
ISSN : 2355-9365 e-Proceeding of Engineering : Vol.12, No.5 Oktober 2025 | Page 8314

Penerapan Keamanan File Pada Shared Data

Storage Dengan Kombinasi Chacha20 Dan

Modifikasi AES

1st Erica Dyah Ayu Septiani

Informatika

Telkom University

Surabaya, Indonesia

ericadyah@student.telkomuniversity.ac.id

2nd Rizky Fenaldo Maulana

Informatika

Telkom University

Surabaya, Indonesia

rizkyfenaldo@telkomuniversity.ac.id

3rd Tanzilal Mustaqim

Informatika

Telkom University

Surabaya, Indonesia

tanzilal@telkomuniversity.ac.id

Abstrak — Dalam era digital, kebutuhan akan sistem

berbagi file yang aman semakin penting, terutama pada

lingkungan jaringan berbasis Linux. Penelitian ini

mengusulkan sistem keamanan file menggunakan kombinasi

algoritma enkripsi ChaCha20 dan modifikasi Advanced

Encryption Standard (AES) melalui metode AddRoundKey.

Sistem diimplementasikan pada protokol Server Message Block

(SMB) versi 1 berbasis Samba dan dilengkapi antarmuka web

client berbasis Flask untuk memfasilitasi unggah, unduh, serta

pengelolaan file secara terenkripsi. Proses enkripsi dilakukan

secara berlapis: data pertama-tama dienkripsi menggunakan

AES modifikasi, kemudian hasilnya dienkripsi kembali dengan

ChaCha20 untuk memperkuat keamanan terhadap serangan

dan penyadapan. Pengujian dilakukan terhadap berbagai jenis

file teks dan gambar berukuran 10KB hingga 100MB untuk

mengevaluasi performa sistem dari segi waktu enkripsi-

dekripsi, kecepatan transfer, dan integritas data. Pengujian

keamanan dilakukan melalui checksum dan analisis lalu lintas

menggunakan Wireshark guna memastikan bahwa data tetap

terlindungi selama proses transfer. Hasil pengujian

menunjukkan bahwa rata-rata waktu enkripsi mencapai

0,02583 detik dan waktu dekripsi sebesar 0,02271 detik untuk

file berukuran 1MB, serta file hasil dekripsi terbukti identik

dengan file asli berdasarkan nilai hash checksum. Selain itu,

histogram hasil enkripsi menunjukkan pola distribusi acak

yang membuktikan efektivitas pengacakan data. Hasil tersebut

menunjukkan bahwa kombinasi algoritma ini mampu

memberikan perlindungan yang lebih baik dibandingkan

metode Samba standar, serta mempertahankan integritas dan

kerahasiaan file selama proses berbagi data. Sistem ini

membuktikan efektivitas penerapan kriptografi hibrida dalam

meningkatkan keamanan pada lingkungan file sharing berbasis

protokol SMBv1.

Kata kunci— ChaCha20, AES, addroundkey, kriptografi

hibrida, samba, keamanan file

I. PENDAHULUAN

Dengan berkembangnya teknologi dan semakin

populernya informasi, kebutuhan akan media penyimpanan

data yang besar juga semakin meningkat. Oleh karena itu,

muncul masalah terkait bagaimana cara mendapatkan media

penyimpanan yang lebih besar dan aman untuk menampung

file, salah satunya melalui teknologi berbagi file dengan

menggunakan protokol Server Message Block

(SMB)(Wijaya et al., 2022). Protokol SMB memungkinkan

layanan berbagi file yang memudahkan pengelolaan

penyimpanan data, sementara Samba berfungsi sebagai

perangkat lunak untuk implementasi SMB, yang

menawarkan beberapa keunggulan, seperti sifatnya yang

gratis, kemampuannya untuk terhubung langsung ke

jaringan, serta kompatibilitas dengan berbagai platform yang

menjadikannya pilihan populer (Insanudin et al., 2024).

Alasan utama penggunaan Linux dalam berbagi file,

termasuk menggunakan protokol SMB melalui perangkat

lunak Samba, adalah stabilitasnya yang tinggi, Linux

dirancang sebagai sistem operasi multiuser, yang memastikan

bahwa hanya pengguna dengan akses khusus seperti "root"

atau "administrator" yang dapat mengakses kernel dan

melakukan perubahan pada sistem. Hal ini meningkatkan

tingkat keamanannya. Linux juga memiliki perlindungan

yang baik terhadap virus dan malware. Meskipun tidak ada

sistem yang sepenuhnya aman, sifat open source Linux

memungkinkan komunitas pengguna untuk memperbaiki

celah keamanan (vulnerabilities) dengan cepat. Semua

proses, folder, dan file di Linux dapat dikontrol dan diawasi,

sehingga transparansi ini menjadikannya pilihan yang sangat

baik bagi para administrator. Dengan memanfaatkan protokol

SMB, pengguna dapat mengelola dan membagikan data

dengan mudah, aman, dan kompatibel dengan berbagai

sistem operasi (Rezaldy & Ropianto, 2023).

Dalam penelitian ini, saya menggunakan protokol

SMBv1. Meskipun protokol SMBv1 menawarkan banyak

keunggulan, akan tetapi SMBv1 mempunyai kelemahan yang

signifikan, terutama terkait dengan keamanan dan efisiensi

jaringan. Protokol ini tidak menyediakan mekanisme enkripsi

bawaan, sehingga data yang dikirimkan melalui SMBv1

dapat dengan mudah disadap atau dimodifikasi (Vinodhini et

al., 2021). Kriptografi menjadi solusi untuk melindungi

kerahasiaan data yang dikirim, dengan mengubah pesan asli

(plaintext) menjadi bentuk yang tidak dapat dibaca

(ciphertext) melalui enkripsi menggunakan kunci yang hanya

diketahui oleh pengirim dan penerima. Dengan demikian,

pihak lain yang tidak memiliki kunci tidak akan dapat

membaca isi pesan tersebut (Anggraeni Eka Putri et al.,

2021). Untuk mengatasi masalah keamanan ini, kombinasi

algoritma enkripsi seperti AES (Advanced Encryption

Standard) dan ChaCha20 digunakan untuk meningkatkan

keamanan data selama transfer file.

