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Abstrak — Implementasi sistem monitoring kualitas air 
berbasis IoT menjadi penting untuk mendukung ekosistem dan 
produktivitas ikan. Metode manual sering tidak efisien, 
sementara sistem IoT yang ada kurang fleksibel dan skalabel. 
Penelitian ini mengusulkan arsitektur mikroservis berbasis IoT 
yang mengintegrasikan sensor pH, suhu, dan kekeruhan dengan 
Cloud Firestore untuk penyimpanan data. Mikroservis 
membagi tugas ke dalam beberapa container, memungkinkan 
pengolahan data yang fleksibel dan terdistribusi. Hasil 
pengujian menunjukkan akurasi tinggi (pH 92,47%, suhu 
98,27%, kekeruhan 97,46%), penggunaan data rendah (5,8 
MB/hari), dan latensi rata-rata 499 ms. Sistem ini efektif dan 
berpotensi diterapkan dalam budidaya ikan. 

Kata kunci— Budidaya ikan, Internet of Things, Kualitas air, 
Mikroservis, Sistem monitoring 

I. PENDAHULUAN 

A. Latar Belakang 
Seiring dengan perkembangan teknologi informasi, 

kebutuhan akan pengelolaan jaringan yang efisien dan 
fleksibel semakin meningkat. Di tengah tantangan tersebut, 
arsitektur jaringan monolitik telah muncul sebagai solusi 
yang sangat potensial. Arsitektur monolitik memungkinkan 
penempatan semua fungsi dan fitur secara terpusat dalam satu 
aplikasi tunggal yang besar. Penggunaan arsitektur monolitik 
umumnya digunakan sebagai otak dari seluruh jaringan. 
Namun, pendekatan ini memiliki beberapa kelemahan yang 
signifikan. Salah satunya adalah ketergantungan pada satu 
titik kegagalan tunggal yang dapat menyebabkan kerentanan 
kinerja yang buruk dalam skala yang besar. Selain itu, 
perubahan dalam konfigurasi atau kebijakan jaringan sering 
kali memerlukan pemeliharaan atau peningkatan pada 
keseluruhan sistem, yang dapat menjadi proses yang rumit 
dan berisiko [1]. 

Untuk mengatasi kelemahan tersebut, pendekatan baru 
telah muncul dengan menggunakan model arsitektur 
mikroservis. Dengan model ini, fungsi layanan yang 

sebelumnya terkonsentrasi dalam satu kontrol layanan yang 
besar, dipisahkan menjadi sejumlah layanan kecil yang 
independen [2]. Setiap mikroservis bertanggung jawab atas 
tugas-tugas spesifik dalam pengelolaan jaringan, seperti 
manajemen layanan atau aliran data. Penggunaan arsitektur 
mikroservis membawa beberapa manfaat yang signifikan. 
Pertama, memecah fungsi kontrol menjadi layanan kecil yang 
dapat mengurangi dampak dari kegagalan tunggal, 
meningkatkan keandalan dan ketahanan jaringan secara 
keseluruhan. Kedua, memungkinkan perubahan dan 
peningkatan pada satu bagian dari sistem tanpa 
mempengaruhi keseluruhan jaringan, mempercepat waktu 
penerapan dan mengurangi resiko kesalahan. Selain itu, 
dengan skala yang lebih kecil dan independen, mikroservis 
memfasilitasi penyesuaian dan skalabilitas yang lebih baik 
dalam lingkungan jaringan yang berubah dengan cepat [3]. 

Dengan demikian, transisi dari arsitektur monolitik ke 
model arsitektur mikroservis menawarkan solusi yang lebih 
efisien, handal, dan fleksibel untuk pengelolaan jaringan 
modern. Dengan mengadopsi arsitektur mikroservis 
penelitian ini melakukan uji coba dengan penerapan 
arsitektur mikroservis dalam jaringan internet of things 
monitoring kolam budidaya ikan, sehingga jaringan dapat 
lebih responsif terhadap perubahan lingkungan kolam ikan, 
lebih mudah diatur, dan lebih andal dalam menghadapi 
tantangan yang semakin kompleks dalam dunia jaringan yang 
terus berkembang. Penelitian ini bertujuan untuk 
mengembangkan sistem menggunakan arsitektur  
mikroservis. Penelitian ini akan dilakukan di PT Helmi Farm 
Mandiri, sebuah kawasan pengembangan budidaya ikan di 
Universitas Telkom Bandung, Jawa Barat. Langkah ini tidak 
hanya memperbaiki kinerja jaringan, tetapi juga 
meningkatkan skalabilitas dan efisiensi operasional secara 
keseluruhan, menghadirkan infrastruktur jaringan yang siap 
menghadapi tantangan masa depan [4]. 
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B. Analisis Masalah 
Dari hasil latar belakang dapat disimpulkan bahwa ada 

beberapa analisa masalah 
1. Ketergantungan pada Arsitektur Monolitik. 

Arsitektur monolitik memiliki satu titik kegagalan 
yang dapat menyebabkan kinerja jaringan menjadi 
tidak stabil, terutama dalam skala besar. 

2. Kesulitan dalam Pemeliharaan dan Skalabilitas. 
Perubahan atau peningkatan pada sistem monolitik 
memerlukan pemeliharaan seluruh sistem, yang 
rumit dan berisiko serta menghambat fleksibilitas 
dalam pengelolaan jaringan. 

3. Kebutuhan akan Jaringan yang Lebih Fleksibel dan 
Responsif. Dalam konteks monitoring kolam 
budidaya ikan, jaringan harus dapat beradaptasi 
dengan perubahan lingkungan dengan cepat, yang 
sulit dicapai menggunakan pendekatan monolitik. 

