frontend_app —temperature_page = =ph_page
turbidity _page ed er_db
m—yser_db_admin
GAMBAR 15
(Memory Usage)

Berdasarkan Gambar 15, Penggunaan memori
meningkat seiring bertambahnya pengguna. frontend app
naik dari 1621 MB ke 4032 MB, sementara
temperature_page, ph_page, dan turbidity page juga

mengalami kenaikan signifikan. Redis tetap stabil dengan
fluktuasi kecil, sedangkan user db dan user db_admin
menunjukkan  peningkatan  terbesar, = masing-masing
mencapai 484.94 MB dan 98.89 MB.
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Data Usage (Input)

INPUT

lumlah User

—frontend_spp  =——lermporature_page turkidity_page

ph_pagy

—isef_db —ser_db_admin

GAMBAR /6
(Data Usage(Input) )

Berdasarkan Gambar 16, data usage input pada berbagai
container meningkat seiring bertambahnya pengguna.
frontend _app mengalami lonjakan signifikan dari 0.17 MB
ke 7.84 MB, sementara turbidity page dan ph page juga
meningkat tajam. Redis dan user db menunjukkan kenaikan
yang lebih moderat.

Data Usage (Output)

Jumlah User

m—irontend_app =——=temperature_page ph_page

turbidity_page s rie il i

—usar_db

et _dh_admin

GAMBAR 17
(Data Usage (Output))

Berdasarkan Gambar 17, pengujian menunjukkan
peningkatan data usage output seiring bertambahnya
pengguna. frontend app mengalami lonjakan dari 14 MB ke
367 MB pada 10 pengguna. temperature_page, ph_page, dan
turbidity page naik stabil hingga sekitar 133-147 MB,
sementara redis, user_db, dan user_db_admin mencatat
kenaikan kecil dengan output maksimal 0.3—-15.3 MB.

Storage Usage (Write)
30000

20000

MEB

10000

4]
1 2 3 4 -1 -] 7 8 3 10

Jumlah User

s—frontend_app =——temperature_page ph_page

turbidity_page w5l 5

m—iser_dh

w—ser_db_admin

GAMBAR 18
(Storage Usage (Write))

Berdasarkan Gambar 18, pengujian storage usage
(write) menunjukkan bahwa wuser db_admin memiliki
penggunaan tertinggi, mencapai 26 GB pada 10 pengguna.
frontend_app juga mengalami lonjakan signifikan dari 32.03
MB ke 2350 MB. Temperature page, ph page, dan
turbidity_page mengalami peningkatan bertahap, dengan
turbidity_page meningkat lebih cepat. Redis tetap stabil
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dengan penggunaan rendah, sementara user_db meningkat

signifikan  hingga 8.4 GB. Secara keseluruhan,
user_db_admin  mencatat lonjakan terbesar dalam
penggunaan storage.
Storage Usage (Read)
e

Mg

s r i — ]

GAMBAR 19
(Storage Usage (Read))

Berdasarkan Gambar 19 menunjukkan bahwa user db
memiliki storage usage (read) tertinggi, mencapai 417.2 MB
pada 10 pengguna, dengan peningkatan konsisten dari 277.2
MB. user_db_admin dan redis mengalami kenaikan kecil,
sementara frontend_app, temperature_page, ph_page, dan
turbidity page tidak memiliki aktivitas storage usage (read),
menandakan bahwa mereka tidak menulis data ke disk selama
pengukuran.

G. Pembahasan

Monitoring kualitas air merupakan salah satu elemen penting
dalam mendukung keberhasilan budidaya ikan lele. Standar
kualitas air yang ideal untuk ikan lele mencakup tingkat
kekeruhan antara 0 hingga 50 NTU, pH optimal dalam
rentang 6,5 hingga 8, dan suhu air yang paling sesuai berada
pada kisaran 25°C hingga 30°C[7]. Berdasarkan hasil
pengujian yang penulis peroleh nilai kekeruhan yang didapat
antara 19 hingga 32 NTU, pH 5,08 hingga 9,76 dan suhu
24°C hingga 27°C. Kualitas air menunjukkan kekeruhan dan
suhu sudah sesuai standar, namun pH air berada di luar
rentang ideal sehingga diperlukan penyesuaian pH, jika pH
air rendah ditambahkan batu kapur pada kolam, jika pH tinggi
ditambahkan larutan lemon pada kolam dan dilakukan
pengelolaan, dengan cara jika suhu air kolam tinggi perlu
ditambahkan air dengan suhu normal agar lingkungan tetap
optimal untuk pertumbuhan ikan. Sedangkan jika nilai NTU
tidak ideal, perlu dilakukan penggantian air. Dengan menjaga
parameter-parameter ini tetap stabil, kesehatan ikan dapat
terjamin, dan tingkat kematian ikan dapat diminimalkan.
Untuk mencapai tujuan ini, solusi yang diusulkan oleh
penulis adalah merancang sistem berbasis Internet of Things
(IoT) dengan arsitektur mikroservis yang memungkinkan
pemantauan kualitas air secara real time. Sistem ini
memungkinkan pengelola kolam untuk memantau data
kualitas air kapan saja melalui internet[8].