AES merupakan algoritma enkripsi block cipher yang

efektif dan efisien dalam mengenkripsi data dengan panjang

kunci yang bervariasi (128 bit, 192 bit, dan 256 bit).

Pemilihan panjang kunci ini mempengaruhi jumlah putaran

mailto:ericadyah@student.telkomuniversity.ac.id
mailto:rizkyfenaldo@telkomuniversity.ac.id
mailto:tanzilal@telkomuniversity.ac.id

ISSN : 2355-9365 e-Proceeding of Engineering : Vol.12, No.5 Oktober 2025 | Page 8315

enkripsi dan tingkat keamanannya (Azhari et al., 2022). Di

sisi lain, ChaCha20, yang merupakan varian dari Salsa20,

telah terbukti memiliki tingkat keamanan yang tinggi dan

digunakan secara luas oleh Google dalam berbagai

aplikasinya. Algoritma ini menggunakan keystream yang

dihasilkan dari kombinasi kunci rahasia dan nonce,

memastikan bahwa proses enkripsi dan dekripsi tetap aman

dari potensi ancaman (Lima et al., 2022). Kombinasi kedua

algoritma ini memungkinkan perlindungan data yang lebih

kuat selama pertukaran informasi.

Sebagai solusi terhadap permasalahan keamanan file

pada sistem penyimpanan berbagi menggunakan protokol

SMB, penerapan sistem enkripsi yang menggabungkan AES

Modifikasi AddRoundKey dan ChaCha20 memberikan

perlindungan yang lebih tinggi. Dalam sistem ini, file yang

diunggah ke Samba akan dienkripsi terlebih dahulu di server

menggunakan AES untuk mengenkripsi file AES dan

ChaCha20 untuk menghasilkan keystream yang aman.

Setelah file terenkripsi, hanya pihak yang memiliki kunci

yang sesuai yang dapat mengunduh dan membuka file

tersebut. Dengan cara ini, file yang dipertukarkan melalui

protokol SMB tetap terlindungi dari ancaman seperti

peretasan, virus, atau malware. Solusi ini memberikan tingkat

keamanan yang lebih baik untuk file pada proses unggah dan

unduh melalui protokol SMBv1 menggunakan Samba. Maka

dari itu file yang diunggah akan dienkripsi setelah proses

upload selesai, dan file yang diunduh akan didekripsi

sebelum diterima pengguna menggunakan kombinasi

algoritma ChaCha20 dan AES Modifikasi. Dengan cara ini,

keamanan data selama transfer dapat lebih terjamin,

memberikan perlindungan tambahan terhadap risiko

penyadapan atau manipulasi data serta dapat menyimpan file

di file sharing dengan aman bagi pengguna dalam berbagi

data di platform Linux.

II. KAJIAN TEORI

A. Protokol SMBv1

SMB(Server Message Block) adalah protokol jaringan

yang digunakan untuk berbagi file, printer, dan komunikasi

lainnya antara komputer di dalam jaringan. Versi pertama

dari protokol ini, yang dikenal sebagai SMBv1, telah

digunakan secara luas pada sistem operasi Windows yang

lebih lama. Berikut merupakan karakteristik dari SMBv1:

a. Pendekatan Monolitik: SMBv1 dirancang sebagai

protokol yang monolitik, yang berarti bahwa setiap

operasi file dilakukan dalam beberapa langkah yang

berurutan. Ini mengakibatkan peningkatan jumlah lalu

lintas jaringan, membuat protokol ini dikenal sebagai

“chattier” dibandingkan dengan versi yang lebih baru.
b. Transaksi File Terstruktur: Protokol ini menggunakan

paket-paket yang sangat terstruktur untuk melakukan

operasi seperti membuka, membaca, menulis, dan

menutup file. Meskipun strukturnya membantu

interoperabilitas, kompleksitas ini justru memperlambat

proses di jaringan modern.

c. Kurangnya Enkripsi: SMBv1 tidak mendukung enkripsi

end-to-end, sehingga data yang dikirimkan rentan

terhadap penyadapan dan serangan man-in-the-middle.

SMBv1 mempunyai kelemahan yang signifikan, terutama

terkait dengan keamanan dan efisiensi jaringan. Protokol ini

tidak menyediakan mekanisme enkripsi bawaan, sehingga

data yang dikirimkan melalui SMBv1 dapat dengan mudah

disadap atau dimodifikasi. Selain itu, metode autentikasi

yang lebih lemah membuat SMBv1 menjadi target yang

rentan bagi peretas. Salah satu contoh mencolok dari

kerentanannya adalah eksploitasi EternalBlue, yang

digunakan dalam serangan ransomware besar seperti

WannaCry. Selain itu, SMBv1 tidak dirancang untuk

menangani volume data yang besar dan kebutuhan transfer

yang lebih cepat di jaringan modern. Banyak operasi di

SMBv1 membutuhkan permintaan dan respons berganda,

yang mengakibatkan peningkatan latensi dan performa yang

kurang optimal, terutama dalam lingkungan jaringan yang

sibuk (Vinodhini et al., 2021).

B. Samba

Samba merupakan perangkat lunak dari Unix dan Linux,

yang dikenal sebagai protokol Server Message Block (SMB).

Banyak sistem operasi seperti Windows dan Linux

menggunakan Samba untuk membuat jaringan klien-server.

Protokol SMB memungkinkan server Unix dan Linux

berkomunikasi dengan protokol Windows dalam suatu

jaringan, dengan sistem operasi Linux Samba diperlakukan

sebagai pengontrol domain utama seperti yang dilakukan NT

dalam jaringan Microsoft Windows. Dengan menggunakan

teknologi klien Samba pada Windows, server Linux dapat

berkomunikasi satu sama lain, misalnya dengan berbagi file

satu atau lebih (Ardiansyah et al., 2022).