C. Tujuan 
Berdasarkan latar belakang dan analisis masalah yang 

ada, ada beberapa tujuan dibuatnya penelitian terkait 
diantaranya, pengembangan layanan IoT dengan arsitektur 
mikroservis mengatasi kelemahan arsitektur monolitik 
dengan memisahkan fungsi kontrol menjadi layanan 
independen. Pendekatan ini meningkatkan keandalan, 
fleksibilitas, dan skalabilitas jaringan serta memungkinkan 
perubahan tanpa mengganggu sistem secara keseluruhan. 
Dengan mikroservis, aplikasi IoT budidaya ikan menjadi 
lebih efisien, handal, dan siap menghadapi tantangan jaringan 
di masa depan. 

II. KAJIAN TEORI 
Implementasi mikroservis dalam layanan budidaya ikan 

berbasis IoT harus mempertimbangkan berbagai aspek 
penting, termasuk izin dan regulasi, standar teknis, serta 
interoperabilitas. Regulasi seperti Peraturan Menteri 
Kelautan dan Perikanan Nomor 26 Tahun 2021 mewajibkan 
pemantauan kualitas air secara berkala, sementara standar 
teknis mikroservis harus memastikan modularitas, 
skalabilitas, dan isolasi layanan untuk meningkatkan 
keandalan sistem. Selain itu, aspek interoperabilitas perlu 
diperhatikan agar layanan dapat berintegrasi dengan 
perangkat IoT dan sistem lain sesuai dengan regulasi yang 
berlaku. 

Monitoring dan manajemen layanan mikroservis juga 
menjadi faktor krusial dalam memastikan kinerja sistem tetap 
optimal. Sistem ini harus dilengkapi dengan pemantauan real 
time serta audit berkala untuk memastikan kepatuhan 
terhadap regulasi dan standar teknis. Selain itu, konservasi 
lingkungan perlu diperhatikan dengan memastikan teknologi 
IoT yang diterapkan mendukung pengelolaan sumber daya 
air yang berkelanjutan, sejalan dengan prinsip-prinsip 
ekologi dalam peraturan perikanan. 

Aspek hak dan kewajiban pengguna juga perlu diperjelas 
melalui edukasi yang memadai agar pemanfaatan layanan 
IoT dapat dilakukan dengan benar dan sesuai aturan. Dengan 
mempertimbangkan semua aspek ini secara menyeluruh, 
implementasi mikroservis dalam budidaya ikan berbasis IoT 
diharapkan tidak hanya memenuhi standar keamanan dan 
regulasi, tetapi juga mendorong inovasi serta keberlanjutan 
industri perikanan di Indonesia. 

A. Batasan dan Spesifikasi 
1. Sensor mikrokontroler dapat mengumpulkan data, 

perangkat mikrokontroler harus mampu 
mengumpulkan data mengenai kondisi air di kolam 
ikan melalui sensor pH, sensor suhu, dan sensor 
kekeruhan air. Selain itu, mikrokontroler dapat 
memproses data dengan kecepatan lebih dari 160 
MHz,  dan akurasi lebih dari 90% memastikan 
analisis yang cepat dan efisien. 

2. Perangkat mikrokontroler dapat terhubung dengan 
internet, perangkat mikrokontroler harus terhubung 
dengan koneksi internet, dengan kecepatan 
pengiriman data  lebih dari 150 Mbps. 

3. Perangkat mikrokontroler terintegrasi dengan 
database, perangkat mikrokontroler harus 
terintegrasi dengan database agar dapat mengirim 
data yang telah didapatkan ke database kurang dari 
500 milidetik [5]. 

4. Website dapat menampilkan data secara real time, 
Dalam pembudidayaan ikan mengetahui kualitas air 
secara real time sangatlah penting, oleh karena itu 
sensor harus dapat mengirim data ke database 
secara real time dan website dapat menampilkan 
data yang didapatkan oleh sensor mikrokontroler 
secara real time kepada pengguna dengan latensi 
kurang dari 1 detik [6]. 

5. Website membagi layanan dan database secara 
terpisah, penggunaan arsitektur mikroservis atau 
bisa disebut membagi layanan secara terpisah, dapat 
sangat berguna dalam pengembangan budidaya ikan 
berbasis IoT, karena jika salah satu layanan dari 
sistem mengalami masalah, masalah tersebut tidak 
akan mempengaruhi komponen-komponen lainnya. 

6. Mikroservis, adalah pendekatan arsitektur perangkat 
lunak yang membagi aplikasi menjadi layanan kecil, 
independen, dan modular. Setiap layanan memiliki 
tanggung jawabnya sendiri dan berkomunikasi 
dengan layanan lain melalui API (Application 
Programming Interface). Pendekatan ini 
menawarkan beberapa keuntungan untuk sistem 
pemantauan kualitas air real time, yaitu dari segi 
skalabilitas, ketahanan dan kemudahan 
pengembangan dan  pemeliharaan. Dengan waktu 
autoregenerasi kurang dari 13 detik. 

B. Metode Uji Pengukuran Spesifikasi 
TABEL 1  

(Spesifikasi dan Verifikasi) 

Spesifikasi Mekanisme 
Pengukuran 

Prosedur 
Pengukuran 

Mikrokontroler 
mengumpulkan data 
sensor pH, suhu, 
dan kekeruhan 
(>160 MHz, akurasi 
>90%) 

Uji kecepatan 
dan akurasi data 

Hubungkan sensor 
ke mikrokontroler, 
amati kecepatan 
pengambilan dan 
pemrosesan data 

Mikrokontroler 
harus terkoneksi 
internet (>150 
Mbps) 

Cek koneksi 
melalui serial 
monitor di 
Arduino IDE 

Instal Arduino IDE, 
hubungkan 
mikrokontroler, atur 
baud rate, amati 
status koneksi 
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Mikrokontroler 
mengirim data ke 
database dalam 
<500 ms 

Uji pengiriman 
data dengan 
HTTP GET 

Program 
mikrokontroler 
kirim permintaan 
GET, amati respons 
database 

Sensor mengirim 
data real time 
dengan delay <1 
detik 

Uji kecepatan 
pengiriman data 
ke database dan 
tampilan di 
website 

Hubungkan sensor, 
amati latensi dan 
pemrosesan data 

Menggunakan 
mikroservis untuk 
ketahanan sistem 

Monitor lalu 
lintas layanan 
dan database 

Gunakan Docker, 
cek status layanan 
dan alokasi sumber 
daya 

Mikroservis 
autoregenerasi 
dalam <13 detik 

Evaluasi kinerja 
dan skalabilitas 
sistem 

Pantau latensi antar-
mikroservis, 
sinkronisasi data, 
dan ketersediaan 
layanan 

 

III. METODE 

A. Desain Sistem 
Desain sistem yang akan dirancang terdiri dari tiga 

subsistem utama yaitu subsistem hardware sebagai masukan, 
lalu subsistem pengiriman data ke database, yang terakhir 
subsistem aplikasi atau web application sebagai keluaran. 
Berikut merupakan hubungan antar subsistem yang 
dirancang menjadi satu sistem. 