Berdasarkan hasil pengujian, sistem monitoring IoT berbasis
mikroservis menunjukkan performa yang cukup baik dalam
hal modularitas, integrasi, dan skalabilitas [9]. Waktu startup
yang rata-rata hanya 2,6 detik dan shutdown 2 detik
menunjukkan bahwa sistem mampu berjalan dengan cepat,
sedangkan waktu autoregenerasi yang mencapai 3,9 detik
sedikit lebih lambat, karena adanya proses sinkronisasi ulang
sebelum layanan dapat kembali berjalan normal [10, 11]. Dari
segi penggunaan sumber daya, container user db admin
mencatat penggunaan CPU tertinggi hingga 37% dan memori
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sebesar 98 MB saat digunakan oleh 10 pengguna, sementara
frontend_app menggunakan CPU hingga 31% dengan
konsumsi memori sekitar 40 MB. Penggunaan CPU yang
relatif tinggi pada kedua container ini dapat disebabkan oleh
tingginya interaksi pengguna, terutama dalam mengakses dan
mengelola data [12]. Di sisi lain, container seperti
temperature page, ph_page, turbidity page, dan redis
menunjukkan efisiensi yang baik dengan penggunaan CPU
stabil di sekitar 2% dan memori antara 12 MB hingga 30 MB
[12].

Namun, tantangan utama terdapat pada container user db,
yang mencatat penggunaan memori tertinggi mencapai 484,9
MB dengan aktivitas storage read sebesar 417,2 MB pada 10
pengguna. Hal ini mengindikasikan adanya akses data yang
sangat intensif, karena query database yang belum
sepenuhnya dioptimalkan melalui teknik seperti indexing
atau caching [13]. Selain itu, container user db admin
menunjukkan aktivitas storage write yang sangat tinggi,
mencapai 26 GB, yang menandakan adanya proses penulisan
data dalam jumlah besar, baik dalam bentuk logging maupun
transaksi database yang berat [14]. Beban penyimpanan yang
besar ini dapat berdampak pada performa sistem secara
keseluruhan, terutama jika jumlah pengguna bertambah. Oleh
karena itu, beberapa optimasi yang dapat dilakukan meliputi
penerapan caching untuk mengurangi beban query,
penggunaan load balancer untuk mendistribusikan
permintaan pengguna, serta optimalisasi mekanisme logging
agar tidak membebani penyimpanan [15]. Dengan
peningkatan ini, sistem dapat lebih efisien dalam menangani
beban kerja yang lebih besar dan memastikan skalabilitas

yang lebih baik.
Selain konsumsi CPU dan memori, data usage juga
mengalami  peningkatan  yang  signifikan  seiring

bertambahnya jumlah pengguna. Frontend app mencatat
penggunaan data output tertinggi, yaitu 367 MB pada 10
pengguna, serta data input sebesar 7,846 MB, yang
menunjukkan tingginya volume pertukaran data antara
frontend dan backend. Container lainnya, seperti
temperature_page, ph page, dan turbidity page, juga
mengalami lonjakan data input hingga 3,598 MB pada 10
pengguna, dengan masing-masing mencatat data output
sebesar 133,6 MB, 147 MB, dan 139,4 MB. Distribusi
sumber daya yang stabil ini mengindikasikan bahwa
arsitektur mikroservis mampu mendukung fleksibilitas dalam
pembaruan dan pengembangan sistem lebih lanjut, seperti
integrasi sensor baru atau fitur analisis data yang lebih
kompleks. Namun, frontend app masih memerlukan
optimalisasi agar lebih efisien dalam menangani beban data
yang besar, misalnya dengan menerapkan teknik kompresi
data, optimasi caching, atau mekanisme pengelolaan request
yang lebih baik. Dengan perbaikan ini, sistem dapat lebih
responsif dan efisien dalam menghadapi pertumbuhan jumlah
pengguna dan volume data yang semakin meningkat.