Samba memiliki berbagai fungsi, mulai dari berbagi file,

berbagi perangkat, Pengontrol Domain Utama (PDC),

firewall, DNS, DHCP, FTP, server web, gateway, server

email, proxy, dan lain-lain. Fitur jarak jauh seperti telnet dan

SSH juga tersedia. Salah satu kelebihan Samba adalah

aplikasi instalasinya yang tidak hanya berbasis teks, tetapi

juga berbasis grafis, terutama melalui SWAT. Samba dapat

mengatur mesin Linux/UNIX sebagai PDC, seperti yang

dilakukan oleh NT pada jaringan Windows.

Samba mencakup dua program yang berjalan di

background, yaitu SMBD (Server Message Block Daemon)

dan NMBD (NetBIOS Name Block Daemon). Secara

singkat, SMBD adalah program yang akan membuat proses

baru untuk setiap klien yang aktif, sementara NMBD

bertanggung jawab untuk memetakan nama komputer

(NetBIOS) ke alamat IP (Internet Protocol) dan memantau

berbagi file di jaringan. SMBD dikelola melalui file

konfigurasi, yang memungkinkan Samba digunakan sebagai

server file, server cetak, pengontrol domain, dan berbagai

fungsi lainnya. Salah satu keuntungan utama menggunakan

Samba sebagai pengontrol domain adalah biayanya yang jauh

lebih murah dibandingkan dengan Windows NT/200x. Harga

lisensi Windows NT/200x dan biaya akses per pelanggan

sangat mahal, sementara dengan Linux dan Samba, semuanya

dapat diperoleh hampir secara gratis. Meskipun demikian,

Samba bukanlah perangkat lunak yang murahan. Sebuah

penelitian menunjukkan bahwa kinerja server Samba dua

setengah kali lebih cepat dibandingkan dengan server

Windows NT 2003.

C. WireShark

ISSN : 2355-9365 e-Proceeding of Engineering : Vol.12, No.5 Oktober 2025 | Page 8316

Wireshark adalah alat analisis jaringan yang digunakan

untuk menangkap dan memeriksa data yang berjalan di dalam

jaringan komputer. Aplikasi ini mendukung berbagai

protokol komunikasi dan memberikan informasi rinci tentang

paket-paket data, memungkinkan penggunanya untuk

memahami perilaku jaringan, mendeteksi anomali, serta

menganalisis kinerja.

Wireshark sering digunakan dalam berbagai penelitian

dan proyek pengembangan jaringan. Aplikasi ini berfungsi

sebagai platform yang mendukung pembelajaran dan

eksperimen dalam bidang telekomunikasi, khususnya untuk

memvisualisasikan bagaimana data diproses dan diteruskan

melalui jaringan. Fitur utamanya termasuk kemampuannya

untuk menampilkan data paket dalam format yang mudah

dipahami, mendukung filterisasi untuk memfokuskan analisis

pada jenis data tertentu, serta menyediakan alat decoding

untuk membantu memahami detail protokol yang kompleks.

Wireshark juga mendukung berbagai protokol jaringan,

memungkinkan penggunanya untuk melihat struktur data

mulai dari lapisan fisik hingga lapisan aplikasi. Dengan

antarmuka yang intuitif, alat ini digunakan secara luas oleh

profesional TI, insinyur jaringan, serta peneliti keamanan

siber untuk memecahkan masalah jaringan, menguji

konfigurasi keamanan, dan mengidentifikasi ancaman.

Artikel ini menunjukkan bahwa Wireshark bukan hanya alat

pemantauan biasa, melainkan juga menjadi media

pembelajaran yang sangat bermanfaat dalam memahami

dinamika jaringan modern(Jain & Anubha, 2021).

D. Kriptografi

Kriptografi merupakan teknik yang bertujuan untuk

menjaga privasi dan keamanan suatu pesan hingga mencapai

penerimanya, sekaligus mencegah kemungkinan

penyadapan. Terdapat tiga konsep utama dalam kriptografi,

yaitu enkripsi, dekripsi, dan kunci. Fungsi utama dari

kriptografi adalah melindungi kerahasiaan kunci dan

mengubah teks asli (plaintext) menjadi teks terenkripsi

(ciphertext). Dengan demikian, teks asli berubah menjadi

bentuk yang tidak dapat dimengerti tanpa kunci tertentu,

tanpa perlu merahasiakan algoritma yang digunakan. Namun,

jika kunci yang digunakan untuk menjaga privasi dan

keamanan dapat diakses oleh pihak lain, maka keamanan

pesan menjadi terancam. Oleh karena itu, kriptografi

dianggap aman untuk diterapkan pada berbagai jenis media,

seperti pesan teks, gambar, audio, video, maupun media

lainnya (Sari et al., 2022).

Salah satu konsep utama dalam kriptografi adalah

enkripsi, yaitu proses mengubah data yang dapat dipahami

menjadi kode yang tidak dapat dimengerti. Tujuan utama dari

enkripsi adalah untuk menjaga keamanan data. Metode ini

digunakan sebagai upaya perlindungan terhadap kejahatan

siber, seperti peretasan email, phishing, pencurian data, dan

penyalahgunaan informasi kartu. Dalam prosesnya, data

sensitif diacak sedemikian rupa sehingga berbeda dari bentuk

aslinya. Dengan demikian, meskipun data tersebut berhasil

diakses oleh peretas, data tersebut tidak dapat digunakan

dengan mudah. Oleh karena itu, banyak platform digital

seperti situs web dan media sosial saat ini mengadopsi

enkripsi untuk melindungi kerahasiaan data pengguna. Data

yang telah dienkripsi tetap dapat dikembalikan ke bentuk

aslinya melalui proses dekripsi, yang hanya dapat dilakukan

oleh pihak yang memiliki akses atau merupakan pemilik sah

dari data tersebut (Wulandari & Hwihanus, 2023). Dekripsi,

yang merupakan proses kebalikan dari enkripsi, bertujuan

mengembalikan pesan terenkripsi ke bentuk aslinya (Azhari

et al., 2022).

E. Chacha20

Menurut Bernstein, ChaCha20 adalah algoritma stream

cipher yang dirancang oleh Daniel J. Bernstein sebagai varian

dari algoritma Salsa20. Algoritma ini dirancang untuk

meningkatkan keamanan, kinerja, dan kompatibilitas

perangkat keras dibandingkan algoritma enkripsi lainnya.

