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Abstrak—Aritmia jantung merupakan gangguan irama 
jantung yang berpotensi memicu kondisi kardiovaskular serius 
apabila tidak terdeteksi secara dini. Kompleksitas morfologi 
sinyal elektrokardiogram (EKG), dimensi data yang tinggi, dan 
ketidakseimbangan distribusi kelas pada dataset menjadi 
tantangan dalam pengembangan sistem deteksi berbasis 
kecerdasan buatan. Penelitian ini bertujuan mengembangkan 
sistem klasifikasi aritmia berbasis sinyal EKG dari MIT-BIH 
Arrhythmia Database dengan menggabungkan Discrete Wavelet 
Transform (DWT) dan Kullback–Leibler Divergence (KL 
Divergence) untuk ekstraksi fitur. Data diseimbangkan 
menggunakan random undersampling sebelum ekstraksi, 
dengan empat pendekatan distribusi pada KL Divergence, yaitu 
Uniform, Exponential, Gaussian, dan Combined. klasifikasi 
dilakukan menggunakan Support Vector Machine (SVM) 
dengan kernel RBF, serta dievaluasi menggunakan metrik 
akurasi, F1-score, ROC AUC, log loss, average precision (AP), 
efisiensi komputasi, dan Coefficient of Variation (CV). Hasil 
menunjukkan bahwa KL Combined memberikan performa 
terbaik dengan akurasi 0,8895, F1-score 0,9039, AUC 0,9406, 
dan log loss uji 0,3012. KL Combined dinilai optimal untuk 
implementasi klinis karena menggabungkan akurasi tinggi, 
kestabilan, dan efisiensi, menjadikannya pilihan unggulan 
dalam sistem deteksi aritmia yang konsisten dan andal. 

Kata kunci: Aritmia jantung, Divergence Kullback-Leibler, 
Discrete Wavelet Transform, EKG, MIT-BIH, Support Vector 
Machine 

I. PENDAHULUAN
Penyakit kardiovaskular merupakan penyebab 

kematian tertinggi di dunia, dengan kontribusi hampir 32% 
dari total kematian global setiap tahunnya menurut World 
Health Organization (WHO) [1]. Salah satu bentuk gangguan 
kardiovaskular yang memerlukan perhatian khusus adalah 
aritmia jantung, yaitu ketidakteraturan irama detak yang 
dapat berupa takikardi, bradikardi, maupun irama yang tidak 
teratur [2]. Kondisi ini disebabkan oleh disfungsi sistem 
kelistrikan jantung, dengan faktor risiko meliputi penyakit 
jantung, ketidakseimbangan elektrolit, stres, hingga efek 
samping obat-obatan tertentu [3]. Perkembangan teknologi 
elektrokardiogram (EKG) sejak penemuannya oleh Willem 
Einthoven telah membawa kemajuan besar dalam diagnosis 
aritmia [4], namun deteksi otomatis masih menghadapi 
tantangan signifikan akibat kemiripan morfologi antara 
sinyal normal dan abnormal [5], tingginya dimensi data, serta 
ketidakseimbangan distribusi kelas antara beat normal dan 
aritmia yang dapat menurunkan sensitivitas model terhadap 
beat aritmia [6].  

Penelitian ini dikembangkan dari dua permasalahan 
utama, yaitu bagaimana mengembangkan algoritma deteksi 
aritmia yang mampu mengklasifikasikan denyut jantung 
normal dan aritmia pada dataset MIT-BIH Arrhythmia 
Database [18], serta bagaimana penerapan masing-masing 
pendekatan Kullback–Leibler Divergence (Uniform, 
Exponential, Gaussian, dan Combined) memengaruhi 
performa sistem dalam hal akurasi dan efisiensi [14][15]. 
Untuk menjawab permasalahan tersebut, diusulkan sistem 
deteksi aritmia berbasis Discrete Wavelet Transform (DWT) 
[24] dan KL Divergence yang dapat memisahkan komponen
frekuensi dan waktu sinyal secara bertingkat [33],
menangkap karakteristik morfologi kompleks gelombang
QRS [26], serta menghitung perbedaan distribusi
probabilistik antara sinyal aritmia dan referensi [27]. Dataset
MIT-BIH Arrhythmia Database dengan lead MLII dan V1
digunakan melalui tahapan Preprocessing yang mencakup
filtering [11], normalisasi Min-Max [10], segmentasi berbasis
R-peak [12], serta random undersampling untuk
menyeimbangkan data [9]. Fitur hasil ekstraksi kemudian
diklasifikasikan menggunakan Support Vector Machine
(SVM) dengan kernel RBF [17], dan keempat metode KL
Divergence dianalisis menggunakan multiple metrics
evaluation [25] untuk menentukan pendekatan paling optimal 
dalam klasifikasi denyut aritmia. Pendekatan ini diharapkan
mampu memberikan solusi yang akurat, stabil, dan efisien
untuk mendukung implementasi klinis deteksi aritmia
otomatis [28].