Hasil pengujian menunjukkan bahwa sistem monitoring
berbasis IoT ini mampu mengumpulkan dan mengirim data
dari sensor pH, suhu, dan kekeruhan sebanyak 144 kali per
hari atau setiap 10 menit sekali. Data yang dikirim berhasil
ditampilkan secara real time di dashboard dengan tingkat
sinkronisasi mencapai 100%, menandakan bahwa sistem
memiliki keandalan tinggi dalam mengelola data. Pengujian
pada mikrokontroler ESP32 menunjukkan efisiensi dalam
konsumsi internet, dengan rata-rata penggunaan data sebesar



ISSN : 2355-9365

239,91 KB per jam atau sekitar 5,75 MB per hari, yang
tergolong hemat untuk sistem berbasis [oT. Selain itu, latensi
rata-rata sebesar 499 milidetik menunjukkan bahwa sistem
cukup responsif dalam menangani komunikasi antara sensor
dan server [16]. Dari segi akurasi, sensor pH mencatat tingkat
akurasi sebesar 92,47%, sensor suhu 98,27%, dan sensor
kekeruhan 97,46%. Meskipun terdapat sedikit fluktuasi
akibat aktivitas ikan dan perubahan cuaca, tingkat akurasi ini
tetap berada dalam batas yang sangat baik untuk sistem
monitoring lingkungan perairan [17-20].

Selain performa komunikasi dan akurasi sensor, pengujian
juga mencatat penggunaan memori internal pada ESP32
mencapai 299 KB, yang digunakan untuk proses eksekusi
program, penyimpanan variabel, dan data sementara.
Sementara itu, rata-rata penggunaan memori eksternal
sebesar 2,69 MB menunjukkan pemanfaatan ruang
penyimpanan dalam SPIFFS atau LittleFS untuk menyimpan
data lebih besar serta program yang disimpan dalam flash
memory sebelum dieksekusi. Penggunaan CPU rata-rata
sebesar 49,3% menunjukkan efisiensi prosesor dalam
menangani  berbagai  tugas, termasuk komunikasi,
pemrosesan data sensor, dan eksekusi algoritma [21]. Dengan
performa yang masih dalam batas ideal ini, ESP32 masih
memiliki kapasitas yang cukup untuk pengembangan lebih
lanjut, seperti penambahan fitur atau integrasi sensor
tambahan [21]. Hal ini menunjukkan bahwa sistem berbasis
ESP32 dapat dikembangkan lebih lanjut tanpa mengalami
penurunan performa yang signifikan, menjadikannya solusi
yang fleksibel dan skalabel untuk aplikasi monitoring IoT
dalam berbagai kondisi lingkungan.

V. KESIMPULAN

Implementasi arsitektur mikroservis berbasis IoT
meningkatkan efisiensi dalam sistem monitoring kualitas air
kolam ikan. Dengan pembagian tugas dalam container
mikroservis yang independen, sistem dapat memproses data
secara fleksibel tanpa saling memengaruhi, bahkan saat
terjadi kegagalan pada salah satu layanan. Pendekatan ini
lebih unggul dibandingkan arsitektur monolitik untuk
monitoring berbasis IoT. Sistem monitoring yang
dikembangkan menunjukkan akurasi tinggi dengan rata-rata
92,47% untuk pH, 98,27% untuk suhu, dan 97,46% untuk
kekeruhan. Dengan penggunaan data rendah 5,8 MB/hari dan
latensi rata-rata 499 milidetik, sistem memungkinkan
pemantauan kondisi air secara real time, memberikan waktu
yang cukup untuk tindakan preventif. ESP32 digunakan
dengan konsumsi 299 KB memori internal, 2,69 MB memori
eksternal, dan CPU 49,3%, tetap ideal untuk pengembangan
fitur tambahan tanpa penurunan performa.

Kombinasi ESP32 dan Docker terbukti optimal, dengan
ESP32 menawarkan performa tinggi dan efisiensi daya, serta
Docker memungkinkan pengelolaan layanan mikroservis
yang fleksibel. Arsitektur ini mendukung skalabilitas,
memungkinkan peningkatan jumlah perangkat atau sensor
tanpa mengorbankan stabilitas sistem. Dashboard monitoring
menyajikan data real time dalam format visual yang mudah
dipahami, seperti grafik dan tabel, mendukung analisis cepat
dan respons tepat terhadap perubahan kualitas air. Mayoritas
pengguna memberikan respon positif (94,8%), menilai
website monitoring sebagai mudah digunakan, informatif,
dan intuitif.
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