Algoritma ChaCha20 telah terbukti fleksibel dan efektif

dalam berbagai pengaturan keamanan, termasuk sistem

tertanam, jaringan sensor nirkabel, dan keamanan untuk

mesin virtual di pusat data. Algoritma ini juga digunakan

dalam protokol SSL/TLS oleh perusahaan seperti Google dan

Cloudflare. ChaCha20 meningkatkan difusi data di setiap

putaran sambil tetap mempertahankan performa yang tinggi.

Menggunakan operasi Add-Rotate-XOR, ChaCha20 bekerja

dengan matriks awal 4x4 yang terdiri dari 16 kata 32-bit, total

berukuran 512-bit, untuk menghasilkan aliran kunci

(keystream). Input utama algoritma ini meliputi kunci 256-

bit, konstanta 128-bit, nonce 96-bit, dan counter 32-bit.

ChaCha20 mendukung kunci dengan panjang 128-bit atau

256-bit, menggunakan konstanta "expand 32-byte k" dan

nonce sebagai bilangan acak yang digunakan sekali saja.

Dalam ChaCha20, kata-kata disimpan dalam format little-

endian, dan susunan matriksnya terstruktur dengan rapi(Fitra

Rahim & Supiyandi, 2024. ChaCha20 yang beroperasi pada

matriks 4×4 yang terdiri dari 16 kata 32-bit (512 bit total),

mencakup:

- 4 kata konstanta (128 bit): Biasanya string ASCII "expand

32-byte k".

- 8 kata kunci (256 bit): Kunci utama untuk proses enkripsi.

- 1 kata penghitung (32 bit): Mengindikasikan nomor blok,

memastikan keystream unik.

- 3 kata nonce (96 bit): Sebuah nilai unik untuk setiap

enkripsi.

Adapun susunan matriks-nya disusun seperti pada TABEL

1:
TABEL 1

(Matriks Enkripsi ChaCha20)

Const Const Const Const

Key Key Key Key

Key Key Key Key

Counter Nonce Nonce Nonce

Setelah 20 putaran selesai, matriks yang dihasilkan

ditambahkan elemen per elemen dengan status matriks awal

menggunakan penjumlahan modulo 2³².

Proses Enkripsi:

- Matriks inisialisasi diatur dengan kunci, nonce,

penghitung, dan konstanta.

- Matriks diproses melalui 20 putaran quarter-round.

- Hasil akhir matriks digunakan untuk menghasilkan

keystream.

- Keystream dioperasikan dengan plaintext menggunakan

XOR untuk menghasilkan.

Keystream yang dihasilkan dari proses matriks internal

digunakan untu mengenkripsi plaintext dengan operasi XOR:

ISSN : 2355-9365 e-Proceeding of Engineering : Vol.12, No.5 Oktober 2025 | Page 8317

𝑐݅݌ℎ݁ݐݔ݁ݐ ݎ [݅] = [݅]ݐݔ݁ݐ݈݊݅ܽܲ ⊕ II-1 (1) [݅]݉ܽ݁ݎݐݏݕ݁ܭ

Setiap blok data menggunakan nonce dan penghitung yang

unik untuk memastikan tidak ada blok data yang berbagi

keystream.

Fungsi Quarter-Round adalah inti dari ChaCha20 yang

memproses empat elemen dalam matriks internal. Quarter-

Round bekerja dengan menggunakan operasi ARX untuk

menghasilkan difusi yang kuat. Fungsi ini dijelaskan melalui

rumus: ܽ += ܾ; ݀ ܽ= ; ݀ = ,݀)ܮܱܴܶ 16); 𝑐 += ݀; ܾ 𝑐= ; ܾ = ,ܾ)ܮܱܴܶ 12); ܽ += ܾ; ݀ ܽ= ; ݀ = ,݀)ܮܱܴܶ 8); 𝑐 += ݀; ܾ ^ = 𝑐; ܾ = ,ܾ)ܮܱܴܶ 7);

(2)
Keterangan:

- += adalah penjumlahan modulo 2³² untuk menambahkan

data secara siklis.

- ^= adalah operasi XOR.

- ROTL(x, n) adalah rotasi bit ke kiri sebanyak n posisi

untuk mempercepat distribusi bit data.

Dalam penelitian ini, saya menggunakan 20 putaran yang

terdiri dari 10 double round. Pada GAMBAR 1 setiap

double round meliputi 2 putaran: putaran ganjil yang terdiri

dari 4 quarter round kolom dan putaran genap dengan 4

quarter round diagonal. ChaCha20 melakukan 10 putaran

ganda, setara dengan 20 putaran atau 80 aplikasi quarter

round.

GAMBAR 1

(Double Round (Fitra Rahim & Supiyandi, 2024))

F. Advanced Encryption Standard (AES)

Advanced Encryption Standard (AES) adalah algoritma

enkripsi blok yang dirilis oleh National Institute of Standards

and Technology (NIST) pada tahun 2000. Algoritma ini

dikembangkan untuk menggantikan DES yang mulai

dianggap rentan terhadap berbagai jenis serangan. Untuk

menemukan pengganti DES, NIST mengundang pakar

keamanan data dan enkripsi dari seluruh dunia untuk

mengusulkan algoritma cipher blok yang kuat dan inovatif

untuk mengenkripsi dan mendekripsi data.

Dari seluruh algoritma yang diajukan, NIST menerima lima

algoritma untuk dievaluasi secara menyeluruh. Setelah

melalui berbagai kriteria dan parameter keamanan, algoritma

yang diusulkan oleh kriptografer Belgia Joan Daemen dan

Vincent Rijmen terpilih sebagai pemenang. Algoritma ini

awalnya dikenal dengan nama Rijndael sebelum resmi

dinamai AES.

GAMBAR 2

(Arsitektur AES(Maulana Anidita A.A, 2023))

Algoritma AES menggunakan beberapa proses iteratif untuk

menghasilkan ciphertext, dengan tingkat kekuatan enkripsi

yang berbeda:

1. 10 iterasi untuk kekuatan enkripsi 128 bit.