 
GAMBAR 1 

(Desain Sistem secara Umum) 

Pada Gambar 1, sistem pemantauan kualitas air kolam 
ikan berbasis IoT terdiri dari tiga subsistem utama: hardware, 
pengiriman data, dan aplikasi. Subsistem hardware 
menggunakan sensor pH, suhu, dan kekeruhan untuk 
mengumpulkan data kualitas air, yang kemudian dikirimkan 
secara real time melalui subsistem pengiriman data 
menggunakan ESP32 ke database terintegrasi. Selanjutnya, 
subsistem aplikasi mengolah dan menampilkan data melalui 
dashboard web untuk memudahkan pengguna dalam analisis 
dan pengambilan keputusan. Metode penelitian mencakup 
perancangan, implementasi, dan pengujian setiap subsistem 
guna memastikan akurasi sensor, keandalan transmisi data, 
serta efektivitas visualisasi informasi. Integrasi ketiga 
subsistem ini menciptakan sistem pemantauan yang efisien 
dan mudah diakses guna mendukung keberlanjutan budidaya 
ikan. 

i. Subsistem Hardware 

 
GAMBAR 2 

(Subsistem Hardware) 

 Berdasarkan Gambar 2, subsistem hardware 
berperan dalam pengumpulan data awal dari sensor pH, 
suhu, dan kekeruhan. Data yang dihasilkan berupa nilai 
mentah ADC (Analog-to-Digital Conversion) kemudian 
dikonversi oleh ESP32 menjadi satuan yang dapat 
digunakan, seperti suhu (°C), kekeruhan (NTU), dan pH. 
Proses ini memastikan data yang akurat dan terkalibrasi 
untuk tahap pengolahan berikutnya, mendukung 
pengambilan keputusan yang tepat. 

ii. Subsistem Pengiriman Data 

 
GAMBAR 3 

(Subsistem Pengiriman Data) 

 Berdasarkan Gambar 3 yang menunjukkan bahwa 
data yang telah diolah oleh ESP32 akan dikirimkan ke 
masing-masing database sensor, yaitu database sensor 
pH, database sensor suhu, database sensor kekeruhan, 
dan database result untuk menyimpan 3 nilai sensor 
dalam satu waktu, maka subsistem ini mencerminkan 
pendekatan arsitektur berbasis mikroservis yang 
terdistribusi. 

iii. Subsistem Aplikasi 
 Pada subsistem aplikasi, akan dibagi menjadi dua 
bagian utama, yaitu frontend dan backend, yang masing-
masing memiliki peran dan fungsi spesifik untuk 
mendukung operasional aplikasi secara keseluruhan. 

1. Frontend 
Bagian ini berfungsi sebagai antarmuka 

pengguna (UI/UX) yang memungkinkan interaksi 
langsung dengan sistem. Frontend dirancang agar 
intuitif dan responsif, menampilkan data real time, 
grafik visualisasi kualitas air (pH, suhu, kekeruhan), 
serta notifikasi status. Selanjutnya, diagram alir 
akan menjelaskan alur interaksi pengguna dengan 
aplikasi, merinci langkah-langkah utama dalam 
operasional sistem. 
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GAMBAR 4 

(Alur Penggunaan Aplikasi) 

Pada diagram alur di Gambar 4, proses dimulai 
dari landing page, di mana pengguna dapat memilih 
untuk log in atau mendaftar jika belum memiliki 
akun. Setelah masuk, pengguna diarahkan ke menu 
utama yang menyediakan berbagai fitur aplikasi. 
Jika memilih log out, sistem akan mengembalikan 
pengguna ke landing page untuk keluar dengan 
aman. Diagram ini menggambarkan jalur navigasi 
yang jelas, memastikan pengalaman pengguna yang 
lancar dan intuitif. 

 
GAMBAR 5 

(Alur Menu Login) 

Diagram alur pada Gambar 5 menunjukkan 
langkah-langkah setelah pengguna membuka 
halaman log in. Pengguna dapat memilih untuk 
memulihkan kata sandi, mendaftar akun baru, atau 
langsung masuk dengan kredensial yang benar. 
Setelah berhasil masuk, pengguna diarahkan ke 
menu utama untuk mengakses fitur aplikasi. Proses 
ini dirancang agar fleksibel, memastikan akses yang 
mudah dan aman sesuai kondisi akun masing-
masing. 

 
GAMBAR 6 

(Alur Menu Utama) 

Diagram alur pada Gambar 6 menunjukkan 
menu utama aplikasi yang menampilkan informasi 
real time tentang pH, suhu, dan kekeruhan air 
kolam. Pengguna dapat memantau kualitas air dan 
mengakses fitur history untuk melihat data sensor 
dalam bentuk tabel serta analisis yang menyajikan 
tren perubahan dalam grafik. Jika pengguna memilih 
log out, mereka akan diarahkan kembali ke landing 
page. Dengan tata letak yang terorganisir dan 
antarmuka intuitif, aplikasi ini mempermudah 
pemantauan dan pengelolaan kualitas air kolam. 