II. KAJIAN TEORI

Kajian teori pada penelitian ini membahas secara 
komprehensif landasan konseptual dan teknis yang 
digunakan dalam perancangan sistem deteksi aritmia berbasis 
sinyal EKG. Pembahasan diawali dengan penjelasan 
mengenai elektrokardiogram (EKG) dan aritmia jantung 
sebagai dasar pemahaman fenomena medis yang dianalisis, 
dilanjutkan dengan MIT-BIH Arrhythmia Database sebagai 
sumber data penelitian. Selanjutnya, diuraikan tahap 
Preprocessing untuk meningkatkan kualitas sinyal, diikuti 
metode penyeimbangan data (balancing) menggunakan 
undersampling guna mengatasi ketidakseimbangan kelas. 
Proses dilanjutkan pada tahap dekomposisi sinyal 
menggunakan Discrete Wavelet Transform (DWT), 
kemudian Kullback–Leibler Divergence (KL Divergence) 
digunakan sebagai metode ekstraksi fitur untuk membedakan 
distribusi probabilistik sinyal. Bagian akhir membahas tahap 
klasifikasi menggunakan Support Vector Machine dengan 
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kernel Radial Basis Function (RBF), yang dioptimalkan 
untuk menangani data berdimensi tinggi dan non-linear. 

A. Elektrokardiogram dan Aritmia Jantung
Elektrokardiogram (EKG) merupakan metode non-

invasif untuk merekam aktivitas listrik jantung melalui 
elektroda yang ditempatkan pada permukaan kulit, yang 
merepresentasikan proses depolarisasi dan repolarisasi dalam 
bentuk gelombang P, kompleks QRS, dan gelombang T [3]. 
Sinyal ini digunakan secara luas untuk mendeteksi kelainan 
irama jantung atau aritmia, yaitu kondisi di mana detak 
jantung menjadi terlalu cepat, terlalu lambat, atau tidak 
teratur akibat gangguan sistem kelistrikan jantung [1][2]. 
Perkembangan teknologi sejak penemuan EKG oleh Willem 
Einthoven telah menghasilkan perangkat dengan jumlah lead 
lebih banyak, digitalisasi sinyal, hingga sistem berbasis 
komputer untuk membantu analisis [19], termasuk penerapan 
machine learning untuk mendeteksi pola aritmia secara 
otomatis [20]. 

Rekaman EKG dapat dilakukan dengan konfigurasi 
12-lead, yang mencakup lead ekstremitas (I, II, III),
augmented (aVR, aVL, aVF), dan precordial (V1–V6),
masing-masing memberikan sudut pandang berbeda terhadap
aktivitas listrik jantung [18][22]. Sinyal yang direkam
memiliki amplitudo kecil, sekitar 0,5–5 mV, sehingga
memerlukan penguatan dengan instrumentation amplifier
yang memiliki Common-Mode Rejection Ratio (CMRR)
tinggi untuk meminimalkan interferensi dari otot, peralatan
medis, maupun jaringan listrik [24]. Setelah penguatan,
sinyal difilter menggunakan bandpass filter (0,5–40 Hz)
untuk mempertahankan komponen penting gelombang P,
QRS, dan T sambil mereduksi noise seperti baseline wander,
gangguan otot, dan interferensi AC [19].