2. 12 iterasi untuk kekuatan enkripsi 192 bit.

3. 14 iterasi untuk kekuatan enkripsi 256 bit.

Proses iteratif ini memastikan AES memiliki struktur yang

kompleks seperti pada GAMBAR 1 dan tahan terhadap

berbagai jenis serangan, menjadikannya salah satu algoritma

enkripsi paling andal hingga saat ini (Ibtihaji Ilham et al.,

2021.

Dalam sebuah perulangan proses enkripsi setiap blok,

terdapat empat sub-proses yang berlaku:

1. SubBytes dari data masukan disubstitusikan

menggunakan byte yang sesuai berdasarkan substitution

box (S-box) yang bisa ditunjukkan pada GAMBAR 2

Tahap ini membentuk nonlinearitas dan kebingungan

(confusion) dalam data hasil enkripsi.

GAMBAR 3

(S-box Algoritma AES(Maulana Anidita A.A, 2023))

2. ShiftRows: Setiap baris data digeser secara siklis. Baris

pertama tetap pada posisinya, baris kedua digeser ke kiri

satu posisi, baris ketiga digeser ke kiri dua posisi, dan

baris keempat digeser ke kiri tiga posisi. Tahap ini

menciptakan diffusion dan menyebarkan data di setiap

baris.

3. MixColumns: Setiap kolom data diacak menggunakan

matriks pengacakan. Tahap ini menambah diffusion

ISSN : 2355-9365 e-Proceeding of Engineering : Vol.12, No.5 Oktober 2025 | Page 8318

yang lebih dalam dan memastikan bahwa setiap byte

dalam kolom tergantung pada empat byte lainnya.

4. AddRoundKey: Pada tahap ini, dilakukan operasi XOR

antara data dan round key. Round key diperoleh dari

kunci utama melalui algoritma penjadwalan kunci (Key-

Scheduling Algorithm / KSA). Tahap ini memberikan

kunci yang unik pada data, sehingga hasil enkripsi

bergantung pada kunci tersebut.

Keempat proses ini akan dijalankan berulang pada setiap

iterasi, kecuali pada iterasi terakhir, di mana proses

MixColumns akan dilewati. Hasil dari iterasi terakhir ini

adalah data yang telah terenkripsi(Maulana Anidita A.A,

2023).

III. METODE

Penelitian ini menggunakan pendekatan kuantitatif untuk

menganalisis penerapan keamanan file pada shared data

storage berbasis server Samba dengan kombinasi algoritma

enkripsi ChaCha20 dan modifikasi AES melalui

AddRoundKey. Penelitian dimulai dengan instalasi server

Samba yang dikonfigurasi untuk mendukung protokol SMB

sebagai media penyimpanan berbagi. Kemudian, algoritma

ChaCha20 dan modifikasi AES diimplementasikan untuk

melakukan proses enkripsi dan dekripsi file. Selanjutnya,

dirancang antarmuka web client yang memungkinkan

pengguna untuk mengupload file, mendownload file, dan

melihat daftar file yang tersedia di server. Data uji berupa file

teks dan gambar disiapkan, dienkripsi menggunakan

modifikasi AES untuk menghasilkan ciphertext awal,

kemudian diproses lebih lanjut dengan ChaCha20 untuk

meningkatkan keamanan, sebelum dikirim ke server Samba

untuk disimpan secara terenkripsi. Saat file diunduh, data

diterima dalam bentuk terenkripsi dan didekripsi kembali ke

bentuk aslinya menggunakan kombinasi algoritma yang

sama. Pengujian dilakukan untuk mengukur kecepatan

transfer file (upload dan download), memverifikasi integritas

data melalui perbandingan checksum sebelum dan sesudah

transfer, serta memastikan keamanan data selama proses

transfer menggunakan Wireshark. Hasil pengujian dianalisis

untuk mengevaluasi efektivitas kombinasi algoritma

ChaCha20 dan modifikasi AES dalam meningkatkan

keamanan data serta kinerja sistem secara keseluruhan.

A. Prosedur Penelitian

Prosedur penelitian ini mencakup setiap tahap, mulai dari
instalasi perangkat lunak hingga analisis hasil. Prosedur
dimulai dengan tahap Instalasi Samba, yang mungkin
merujuk pada persiapan lingkungan jaringan atau server.
Selanjutnya, Implementasi Algoritma menunjukkan
pengembangan inti dari sistem, di mana algoritma spesifik
dirancang dan dikembangkan. Setelah itu, Perancangan Web
Client mencakup pengembangan antarmuka pengguna yang
akan berinteraksi dengan sistem. Pengumpulan Data Uji dan
Pengujian menunjukkan fase pengujian di mana data diuji
dan sistem diuji untuk validitas dan efisiensinya. Proses
berakhir dengan Analisis Hasil, dimana hasil pengujian
dianalisis untuk mendapatkan wawasan dan kesimpulan.
Flowchart alur penelitian bisa dilihat pada GAMBAR 4.

GAMBAR 4

(Flowchart Rancangan Penelitian)

IV. HASIL DAN PEMBAHASAN

Penelitian ini menghasilkan sebuah sistem keamanan file

berbasis web yang menggunakan kombinasi algoritma

enkripsi AES Modifikasi AddRoundKey dan ChaCha20,

serta diintegrasikan dengan layanan berbagi file melalui

protokol SMBv1 (Server Message Block) menggunakan

Samba. Sistem ini mampu melakukan proses unggah dan

unduh file yang terenkripsi secara otomatis dengan

mempertahankan integritas serta meningkatkan keamanan

terhadap penyadapan.

A. Hasil Implementasi Sistem

Sistem yang diimplementasikan memiliki dua antarmuka

utama, yaitu Samba Standard (tanpa enkripsi) dan Samba

Modified (dengan enkripsi). Keduanya diakses melalui web

interface berbasis framework Flask yang dirancang untuk

memudahkan pengguna dalam mengunggah dan mengunduh

file, baik secara standar maupun dengan lapisan keamanan

tambahan.