2. Backend 
Bagian backend bertanggung jawab mengelola 

lalu lintas data antara mikroservis sensor, database, 
dan API yang terhubung ke frontend. Backend 
memastikan data dari ESP32 diproses, disimpan, 
serta disediakan melalui API yang aman dan efisien. 
Selain itu, backend menangani validasi data, 
autentikasi pengguna, konfigurasi sistem, dan 
komunikasi antar-mikroservis. Dalam Docker, 
setiap mikroservis dikemas dalam container untuk 
memastikan layanan berjalan terpisah tetapi tetap 
terintegrasi. Gambar 3.7 menggambarkan interaksi 
antar-mikroservis melalui API dalam mengelola 
data sensor, database, dan antarmuka pengguna. 

 
GAMBAR 7 

(Alur Data dan Pembagian Mikroservis) 

Diagram alur pada Gambar 7 menunjukkan 
alur data dan pembagian mikroservis dalam sistem. 
Data dari ESP32 dikirim ke masing-masing 
database sensor (pH, suhu, kekeruhan, dan hasil 
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keseluruhan). Setelah disimpan, server hosting 
mendistribusikan layanan melalui mikroservis 
terisolasi, yaitu mikroservis frontend, turbidity, 
temperature, dan pH. Masing-masing mikroservis 
mengelola dan mengolah data spesifik (kekeruhan, 
suhu, dan pH) dan berinteraksi dengan pengguna 
melalui frontend. Sistem ini modular, 
memungkinkan pengembangan dan pengujian 
independen dari setiap mikroservis, yang 
meningkatkan keandalan dan kinerja aplikasi secara 
keseluruhan. 

B. Implementasi 

 
GAMBAR 8 

(Desain Sistem Keseluruhan) 

Pada Gambar 8 di atas, implementasi sistem ini 
memanfaatkan perangkat keras dan perangkat lunak yang 
diintegrasikan secara menyeluruh guna memberikan 
pemantauan real time terhadap kondisi air kolam. Komponen 
utama yang digunakan mencakup perangkat keras seperti 
mikrokontroler dan sensor, serta perangkat lunak yang 
diorganisasikan melalui arsitektur mikroservis dengan 
kontainerisasi Docker. Desain alur pada gambar tersebut 
menunjukkan keseluruhan proses implementasi mikroservis 
untuk monitoring kualitas air kolam budidaya ikan berbasis 
IoT.  

Perangkat monitoring diletakkan, seperti yang 
ditunjukkan pada Gambar 9, di lokasi yang strategis di dekat 
kolam budidaya ikan. Pastikan perangkat terhubung ke 
sumber listrik yang stabil untuk menjaga kelancaran 
operasional. Selain itu, pastikan perangkat telah tersambung 
ke jaringan Wi-Fi yang telah dikonfigurasi sebelumnya 
dalam program ESP32. Koneksi Wi-Fi yang stabil sangat 
penting untuk memastikan data dari sensor dapat dikirimkan 
secara real time ke server dan ditampilkan pada aplikasi. 
Sebelum pemasangan, lakukan verifikasi ulang terhadap 
konfigurasi jaringan, seperti SSID dan password Wi-Fi, agar 
perangkat dapat terhubung secara otomatis tanpa gangguan. 

 
GAMBAR 9 

(Desain dan Implementasi Alat) 

i.  Perangkat Keras (Hardware) 
 
 

 
GAMBAR 10 

(Sirkuit Diagram) 

 Pada Gambar 10 di atas, adalah sirkuit diagram dari 
projek ini, sirkuit dirancang untuk membaca parameter 
kualitas air seperti suhu, pH, dan tingkat kekeruhan 
(NTU) menggunakan sensor yang terhubung ke 
mikrokontroler ESP32. Data yang diperoleh kemudian 
ditampilkan pada layar LCD dan dikirimkan secara 
berkala ke Firestore melalui koneksi Wi-Fi. ESP32 diatur 
untuk berkomunikasi dengan berbagai sensor dan 
komponen melalui pin digital maupun analog. Beberapa 
pin penting yang digunakan adalah pin GPIO5 untuk 
koneksi data sensor suhu DS18B20 melalui protokol 
OneWire, pin GPIO33 untuk membaca tegangan dari 
sensor pH melalui input analog, pin GPIO34 untuk 
membaca tegangan dari sensor kekeruhan melalui input 
analog, pin GPIO18 (SDA) dan GPIO19 (SCL) untuk 
komunikasi I2C dengan LCD I2C. 
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GAMBAR 11 

(Implementasi Sirkuit Diagram) 

 Pada Gambar 11 diatas, merupakan implementasi 
dari sirkuit diagram yang telah dirancang seperti pada 
Gambar 10. Sensor suhu DS18B20 menggunakan 
protokol OneWire untuk komunikasi data. Data dari 
sensor diteruskan melalui pin digital GPIO5 pada ESP32, 
yang terhubung ke jalur data sensor suhu. Sensor pH 
menghasilkan tegangan analog yang sesuai dengan 
tingkat keasaman air. Tegangan ini dibaca melalui pin 
analog GPIO33 pada ESP32. Nilai ADC kemudian diolah 
menggunakan persamaan kalibrasi untuk menghasilkan 
nilai pH yang sebenarnya. Sensor kekeruhan bekerja 
dengan prinsip fotodioda untuk mendeteksi jumlah 
cahaya yang tersebar akibat partikel di dalam air. Nilai 
tegangan dari sensor ini dibaca melalui pin analog 
GPIO34 dan kemudian dikonversi menjadi nilai NTU 
menggunakan fungsi pemetaan dalam kode. LCD I2C 
menggunakan protokol komunikasi I2C untuk 
menampilkan data. LCD ini dihubungkan ke pin SDA 
(GPIO18) dan SCL (GPIO19) pada ESP32. Dengan 
konfigurasi alamat I2C 0x27, ESP32 dapat mengirimkan 
perintah dan data ke LCD untuk menampilkan informasi 
yang diperlukan. 

ii. Aplikasi (Software) 
       Pada Gambar 7 Arsitektur sistem berbasis 
mikroservis ini dirancang untuk pemantauan kualitas air 
kolam ikan menggunakan sensor pH, suhu, dan 
kekeruhan. Data dari sensor diproses oleh ESP32 dan 
disimpan dalam empat database terpisah, termasuk satu 
untuk pemantauan real time. Sistem backend berbasis 
mikroservis terdiri dari container-container yang 
menangani frontend dan pemrosesan data tiap sensor 
secara independen. Keunggulan arsitektur ini terletak 
pada skalabilitas, fleksibilitas, dan keandalannya, 
memungkinkan pengembangan, perbaikan, serta 
penskalaan tanpa mengganggu keseluruhan sistem. 