Tahap selanjutnya adalah digitalisasi melalui 
Analog-to-Digital Conversion (ADC) dengan sampling rate 
umum 250–1000 Hz, di mana database MIT-BIH 
menggunakan 360 Hz untuk menjaga ketelitian representasi 
sinyal [22]. Komponen utama EKG memiliki makna klinis 
yang penting: gelombang P merefleksikan depolarisasi 
atrium [3], kompleks QRS menggambarkan depolarisasi 
ventrikel [4], gelombang T menunjukkan repolarisasi 
ventrikel [28], sementara interval PR dan QT memberikan 
informasi tentang waktu hantaran impuls dan total durasi 
aktivitas ventrikel [41]. Perubahan bentuk, durasi, atau 
interval dari komponen ini dapat menjadi indikator awal 
adanya kelainan ritme atau struktur jantung, sehingga 
pemahaman yang tepat terhadap karakteristik sinyal EKG 
menjadi landasan penting dalam deteksi aritmia [1]. 

B. Memuat Dataset MIT-BIH Arrhytmia Database
Penelitian ini menggunakan MIT-BIH Arrhythmia 

Database, salah satu dataset internasional yang paling 
banyak digunakan untuk pengembangan sistem deteksi 
aritmia berbasis sinyal EKG [22]. Dataset ini terdiri dari 48 
rekaman berdurasi 30 menit, yang diambil dari pasien dengan 
berbagai jenis gangguan irama jantung dan telah dianotasi 
secara manual oleh ahli medis [26]. Setiap rekaman memiliki 
frekuensi sampling sebesar 360 Hz, sehingga morfologi 
gelombang seperti kompleks QRS, gelombang P, dan 
gelombang T dapat diidentifikasi secara presisi [22]. 
Penelitian ini memanfaatkan dua lead utama, yaitu MLII yang 
memberikan representasi irama jantung stabil, dan V1 yang 

lebih sensitif dalam mendeteksi aktivitas ventrikular dan 
abnormalitas lokal [26]. 

Setiap detak jantung dalam dataset diberi simbol 
satu huruf yang merepresentasikan jenis beat, berdasarkan 
pengamatan ahli kardiologi. Dalam penelitian ini, penentuan 
kategori beat mengacu pada standar American Heart 
Association (AHA) yang digunakan di PhysioNet, yang 
membagi simbol-simbol beat ke dalam enam kategori utama 
berdasarkan sumber aktivitas listrik, bentuk morfologi, dan 
relevansi klinisnya [18][40]. Beberapa contoh kategori 
meliputi kelas Normal (N, L, R), Supraventricular (A, a, J, S, 
e, j, x), Ventricular (V, E, !), Fusion (F, f), Paced (/), dan 
Unknown (Q). klasifikasi ini dipilih karena tidak hanya 
mempertimbangkan bentuk sinyal, tetapi juga konteks 
fisiologis dan klinis, sehingga meningkatkan akurasi deteksi 
[18]. 

Dalam implementasinya, penelitian ini menerapkan 
sistem pelabelan biner, di mana beat dengan kategori Normal 
diberi label 0 dan beat kategori lain (aritmia) diberi label 1. 
Label ini digunakan sebagai target pada tahap pelatihan 
model klasifikasi. Tahapan pengolahan data mengikuti 
rancangan sistem yang terdiri dari pemuatan data, 
Preprocessing (filtering, segmentasi, normalisasi), 
dekomposisi sinyal menggunakan Discrete Wavelet 
Transform (DWT), ekstraksi fitur berbasis Kullback–Leibler 
Divergence (KL Divergence), klasifikasi dengan Support 
Vector Machine (SVM) kernel RBF, evaluasi model, serta 
visualisasi hasil prediksi [22][26][40]. 

C. Rancangan sistem
Rancangan sistem deteksi aritmia yang diusulkan 

pada penelitian ini dirancang untuk memproses sinyal EKG 
dari MIT-BIH Arrhythmia Database melalui serangkaian 
tahapan yang saling terintegrasi.  