GAMBAR 5

(Samba Modified)

Antarmuka Samba Modified - Encrypted menyediakan fitur

unggah dan unduh file dengan perlindungan enkripsi ganda

menggunakan kombinasi algoritma ChaCha20 dan Modified

AES. Pengguna dapat memilih file, memasukkan kunci

enkripsi, lalu mengeksekusi proses unggah terenkripsi. Untuk

mengakses kembali file yang telah terenkripsi, pengguna

cukup memasukkan nama file serta kunci dekripsi yang

sesuai. Implementasi ini dirancang untuk meningkatkan

keamanan data yang dibagikan melalui protokol SMBv1.

ISSN : 2355-9365 e-Proceeding of Engineering : Vol.12, No.5 Oktober 2025 | Page 8319

GAMBAR 6

(Samba Standard)

Sementara itu, antarmuka Samba Standard - No Encryption

menyediakan layanan unggah dan unduh file tanpa

mekanisme enkripsi. Fitur ini digunakan untuk

membandingkan performa sistem berbagi file standar tanpa

perlindungan kriptografi, seperti kecepatan transfer yang

tinggi namun tanpa jaminan kerahasiaan data.

Kedua antarmuka dilengkapi tombol navigasi yang

memungkinkan pengguna beralih antar mode (Standard ke

Modified) dengan mudah, menjadikan sistem fleksibel baik

dari sisi efisiensi maupun keamanan.

B. Tabel Hasil Waktu Enkripsi dan Dekripsi

GAMBAR 7

(Analisis Performa Enkripsi/ Dekripsi Format TXT)

Pengujian performa terhadap file .txt pada GAMBAR 7

menunjukkan bahwa durasi enkripsi dan dekripsi meningkat

seiring bertambahnya ukuran file. Untuk file kecil (±49 KB),

proses berlangsung sangat cepat (±0,114 detik), namun durasi

meningkat signifikan pada file besar, mencapai 166 detik

untuk enkripsi dan 125 detik untuk dekripsi pada file 10 MB.

Menariknya, dekripsi cenderung sedikit lebih cepat

dibandingkan enkripsi mulai dari ukuran 3 MB ke atas.

Grafik kecepatan menunjukkan tren penurunan tajam, dari

±0,42 MB/s pada file kecil menjadi ±0,06 MB/s pada file

besar. Penurunan ini menunjukkan beban komputasi yang

meningkat secara non-linear terhadap ukuran file. Temuan ini

menegaskan bahwa sistem bekerja sangat efisien pada file

kecil, namun perlu optimasi lebih lanjut agar tetap responsif

saat menangani file berukuran besar.

TABEL 2
(Uji Coba Parameter TXT)

Jenis

File

Size

File
(MB)

Waktu

Upload
(s)

Waktu

Download
(s)

Kecepatan

Upload
(MB/s)

Kecepatan

Download
(MB/s)

Txt

1 2.560 2.611 0.39 0.38

3 10.922 11.015 0.27 0.27

5 38.941 42.526 0.13 0.12

7 84.706 99.941 0.08 0.07

10 166.040 125.964 0.06 0.08

Berdasarkan hasil pengujian terhadap file TXT pada tabel 2

dengan ukuran 1 MB hingga 10 MB, dapat disimpulkan

bahwa sistem enkripsi bekerja stabil dan berhasil memproses

seluruh file tanpa error. Namun, performa sistem

menunjukkan bahwa waktu proses meningkat signifikan

seiring bertambahnya ukuran file, sementara kecepatan

transfer menurun secara bertahap. Ini menandakan bahwa

beban komputasi sistem meningkat secara non-linear pada

file berukuran besar. Oleh karena itu, meskipun sistem

terbukti andal, diperlukan optimasi performa agar efisiensi

tetap terjaga pada file berukuran besar.

C. Analisis Checksum untuk Integritas Data

Pengujian keamanan file diukur menggunakan web MD5 File

Checksum dan hasil ditunjukkan pada table IV.15 untuk

memastikan integritas data selama proses enkripsi, upload,

download, dan dekripsi.

TABEL 3

(Pengujian Keamanan File)
Tahap Checksum Keterangan

File Asli b0260a8bea3ab5bfa32ce27be4c35ccd Validasi

integritas awal.

Setelah
Upload

557c1d73d83860593b53f69ad4124a29 Hasil enkripsi
harus unik.

Setelah

Enkripsi

557c1d73d83860593b53f69ad4124a29
Validasi

integritas file

di server.

Setelah

Download

b0260a8bea3ab5bfa32ce27be4c35ccd

Verifikasi tidak

ada perubahan

selama proses.

Setelah

Dekripsi

b0260a8bea3ab5bfa32ce27be4c35ccd

File kembali

ke bentuk asli

tanpa
perubahan.

Setelah

Dekripsi

b0260a8bea3ab5bfa32ce27be4c35ccd

File kembali

ke bentuk asli

tanpa
perubahan.

Pengujian integritas data yang dilakukan pada TABEL 3

menggunakan metode checksum MD5 pada lima tahap

proses, yaitu sebelum dan sesudah enkripsi, unggah, unduh,

dan dekripsi. Hasil menunjukkan bahwa file asli memiliki

nilai checksum b0260a8bea3ab5bfa32ce27be4c35ccd, yang

berubah menjadi 557c1d73d83860593b53f69ad4124a29

setelah proses enkripsi dan tetap konsisten selama

penyimpanan di server. Setelah file diunduh dan didekripsi,

nilai checksum kembali ke bentuk awal, menandakan bahwa

tidak ada perubahan pada isi file sepanjang proses

berlangsung. Temuan ini membuktikan bahwa sistem mampu

menjaga integritas file dari awal hingga akhir secara

ISSN : 2355-9365 e-Proceeding of Engineering : Vol.12, No.5 Oktober 2025 | Page 8320

menyeluruh, dan mekanisme enkripsi-dekripsi berjalan

sempurna tanpa menyebabkan kerusakan data.