 

 
GAMBAR 12 

(Tampilan Landing page) 

 

 
GAMBAR 13 

(Tampilan Landing page 2) 

Pada Gambar 12 dan 13 adalah website fishervice yang 
dirancang sebagai implementasi sistem pemantauan kualitas 
air kolam ikan berbasis mikroservis. Website ini memiliki 
beberapa halaman utama yang menyediakan informasi 
tambahan. Pada halaman Monitoring, data real time dari 
sensor suhu, pH, dan kekeruhan air ditampilkan dan 
diperbarui secara otomatis melalui Firebase. Dengan 
demikian, pengguna dapat langsung melihat kondisi terkini 
kolam ikan. Selain itu, fitur Analyst menyediakan indikator 
visual yang membantu dalam memahami tingkat optimal 
masing-masing parameter kualitas air. 

Halaman Home berfungsi sebagai landing page yang 
memperkenalkan Fishervice serta menjelaskan pentingnya 
pemantauan kualitas air dalam budidaya ikan. Selain itu, 
halaman ini juga menyajikan berbagai artikel informatif, 
seperti fakta menarik dan tips dalam menjaga kualitas air 
kolam. Dengan arsitektur berbasis mikroservis dan integrasi 
Firebase, Fishervice memastikan sistem berjalan secara 
efisien, memungkinkan pemantauan kondisi air yang akurat 
dan mendukung pengelolaan kolam ikan secara lebih efektif. 

 

IV. HASIL DAN PEMBAHASAN 

A. Pengujian Sensor 

TABEL 2 
(Akurasi dan Error Sensor) 

Sensor 
Nilai 

Rata-rata Error Rata-rata Akurasi 

Ph 7,53% 92,47% 

Suhu 1,72% 98,28% 

Kekeruhan 2,54% 97,46% 
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Tabel 2 menunjukkan hasil pengujian tiga jenis sensor 
yang digunakan dalam sistem pemantauan kualitas air 
berbasis IoT. Setiap sensor diuji dengan 240 data 
pengukuran, lalu dibandingkan dengan alat referensi pada 
setiap sensor. Hasil perbandingan ini dihitung berdasarkan 
rata-rata error dan rata-rata akurasi dari masing-masing 
sensor. 

 Sensor Suhu (DS18B20) diuji dengan 
membandingkan hasilnya dengan Digital 
Thermometer. Hasil pengujian menunjukkan rata-
rata error 1,72%, dengan akurasi mencapai 98,28%. 

 Sensor pH (PH-4502C) diuji terhadap pH Air 
Analyzer. Sensor ini memiliki rata-rata error 7,53%, 
dengan akurasi sebesar 92,47%. 

 Sensor Kekeruhan (Turbidity SEN-0175) 
dibandingkan dengan Turbidity Air Analyzer, 
menghasilkan rata-rata error 2,54%, dengan akurasi 
97,46%. 

B. Pengujian Penggunaan Kuota 

TABEL 3 
(Penggunaan Kuota Sensor) 

Rata-rata 
60,19 KB/15 Menit 239,91 KB/Jam 
Tabel 3 merupakan hasil dari 240 data, rata-rata 

penggunaan kuota tercatat 60,19 KB/15 menit atau 239,91 
KB/jam. Variasi pemakaian disebabkan oleh perbedaan 
jumlah parameter yang diukur, fluktuasi data (suhu, pH, 
kekeruhan), serta kestabilan koneksi internet. Sinyal lemah 
dapat meningkatkan retransmisi, tetapi fluktuasi ini masih 
wajar dan tidak mengganggu sistem. Dengan estimasi 175 
MB/bulan untuk operasional penuh, sistem ini hemat dan 
ideal untuk budidaya ikan. Kuota yang ringan 
memungkinkan penggunaan paket data terjangkau serta 
integrasi lebih banyak perangkat tanpa meningkatkan biaya 
internet secara signifikan. 

C. Pengujian Latensi 

TABEL 4 
(Latensi Sensor) 

 
Parameter 

 
Rata-rata 

(ms) 

Latensi 
Maksimum 

(s) 

Latensi 
Minimum 

(ms) 
Kekeruhan 502 1,096 102 
Suhu 489 1,229 111 
pH 507 1,370 101 
Gabungan 499 1,370 101 

        Pada tabel 4 diatas, dilakukan selama 5 hari dengan 180 
sample data. Hasilnya menunjukkan bahwa rata-rata latensi 
untuk pengukuran kekeruhan adalah 502 milidetik, dengan 
latensi maksimum 1,096 detik dan minimum 102 milidetik. 
Untuk suhu, rata-rata latensi tercatat 489 milidetik, dengan 
nilai tertinggi 1,229 detik dan terendah 111 milidetik. 
Sementara itu, pengukuran pH memiliki rata-rata latensi 507 
milidetik, dengan latensi maksimum 1,370 detik dan 
minimum 101 milidetik. Secara keseluruhan, rata-rata latensi 
gabungan adalah 499 milidetik, dengan latensi maksimum 
1,370 detik dan minimum 101 milidetik. Hasil ini 
menunjukkan bahwa sensor memiliki performa yang baik, 
dengan latensi di bawah 1 detik yang masih sesuai untuk 

aplikasi monitoring kualitas air secara real time. Selain itu, 
kestabilan latensi terlihat dari rentang nilai yang konsisten 
tanpa anomali ekstrem, memastikan data dapat diproses tanpa 
jeda yang mengganggu. 