GAMBAR 1 
Framework sistem penelitian 

Proses diawali dengan pemuatan data mentah yang 
kemudian masuk ke tahap Preprocessing berupa filtering 
untuk menghilangkan noise dan baseline wander, segmentasi 
berbasis puncak R (R-peak), serta normalisasi Min–Max guna 
menyamakan skala amplitudo antar beat [7][17]. Setelah itu, 
dilakukan penyeimbangan data (balancing) dengan metode 
undersampling untuk mengatasi ketidakseimbangan jumlah 
antara beat normal dan aritmia sehingga model dapat belajar 
secara proporsional [22][26]. Selanjutnya, sinyal yang telah 
diproses didekomposisi menggunakan Discrete Wavelet 
Transform (DWT) dengan basis Daubechies 4 hingga level 
tertentu untuk memisahkan komponen frekuensi dan waktu, 
sehingga dapat menangkap detail morfologi gelombang 
PQRST secara optimal [24]. Fitur yang dihasilkan dari setiap 
level koefisien kemudian diekstraksi menggunakan metode 
Kullback–Leibler Divergence (KL Divergence) dalam empat 
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pendekatan distribusi referensi, yaitu Uniform, Exponential, 
Gaussian, dan Combined, guna mengukur perbedaan 
probabilistik antara beat aritmia dan referensi normal 
[29][36]. Hasil ekstraksi ini selanjutnya menjadi masukan 
bagi algoritma Support Vector Machine (SVM) dengan 
kernel Radial Basis Function (RBF) untuk klasifikasi beat 
menjadi kategori normal atau aritmia [41]. 

D. Tahap Preprocessing
Preprocessing merupakan langkah awal pengolahan

sinyal EKG untuk meningkatkan kualitas dan mengurangi 
gangguan sebelum analisis lanjutan. Proses ini meliputi 
filtering untuk mereduksi noise, normalisasi untuk 
menyeragamkan skala amplitudo, segmentasi untuk 
memisahkan siklus jantung, dan penyeimbangan data agar 
model klasifikasi dapat belajar secara proporsional [22]. 

1) Filtering
Filtering merupakan tahap awal yang krusial dalam 
Preprocessing sinyal EKG untuk mempertahankan morfologi 
gelombang P, QRS, dan T, sekaligus mereduksi gangguan 
seperti baseline wander, powerline interference, dan muscle 
noise [12]. Meskipun dataset MIT-BIH Arrhythmia telah 
banyak digunakan secara klinis, sinyal tetap berpotensi 
mengandung noise akibat faktor fisiologis maupun teknis 
perekaman [6]. Penelitian ini menggunakan Butterworth 
bandpass filter orde-4 dengan rentang 0,5–40 Hz. Pemilihan 
rentang ini mempertahankan komponen utama gelombang P 
(±0,5–10 Hz), QRS (10–40 Hz), dan T (<10 Hz), sekaligus 
menekan gangguan di luar spektrum tersebut [15][17]. Filter 
Butterworth dipilih karena respons frekuensinya halus tanpa 
ripple pada passband maupun stopband [11], dengan orde 4 
yang dinilai optimal dalam memisahkan noise tanpa 
mengubah bentuk morfologi sinyal [19]. Dalam mencegah 
distorsi fase, digunakan metode zero-phase filtering dengan 
fungsi filtfilt() dari SciPy, yang memproses sinyal dua arah 
sehingga tidak terjadi time shift pada posisi PQRST [31]. 
Pendekatan ini penting karena pergeseran waktu sekecil apa 
pun dapat mengubah interpretasi diagnostik [17]. 

GAMBAR 2 
perbandingan visual sinyal EKG sebelum dan sesudah 
filtering dengan Butterworth bandpass 0.5–40 Hz dan 

metode zero-phase filtering 

Sebagai ilustrasi, Gambar 2, menampilkan perbandingan 
sinyal mentah gabungan MLII dan V1 sebelum dan sesudah 
filtering. Terlihat bahwa sinyal hasil penyaringan menjadi 

lebih bersih, baseline stabil, amplitudo gelombang R lebih 
menonjol, dan komponen P serta T lebih jelas, sehingga 
meningkatkan efektivitas ekstraksi fitur pada tahap 
selanjutnya. 