D. Analisis Kinerja Sistem

Pada bagian ini, dilakukan analisis terhadap kinerja sistem

dengan menggunakan dua metode, yaitu Samba Standar dan

Samba Modifikasi. Hasil pengujian ini bertujuan untuk

membandingkan efisiensi dan keamanan antara metode

Samba Standar dan Samba Modifikasi, serta mengevaluasi

kelebihan yang ditawarkan oleh metode modifikasi dalam

meningkatkan performa sistem.

TABEL 4

(Analisis Hasil Pengujian)

Metode EU ED ES
WU
(s)

WD
(s)

KU

(MB/

s)

KD

(MB/

s)

Samba
Standar

t

- - - 0.02
09

0 85.0
1

2046.
48

Samba
Modifik

asi

Berha
sil

Berha
sil

Berha
sil

5.13
84

5.37
23

0.34 0.33

Analisis performa pada TABEL 4 menunjukkan bahwa

Samba standar tanpa enkripsi memiliki waktu unggah dan

unduh sangat cepat (WU: 0,0209 detik; WD: 0 detik) dengan

kecepatan transfer tinggi (upload: 85,01 MB/s; download:

2046,48 MB/s). Sebaliknya, sistem dengan enkripsi

ChaCha20 dan Modified AES mengalami penurunan

performa (WU: 5,1384 detik; WD: 5,3723 detik; kecepatan

transfer ±0,34 MB/s). Meskipun demikian, penambahan

lapisan enkripsi terbukti memberikan perlindungan data yang

jauh lebih tinggi. Trade-off antara keamanan dan efisiensi ini

dinilai wajar, terutama untuk lingkungan yang

memprioritaskan kerahasiaan data.

E. Analisis Performa per Kategori File

GAMBAR 8

(Grafik Rata-Rata Performa per Kategori File)

Analisis performa berdasarkan jenis file pada GAMBAR 8

menunjukkan bahwa file dokumen cenderung memiliki

kecepatan proses yang lebih tinggi dibandingkan file gambar.

File DOCX mencatat kecepatan rata-rata tertinggi (0,40

MB/s), diikuti oleh PDF (0,36 MB/s), dan TXT (0,20 MB/s),

menunjukkan efisiensi tinggi pada struktur file teks.

Sementara itu, file XLSX mengalami penurunan performa

(0,32 MB/s) akibat kompleksitas struktur datanya.

Pada kategori gambar, performa cenderung lebih rendah. File

JPEG menunjukkan kecepatan paling stabil (0,21 MB/s),

diikuti oleh JPG (0,17 MB/s) dan PNG (0,15 MB/s). Variasi

ini menunjukkan bahwa sistem lebih optimal dalam

menangani dokumen dibandingkan file visual, yang

umumnya lebih kompleks dan berukuran besar.

TABEL 5

(Analisis Performa per Kategori File)

Kategori File
Kecepatan Upload Rata-

rata(MB/s)

Kecepatan Download

Rata-rata(MB/s)

Dokumen 0.32 0.34

Gambar 0.18 0.19

Keseluruhan 0.25 0.27

Berdasarkan TABEL 5, sistem menunjukkan rata-rata

kecepatan upload sebesar 0,32 MB/s dan download 0,34

MB/s untuk file dokumen, mencerminkan efisiensi yang baik

terutama pada format sederhana seperti TXT dan DOCX.

Untuk file gambar, kecepatan rata-rata upload dan download

masing-masing tercatat 0,18 MB/s dan 0,19 MB/s,

menunjukkan efisiensi sedang akibat kompleksitas struktur

data visual.

Secara keseluruhan, rata-rata kecepatan sistem adalah 0,25

MB/s (upload) dan 0,27 MB/s (download). Meskipun

tergolong cukup efisien, peningkatan performa masih

diperlukan, khususnya untuk file besar dan gambar.

Implementasi teknik kompresi disarankan guna

mengoptimalkan kecepatan pemrosesan tanpa mengurangi

tingkat keamanan sistem.

F. Performa Samba Modifikasi vs Samba Standar

TABEL 6
(Analisis Dampak Performa Samba Modifikasi vs Samba Standar)

Metode
Kecepatan

Upload(MB/
s)

Kecepatan
Download(MB/

s)

Dampak

Perform

a
Upload

Dampak

Performa

Downloa
d

Samba
Standar

85.01 2046.48 - -

Samba

Modifikas

i

0.34 0.33 -99.6% -99.98%

Pada TABEL 6, dampak performa antara Samba Modifikasi

dan Samba Standar menunjukkan perbedaan yang mencolok.

• Kecepatan Upload pada Samba Standar mencapai 85.01

MB/s, sedangkan pada Samba Modifikasi, kecepatan

upload turun drastis menjadi 0.34 MB/s, mencerminkan

penurunan performa sebesar 99.6%.

• Kecepatan Download juga mengalami penurunan yang

signifikan, dari 2046.48 MB/s pada Samba Standar

menjadi 0.33 MB/s pada Samba Modifikasi, yang berarti

penurunan performa sebesar 99.98%.

Penurunan performa ini menunjukkan bahwa meskipun

sistem enkripsi memberikan perlindungan keamanan yang

komprehensif, ada trade-off yang signifikan antara keamanan

dan efisiensi.

V. KESIMPULAN

Penelitian ini berhasil mengimplementasikan sistem
keamanan file pada shared data storage berbasis Linux
dengan kombinasi algoritma ChaCha20 dan AES yang
dimodifikasi pada tahap AddRoundKey. Sistem diterapkan
melalui protokol SMBv1 menggunakan Samba dan diuji
melalui antarmuka web client berbasis Flask. Proses enkripsi

ISSN : 2355-9365 e-Proceeding of Engineering : Vol.12, No.5 Oktober 2025 | Page 8321

berlapis terbukti mampu menjaga kerahasiaan dan integritas
data, dibuktikan dengan nilai checksum identik antara file asli
dan hasil dekripsi. Analisis lalu lintas jaringan menggunakan
Wireshark menunjukkan bahwa file tetap terenkripsi selama
transmisi, mencegah potensi penyadapan. Sistem juga
menunjukkan performa efisien dengan rata-rata waktu
enkripsi 0,02583 detik dan dekripsi 0,02271 detik untuk file
1MB, serta distribusi data terenkripsi yang acak berdasarkan
histogram.