D. Pengujian Penggunaan Memori dan CPU ESP32 
       Pada pengujian ini, akan dilakukan pengukuran terhadap 
penggunaan memori dan beban kerja CPU ESP32 selama 
proses pengambilan, pengolahan, dan pengiriman data dari 
sensor pH, kekeruhan, dan suhu hingga data tampil di LCD 
dan dikirmkan ke database. Pengujian penggunaan memori 
bertujuan untuk mengetahui efisiensi alokasi memori agar 
sistem berjalan optimal tanpa mengalami kehabisan sumber 
daya. Sementara itu, pengujian penggunaan CPU dilakukan 
untuk memantau beban kerja prosesor ESP32, guna 
memastikan kinerja tetap stabil dan tidak mengalami 
overload selama operasional. 

TABEL 5 
(Penggunaan Memori dan CPU ESP32) 

Parameter Rata-rata 
Penggunaan Memori Internal (Byte) 299176 
Penggunaan Memori Eksternal (Byte) 2691030 
Penggunaan CPU (%) 49,3 

         Berdasarkan hasil pengujian pada Tabel 5 diatas dengan 
90 sampel data, rata-rata penggunaan memori internal pada 
ESP32 mencapai 299 KB, yang digunakan untuk eksekusi 
program, penyimpanan variabel, dan data sementara. Memori 
eksternal rata-rata tercatat sebesar 2,69 MB, berfungsi untuk 
menyimpan data lebih besar seperti file dalam SPIFFS atau 
LittleFS. Sementara itu, rata-rata penggunaan CPU sebesar 
49,3% menunjukkan pemanfaatan prosesor dalam menangani 
komunikasi, pengolahan data sensor, dan eksekusi algoritma. 
Hasil ini menunjukkan bahwa penggunaan memori dan CPU 
pada ESP32 cukup optimal untuk sistem monitoring real time 
multi-database. 

E. Pengujian Layanan Mikroservis 
Pengujian layanan mikroservis dilakukan untuk 

mengevaluasi performa dan stabilitas dari setiap container. 
Pengujian dilakukan sebanyak 30 kali yang menghasilkan 
data berupa tabel berikut. 

TABEL 6 
(Uji Layanan Mikroservis) 

Nama 
Container 

Waktu 
Startup 
(detik) 

Waktu 
Shutdown 

(detik) 

Status 
Container 
Berjalan 

(Ya/Tidak) 

Waktu 
autoregen

erasi 
(detik) 

frontend_
app 3.4 2.2 Ya 4.8 

user_db 1.9 2.1 Ya 3.2 
user_db_a

dmin 1.8 2.4 Ya 3.6 

ph_page 3.4 2.6 Ya 4.6 
turbidity_

page 3.2 2.3 Ya 4.5 

temperatu
re_page 2.9 2.2 Ya 4.5 

redis 1.6 0.5 Ya 2.0 
Berdasarkan Tabel 6, merupakan rata-rata hasil 

pengujian menunjukkan bahwa semua container beroperasi 
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dengan stabil. `Redis` memiliki waktu startup tercepat (1.6 
detik) dan shutdown tercepat (0.5 detik), sementara container 
lainnya berkisar antara 1.9 hingga 3.4 detik untuk startup dan 
2.1 hingga 2.6 detik untuk shutdown. Waktu autoregenerasi 
tertinggi tercatat pada `frontend_app` (4.8 detik), sedangkan 
`redis` paling cepat pulih (2.0 detik). Semua container tetap 
berjalan selama pengujian. 

F. Pengujian Penggunaan Sumber Daya Mikroservis 
Pengujian penggunaan sumber daya dilakukan dengan 

menambahkan 1 hingga 10 pengguna secara bertahap, 
dengan mencatat performa setiap container secara terpisah. 
Selain itu, kami melakukan pengujian terhadap masing-
masing container 5 kali untuk 1 user, dan berkelanjutan 
hingga 10 user, hingga total pengujian ada 350 data dengan 
hasil rata-rata pengujian seperti berikut. 

 
GAMBAR 14 

(CPU Usage Percentage) 

Berdasarkan Gambar 14, user_db_admin memiliki 
penggunaan CPU tertinggi, mencapai 37% pada 10 
pengguna, diikuti oleh frontend_app yang meningkat hingga 
31%. user_db menunjukkan kenaikan stabil dari 3% ke 
13%, sementara temperature_page, ph_page, 
turbidity_page, dan redis tetap rendah dan konstan di 
kisaran 0-2%. 

 
GAMBAR 15 

(Memory Usage) 

Berdasarkan Gambar 15, Penggunaan memori 
meningkat seiring bertambahnya pengguna. frontend_app 
naik dari 16.21 MB ke 40.32 MB, sementara 
temperature_page, ph_page, dan turbidity_page juga 
mengalami kenaikan signifikan. Redis tetap stabil dengan 
fluktuasi kecil, sedangkan user_db dan user_db_admin 
menunjukkan peningkatan terbesar, masing-masing 
mencapai 484.94 MB dan 98.89 MB. 

 
GAMBAR 16 

(Data Usage(Input) ) 

Berdasarkan Gambar 16, data usage input pada berbagai 
container meningkat seiring bertambahnya pengguna. 
frontend_app mengalami lonjakan signifikan dari 0.17 MB 
ke 7.84 MB, sementara turbidity_page dan ph_page juga 
meningkat tajam. Redis dan user_db menunjukkan kenaikan 
yang lebih moderat. 
 

 
GAMBAR 17 

(Data Usage (Output)) 

Berdasarkan Gambar 17, pengujian menunjukkan 
peningkatan data usage output seiring bertambahnya 
pengguna. frontend_app mengalami lonjakan dari 14 MB ke 
367 MB pada 10 pengguna. temperature_page, ph_page, dan 
turbidity_page naik stabil hingga sekitar 133–147 MB, 
sementara redis, user_db, dan user_db_admin mencatat 
kenaikan kecil dengan output maksimal 0.3–15.3 MB. 