2) Min–Max Normalization
Normalisasi dilakukan untuk menyamakan skala

amplitudo antar-beat dan antar-pasien, yang dapat bervariasi 
akibat perbedaan penempatan elektroda atau karakteristik 
alat perekam [21]. Metode yang digunakan adalah Min–Max 
Normalization per-beat, memetakan nilai minimum menjadi 
0 dan maksimum menjadi 1 menggunakan persamaan: 

𝑥𝑥′ =  𝑥𝑥−𝑥𝑥𝑚𝑚𝑚𝑚𝑚𝑚
𝑥𝑥𝑚𝑚𝑚𝑚𝑚𝑚−𝑥𝑥𝑚𝑚𝑚𝑚𝑚𝑚

(1) 

Pendekatan ini mempertahankan bentuk relatif gelombang 
dan membantu mempercepat konvergensi model 
pembelajaran mesin seperti SVM, serta membuat klasifikasi 
lebih stabil terhadap variasi individu [20][21]. 

3) Segmentasi Beat
Segmentasi beat dilakukan untuk memotong sinyal

EKG kontinu menjadi satu siklus detak jantung penuh, 
sehingga komponen penting seperti gelombang P, kompleks 
QRS, dan gelombang T dapat dianalisis secara akurat [20]. 
Penelitian ini menggunakan metode fixed-window sepanjang 
256 sampel, terdiri dari ±128 sampel sebelum dan sesudah 
puncak R (R-peak), dengan sampling rate 360 Hz atau setara 
±0,71 detik per beat. Pemilihan R-peak sebagai pusat 
segmentasi didasarkan pada kestabilan dan dominasi titik ini 
dalam siklus jantung [21], sehingga morfologi P–QRS–T 
dapat terekam secara utuh. 

Label setiap beat ditentukan dengan mencocokkan 
segmen terhadap anotasi file .atr pada MIT-BIH Arrhythmia 
Database sesuai standar AHA PhysioNet, yang 
mengklasifikasikan beat menjadi enam kategori: Normal (N, 
L, R), Supraventrikular (S), Ventrikular (V), Fusi (F), Paced 
(P), dan Unclassifiable (Q) [18]. Untuk memudahkan 
klasifikasi, kategori ini dikonversi menjadi dua kelas biner, 
yaitu Kelas 0 untuk beat normal (N, L, R) dan Kelas 1 untuk 
beat aritmia (seluruh kategori lainnya). Simbol non-
fungsional seperti “[”, “]”, dan “|” dikecualikan karena hanya 
menandai ritme atau artefak teknis. Gambar 3 di bawah ini 
memperlihatkan contoh segmen beat normal, meliputi 
normal beat, left bundle branch block, dan right bundle 
branch block, yang tetap dikategorikan normal meskipun 
terdapat variasi morfologi [18]. 

GAMBAR 3 
Contoh beat normal berdasarkan MIT-BIH Arrhythmia 

Database 
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Sementara itu, Gambar 4, berikut menunjukkan 
berbagai beat aritmia seperti atrial premature beat, 
premature ventricular contraction, fusion beat, paced beat, 
dan unclassifiable beat, yang ditandai dengan penyimpangan 
pada bentuk, durasi, atau keteraturan siklus [18]. 

GAMBAR 4 
Contoh beat aritmia berdasarkan MIT-BIH Arrhythmia 

Database. 

Proses segmentasi ini memastikan konsistensi data dan 
memudahkan model pembelajaran mesin membedakan 
antara beat normal dan aritmia secara efektif. 