Untuk pengembangan lebih lanjut, sistem disarankan
menggunakan protokol SMBv2/v3 guna meningkatkan
keamanan. Penambahan fitur manajemen kunci berbasis PKI
dan autentikasi multi-faktor juga direkomendasikan. Selain
itu, pengujian perlu diperluas ke format file lain (audio,
video, arsip), dan antarmuka web dapat ditingkatkan dengan
fitur seperti enkripsi sisi klien, log aktivitas, dan sistem
backup otomatis.

REFERENSI

Ardiansyah, M. F., Diansyah, T. M., Liza, R., & Redaksi, D.

(2022). Penggunaan Set top box Bekas untuk

Dimanfaatkan sebagai Cloud Server. Blend Sains

Jurnal Teknik, 1(2), 88–96.

https://doi.org/10.56211/BLENDSAINS.V1I2.115
Azhari, M., Mulyana, D. I., Perwitosari, F. J., & Ali, F.

(2022). Implementasi Pengamanan Data pada

Dokumen Menggunakan Algoritma Kriptografi

Advanced Encryption Standard (AES). Jurnal

Pendidikan Sains Dan Komputer, 2(01), 163–171.

https://doi.org/10.47709/JPSK.V2I01.1390

Fitra Rahim, Y. R. N., & Supiyandi. (2024). View of

Implementasi Algoritma ChaCha20 Pada Pengamanan

File Citra Bitmap. FASILKOM, 14, 615–626.

https://www.ejurnal.umri.ac.id/index.php/JIK/article/v

iew/7956/3266

Ibtihaji Ilham, L., Pramita Widyassari, A., Sekolah Tinggi

Teknologi Ronggolawe Cepu, ab, & Teknik Elektro, J.

(2021). Pengembangan Aplikasi Pesan Instan

Terenkripsi Menggunakan Algoritma Kriptografi AES

(Advanced Encryption Standard). JES (Jurnal Elektro

Smart), 1(1), 1–6.

https://www.jurnal.sttrcepu.ac.id/index.php/jes/article/

view/157

Insanudin, E., Sularsa, A., & Soegiarto, D. (2024). Design Of

Web-Based Cloud Drive Application As Online

Storage Media Using Virtual Private Server. Jurnal

Ilmiah Teknologi Infomasi Terapan, 11(1).

https://doi.org/10.33197/JITTER.VOL11.ISS1.2024.2

389

Jain, G., & Anubha. (2021). Application of SNORT and

Wireshark in Network Traffic Analysis. IOP

Conference Series: Materials Science and

Engineering, 1119(1), 012007.

https://doi.org/10.1088/1757-899X/1119/1/012007

Lima, P. M., da Silva, C. K. P., de Farias, C. M., Carvalho,

L. K., & Moreira, M. V. (2022). Event-based

cryptography for automation networks of cyber-

physical systems using the stream cipher ChaCha20.

IFAC-PapersOnLine, 55(28), 58–65.

https://doi.org/10.1016/J.IFACOL.2022.10.324

Maulana Anidita A.A. (2023). Analisis Perbandingan

Algoritma AES dan ChaCha20-Poly1305 dalam

Enkripsi Konten Livestreaming.

https://informatika.stei.itb.ac.id/~rinaldi.munir/Kripto

grafi-dan-Koding/2022-2023/Makalah2023/Makalah-

KriptoKoding-2023%20(10).pdf

Rezaldy, A., & Ropianto, M. (2023). Mengkonfigurasi

Samba Server Di Sistem Operasi Linux. Jurnal Ilmiah

Sistem Informasi.

https://d1wqtxts1xzle7.cloudfront.net/78655758/Adity

a_Rezaldy_Mengkonfigurasi_Samba_Server_di_OS_

Linux-libre.pdf?1642149947=&response-content-

disposition=inline%3B+filename%3DMENGKONFI

GURASI_SAMBA_SERVER_DI_SISTEM_O.pdf&E

xpires=1736608135&Signature=DcAGbYpEhMYPR

21B087i2OhmrWWQQ-2AXJjTHWK-

dwclYdqSr1VWTRYQ07dQjzMGzxXMD98iUrdk2Z

QMhw-GvZwlh4GQAJEwJNIEtMjzepx3fCsijdfV-

aQItASsULCekMQdcllKvOx~PuHab2XJrqJWFPQC

QMOo~baKpw-

~B9OQ9oHrWkUGP82DDmHySIFe3xrbEdYLqeWX

KZfi6nDzwXGbsWk9IzRczTBm1oYfslB162E8Rbe~

rK8JGYy

Sari, M., Kriptografi Keamanan, A., Dwi Purnomo, H.,

Sembiring, I., Sistem Informasi, M., Teknologi

Informasi, F., Kristen Satya Wacana, U., &

Notohamidjojo, J. O. (2022). Review : Cryptographic
Algorithm for SMS Security System on Android.

Journal of Information Technology, 2(1), 11–15.

https://doi.org/10.46229/JIFOTECH.V2I1.292

Vinodhini, V., Kumuthini, C., & Santhi, K. (2021). A Study

on Behavioural Analysis of Specific Ransomware and

its Comparison with DBSCAN-MP.

https://doi.org/10.32628/CSEIT206670

Wijaya, E., Purwantoro ESGS, S., Caltex Riau, P., & Umban

Sari No, J. (2022). Perbandingan Kinerja Clustered File

System pada Cloud Storage menggunakan GlusterFS

dan Ceph. INOVTEK Polbeng - Seri Informatika, 7(2),

319–333.

http://103.174.114.133/index.php/ISI/article/view/275

3

Wulandari, I. W., & Hwihanus, H. (2023). Peran Sistem

Informasi Akuntansi Dalam Pengaplikasian Enkripsi

Terhadap Peningkatan Keamanan Perusahaan. Jurnal

Kajian Dan Penalaran Ilmu Manajemen, 1(1), 11–25.

https://doi.org/10.59031/JKPIM.V1I1.46

.