 
GAMBAR 18 

(Storage Usage (Write)) 

Berdasarkan Gambar 18, pengujian storage usage 
(write) menunjukkan bahwa user_db_admin memiliki 
penggunaan tertinggi, mencapai 26 GB pada 10 pengguna. 
frontend_app juga mengalami lonjakan signifikan dari 32.03 
MB ke 2350 MB. Temperature_page, ph_page, dan 
turbidity_page mengalami peningkatan bertahap, dengan 
turbidity_page meningkat lebih cepat. Redis tetap stabil 
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dengan penggunaan rendah, sementara user_db meningkat 
signifikan hingga 8.4 GB. Secara keseluruhan, 
user_db_admin mencatat lonjakan terbesar dalam 
penggunaan storage. 

 
GAMBAR 19 

(Storage Usage (Read)) 

Berdasarkan Gambar 19 menunjukkan bahwa user_db 
memiliki storage usage (read) tertinggi, mencapai 417.2 MB 
pada 10 pengguna, dengan peningkatan konsisten dari 277.2 
MB. user_db_admin dan redis mengalami kenaikan kecil, 
sementara frontend_app, temperature_page, ph_page, dan 
turbidity_page tidak memiliki aktivitas storage usage (read), 
menandakan bahwa mereka tidak menulis data ke disk selama 
pengukuran. 

G. Pembahasan 
Monitoring kualitas air merupakan salah satu elemen penting 
dalam mendukung keberhasilan budidaya ikan lele. Standar 
kualitas air yang ideal untuk ikan lele mencakup tingkat 
kekeruhan antara 0 hingga 50 NTU, pH optimal dalam 
rentang 6,5 hingga 8, dan suhu air yang paling sesuai berada 
pada kisaran 25°C hingga 30°C[7]. Berdasarkan hasil 
pengujian yang penulis peroleh nilai kekeruhan yang didapat 
antara 19 hingga 32 NTU, pH 5,08 hingga 9,76 dan suhu 
24°C hingga 27°C. Kualitas air menunjukkan kekeruhan dan 
suhu sudah sesuai standar, namun pH air berada di luar 
rentang ideal sehingga diperlukan penyesuaian pH, jika pH 
air rendah ditambahkan batu kapur pada kolam, jika pH tinggi 
ditambahkan larutan lemon pada kolam dan dilakukan 
pengelolaan, dengan cara jika suhu air kolam tinggi perlu 
ditambahkan air dengan suhu normal agar lingkungan tetap 
optimal untuk pertumbuhan ikan. Sedangkan jika nilai NTU 
tidak ideal, perlu dilakukan penggantian air. Dengan menjaga 
parameter-parameter ini tetap stabil, kesehatan ikan dapat 
terjamin, dan tingkat kematian ikan dapat diminimalkan. 
Untuk mencapai tujuan ini, solusi yang diusulkan oleh 
penulis adalah merancang sistem berbasis Internet of Things 
(IoT) dengan arsitektur mikroservis yang memungkinkan 
pemantauan kualitas air secara real time. Sistem ini 
memungkinkan pengelola kolam untuk memantau data 
kualitas air kapan saja melalui internet[8]. 
Berdasarkan hasil pengujian, sistem monitoring IoT berbasis 
mikroservis menunjukkan performa yang cukup baik dalam 
hal modularitas, integrasi, dan skalabilitas [9]. Waktu startup 
yang rata-rata hanya 2,6 detik dan shutdown 2 detik 
menunjukkan bahwa sistem mampu berjalan dengan cepat, 
sedangkan waktu autoregenerasi yang mencapai 3,9 detik 
sedikit lebih lambat, karena adanya proses sinkronisasi ulang 
sebelum layanan dapat kembali berjalan normal [10, 11]. Dari 
segi penggunaan sumber daya, container user_db_admin 
mencatat penggunaan CPU tertinggi hingga 37% dan memori 

sebesar 98 MB saat digunakan oleh 10 pengguna, sementara 
frontend_app menggunakan CPU hingga 31% dengan 
konsumsi memori sekitar 40 MB. Penggunaan CPU yang 
relatif tinggi pada kedua container ini dapat disebabkan oleh 
tingginya interaksi pengguna, terutama dalam mengakses dan 
mengelola data [12]. Di sisi lain, container seperti 
temperature_page, ph_page, turbidity_page, dan redis 
menunjukkan efisiensi yang baik dengan penggunaan CPU 
stabil di sekitar 2% dan memori antara 12 MB hingga 30 MB 
[12]. 
Namun, tantangan utama terdapat pada container user_db, 
yang mencatat penggunaan memori tertinggi mencapai 484,9 
MB dengan aktivitas storage read sebesar 417,2 MB pada 10 
pengguna. Hal ini mengindikasikan adanya akses data yang 
sangat intensif, karena query database yang belum 
sepenuhnya dioptimalkan melalui teknik seperti indexing 
atau caching [13]. Selain itu, container user_db_admin 
menunjukkan aktivitas storage write yang sangat tinggi, 
mencapai 26 GB, yang menandakan adanya proses penulisan 
data dalam jumlah besar, baik dalam bentuk logging maupun 
transaksi database yang berat [14]. Beban penyimpanan yang 
besar ini dapat berdampak pada performa sistem secara 
keseluruhan, terutama jika jumlah pengguna bertambah. Oleh 
karena itu, beberapa optimasi yang dapat dilakukan meliputi 
penerapan caching untuk mengurangi beban query, 
penggunaan load balancer untuk mendistribusikan 
permintaan pengguna, serta optimalisasi mekanisme logging 
agar tidak membebani penyimpanan [15]. Dengan 
peningkatan ini, sistem dapat lebih efisien dalam menangani 
beban kerja yang lebih besar dan memastikan skalabilitas 
yang lebih baik. 
Selain konsumsi CPU dan memori, data usage juga 
mengalami peningkatan yang signifikan seiring 
bertambahnya jumlah pengguna. Frontend_app mencatat 
penggunaan data output tertinggi, yaitu 367 MB pada 10 
pengguna, serta data input sebesar 7,846 MB, yang 
menunjukkan tingginya volume pertukaran data antara 
frontend dan backend. Container lainnya, seperti 
temperature_page, ph_page, dan turbidity_page, juga 
mengalami lonjakan data input hingga 3,598 MB pada 10 
pengguna, dengan masing-masing mencatat data output 
sebesar 133,6 MB, 147 MB, dan 139,4 MB. Distribusi 
sumber daya yang stabil ini mengindikasikan bahwa 
arsitektur mikroservis mampu mendukung fleksibilitas dalam 
pembaruan dan pengembangan sistem lebih lanjut, seperti 
integrasi sensor baru atau fitur analisis data yang lebih 
kompleks. Namun, frontend_app masih memerlukan 
optimalisasi agar lebih efisien dalam menangani beban data 
yang besar, misalnya dengan menerapkan teknik kompresi 
data, optimasi caching, atau mekanisme pengelolaan request 
yang lebih baik. Dengan perbaikan ini, sistem dapat lebih 
responsif dan efisien dalam menghadapi pertumbuhan jumlah 
pengguna dan volume data yang semakin meningkat. 
Hasil pengujian menunjukkan bahwa sistem monitoring 
berbasis IoT ini mampu mengumpulkan dan mengirim data 
dari sensor pH, suhu, dan kekeruhan sebanyak 144 kali per 
hari atau setiap 10 menit sekali. Data yang dikirim berhasil 
ditampilkan secara real time di dashboard dengan tingkat 
sinkronisasi mencapai 100%, menandakan bahwa sistem 
memiliki keandalan tinggi dalam mengelola data. Pengujian 
pada mikrokontroler ESP32 menunjukkan efisiensi dalam 
konsumsi internet, dengan rata-rata penggunaan data sebesar 