4) Penyeimbangan Data (Balancing)
Dalam pemrosesan dataset MIT-BIH Arrhythmia,

ditemukan ketidakseimbangan yang signifikan antara jumlah 
beat jantung normal dan beat aritmia. Sebelum 
penyeimbangan, jumlah beat normal tercatat sebanyak 
90.086, sedangkan beat aritmia hanya 15.616. Perbedaan 
proporsi yang besar ini berpotensi menimbulkan bias pada 
model klasifikasi, di mana model cenderung 
memprioritaskan prediksi terhadap kelas mayoritas (normal) 
dan mengabaikan kelas minoritas (aritmia) [10]. Dalam 
konteks sistem deteksi medis, bias seperti ini dapat 
mengurangi sensitivitas model terhadap deteksi pola aritmia, 
yang justru menjadi fokus utama dalam diagnosis dini 
penyakit jantung. Kondisi tersebut juga dapat menghasilkan 
metrik evaluasi yang menyesatkan, di mana akurasi tampak 
tinggi namun kemampuan deteksi aritmia rendah [18]. 

Untuk mengatasi ketimpangan ini, diterapkan 
random undersampling dengan rasio 1:1, yakni mengurangi 
jumlah sampel pada kelas mayoritas hingga setara dengan 
kelas minoritas. Setelah proses ini, kedua kelas memiliki 
jumlah beat yang sama, yaitu 15.616 untuk normal dan 
15.616 untuk aritmia. Strategi ini membantu mengurangi 
dominasi kelas mayoritas, meningkatkan sensitivitas model 
terhadap aritmia, serta menghasilkan evaluasi yang lebih 
representatif terhadap performa sebenarnya. 

GAMBAR 5 
 Distribusi beat normal dan aritmia sebelum dan sesudah 

undersampling. 

Proses penyeimbangan ini dilakukan sebelum tahap 
utama, yaitu dekomposisi sinyal menggunakan Discrete 
Wavelet Transform (DWT) dan ekstraksi fitur berbasis 
Kullback–Leibler Divergence (KL Divergence). Dengan 
distribusi data yang seimbang, proses pembelajaran model 
berlangsung lebih adil, dan fitur yang dihasilkan dari DWT–
KL Divergence memiliki kualitas yang lebih baik dalam 
membedakan antara beat normal dan aritmia [10][18]. 

E. Tahap Dekomposisi Discrete Wavelet Transform (DWT)
Sinyal elektrokardiogram (EKG) termasuk kategori 

sinyal non-stasioner, sehingga analisisnya memerlukan 
metode yang mampu merepresentasikan informasi secara 
simultan pada domain waktu dan frekuensi. Discrete Wavelet 
Transform (DWT) menjadi pilihan yang tepat karena mampu 
melakukan dekomposisi bertingkat untuk memisahkan 
komponen frekuensi rendah dan tinggi dengan resolusi 
adaptif [11]. Pada sinyal EKG, komponen frekuensi rendah 
biasanya memuat gelombang T dan baseline, sedangkan 
komponen frekuensi tinggi berkaitan dengan perubahan cepat 
seperti kompleks QRS [24]. 

DWT bekerja berdasarkan prinsip analisis multi-
resolusi dengan menggunakan fungsi dasar mother wavelet 
yang mengalami dilasi (perubahan skala) dan translasi 
(pergeseran waktu). Prinsip ini memungkinkan deteksi pola 
global seperti gelombang T pada skala besar, sekaligus 
mengidentifikasi perubahan cepat seperti puncak QRS pada 
skala kecil [26]. Selain itu, DWT efektif dalam mereduksi 
noise umum seperti baseline wander, interferensi jaringan 
listrik, dan sinyal otot (EMG) [25]. 

Dalam penelitian ini, DWT diterapkan hingga level 
4 dengan menggunakan mother wavelet Daubechies-4 (db4) 
karena kemampuannya menyesuaikan morfologi kompleks 
QRS serta kestabilannya terhadap variasi karakteristik sinyal 
EKG [34]. Penerapan DWT ini memisahkan sinyal ke dalam 
domain waktu dan frekuensi secara simultan, sehingga setiap 
level dekomposisi memuat informasi fisiologis yang spesifik 
[11][26]. 
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TABEL 1 
Pembagian frekuensi DWT berdasarkan sampling rate 

360Hz [24]. 