ISSN : 2355-9365 e-Proceeding of Engineering : Vol.12, No.3 Juni 2025 | Page 3869
 

 

239,91 KB per jam atau sekitar 5,75 MB per hari, yang 
tergolong hemat untuk sistem berbasis IoT. Selain itu, latensi 
rata-rata sebesar 499 milidetik menunjukkan bahwa sistem 
cukup responsif dalam menangani komunikasi antara sensor 
dan server [16]. Dari segi akurasi, sensor pH mencatat tingkat 
akurasi sebesar 92,47%, sensor suhu 98,27%, dan sensor 
kekeruhan 97,46%. Meskipun terdapat sedikit fluktuasi 
akibat aktivitas ikan dan perubahan cuaca, tingkat akurasi ini 
tetap berada dalam batas yang sangat baik untuk sistem 
monitoring lingkungan perairan [17-20]. 
Selain performa komunikasi dan akurasi sensor, pengujian 
juga mencatat penggunaan memori internal pada ESP32 
mencapai 299 KB, yang digunakan untuk proses eksekusi 
program, penyimpanan variabel, dan data sementara. 
Sementara itu, rata-rata penggunaan memori eksternal 
sebesar 2,69 MB menunjukkan pemanfaatan ruang 
penyimpanan dalam SPIFFS atau LittleFS untuk menyimpan 
data lebih besar serta program yang disimpan dalam flash 
memory sebelum dieksekusi. Penggunaan CPU rata-rata 
sebesar 49,3% menunjukkan efisiensi prosesor dalam 
menangani berbagai tugas, termasuk komunikasi, 
pemrosesan data sensor, dan eksekusi algoritma [21]. Dengan 
performa yang masih dalam batas ideal ini, ESP32 masih 
memiliki kapasitas yang cukup untuk pengembangan lebih 
lanjut, seperti penambahan fitur atau integrasi sensor 
tambahan [21]. Hal ini menunjukkan bahwa sistem berbasis 
ESP32 dapat dikembangkan lebih lanjut tanpa mengalami 
penurunan performa yang signifikan, menjadikannya solusi 
yang fleksibel dan skalabel untuk aplikasi monitoring IoT 
dalam berbagai kondisi lingkungan. 

V. KESIMPULAN 
       Implementasi arsitektur mikroservis berbasis IoT 
meningkatkan efisiensi dalam sistem monitoring kualitas air 
kolam ikan. Dengan pembagian tugas dalam container 
mikroservis yang independen, sistem dapat memproses data 
secara fleksibel tanpa saling memengaruhi, bahkan saat 
terjadi kegagalan pada salah satu layanan. Pendekatan ini 
lebih unggul dibandingkan arsitektur monolitik untuk 
monitoring berbasis IoT. Sistem monitoring yang 
dikembangkan menunjukkan akurasi tinggi dengan rata-rata 
92,47% untuk pH, 98,27% untuk suhu, dan 97,46% untuk 
kekeruhan. Dengan penggunaan data rendah 5,8 MB/hari dan 
latensi rata-rata 499 milidetik, sistem memungkinkan 
pemantauan kondisi air secara real time, memberikan waktu 
yang cukup untuk tindakan preventif. ESP32 digunakan 
dengan konsumsi 299 KB memori internal, 2,69 MB memori 
eksternal, dan CPU 49,3%, tetap ideal untuk pengembangan 
fitur tambahan tanpa penurunan performa. 
       Kombinasi ESP32 dan Docker terbukti optimal, dengan 
ESP32 menawarkan performa tinggi dan efisiensi daya, serta 
Docker memungkinkan pengelolaan layanan mikroservis 
yang fleksibel. Arsitektur ini mendukung skalabilitas, 
memungkinkan peningkatan jumlah perangkat atau sensor 
tanpa mengorbankan stabilitas sistem. Dashboard monitoring 
menyajikan data real time dalam format visual yang mudah 
dipahami, seperti grafik dan tabel, mendukung analisis cepat 
dan respons tepat terhadap perubahan kualitas air. Mayoritas 
pengguna memberikan respon positif (94,8%), menilai 
website monitoring sebagai mudah digunakan, informatif, 
dan intuitif. 
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