Level Komponen Rentang 
frekuensi (Hz) 

Informasi yang 
terkandung 

cD1 Detail 90 – 180 
Noise frekuensi 
tinggi umumnya 

diabaikan 

cD2 Detail 45 – 90 

Komponen 
utama QRS 
kompleks 

(tajam, khas 
aritmia) 

cD3 Detail 22.5 – 45 
Detail kompleks 
QRS yang lebih 

halus 

cD4 Detail 11.25 – 22.5 Gelombang P 
dan T 

cA4 Approx. < 11.25 
Tren lambat dan 

komponen 
baseline. 

Di antara komponen tersebut, cD2 memiliki peran 
paling signifikan dalam membedakan detak jantung normal 
dan aritmia karena mencakup rentang frekuensi dominan 
kompleks QRS yang sering mengalami perubahan morfologi 
pada kondisi aritmia [26][34]. Informasi ini menjadi krusial 
dalam mendukung proses klasifikasi gangguan irama 
jantung, terutama ketika digunakan dalam ekstraksi fitur 
berbasis Kullback–Leibler Divergence, yang memanfaatkan 
distribusi statistik dari setiap level dekomposisi untuk 
membedakan detak normal dan aritmia [33]. 

F. Kullback–Leibler Divergence (KL Divergence) sebagai
Ekstraksi Fitur

Setelah sinyal EKG didekomposisi menggunakan 
Discrete Wavelet Transform (DWT), tahap selanjutnya 
adalah ekstraksi fitur untuk merepresentasikan karakteristik 
morfologi sinyal dalam bentuk numerik. Penelitian ini 
menggunakan Kullback–Leibler Divergence (KL 
Divergence) untuk mengukur perbedaan antara distribusi 
probabilitas koefisien hasil dekomposisi yang bersifat 
empiris (P) dan distribusi referensi yang bersifat teoritis (Q) 
[14]. Pendekatan ini efektif untuk mengidentifikasi 
perubahan morfologi serta ketidakteraturan gelombang yang 
menjadi indikator aritmia [30]. 

Distribusi empiris P dihitung berdasarkan histogram 
koefisien pada setiap level dekomposisi DWT, sedangkan 
distribusi referensi Q dibentuk dari model matematis berupa 
Uniform, Exponential, atau gaussian dengan parameter yang 
disesuaikan terhadap data aktual [15][16]. Pemilihan ketiga 
distribusi ini memberikan sudut pandang yang berbeda, yaitu 
penyimpangan dari kondisi acak, pola penurunan amplitudo 
fisiologis, dan kesesuaian terhadap bentuk distribusi normal. 
Untuk mencegah ketidakstabilan perhitungan akibat adanya 
probabilitas nol, digunakan teknik ε-smoothing dengan 
menambahkan nilai kecil ε = 10⁻⁸ pada setiap probabilitas 
[14]. 

𝐷𝐷𝐾𝐾𝐾𝐾(𝑃𝑃||𝑄𝑄) =  ∑ 𝑃𝑃(𝑥𝑥) . 𝑙𝑙𝑙𝑙𝑙𝑙 (𝑃𝑃(𝑥𝑥)
𝑄𝑄(𝑥𝑥)

)𝑛𝑛
𝑥𝑥=1  (2) 

dengan P(x) sebagai probabilitas aktual, Q(x) sebagai 
distribusi referensi, dan n jumlah bin pada histogram [26]. 
Nilai KL Divergence yang tinggi menunjukkan adanya 
perbedaan signifikan antara kedua distribusi, sedangkan nilai 
rendah menunjukkan kesamaan yang kuat. 

TABEL 2 
Interpretasi nilai KL Divergence dalam konteks sinyal EKG 

[14][16][32] 

Kondisi 
Perbandinga 
𝑃𝑃(𝑥𝑥) dan 
𝑄𝑄(𝑥𝑥) 

Nilai KL 
Divergence 

Interpretasi dalam 
Konteks Sinyal EKG 

𝑃𝑃(𝑥𝑥) = 
𝑄𝑄(𝑥𝑥) 

(identik) 
0 

Beat kemungkinan 
besar normal; 

distribusi fitur serupa 
dengan referensi 

𝑃𝑃(𝑥𝑥) sangat 
berbeda dari 

𝑄𝑄(𝑥𝑥) 
Tinggi 

Beat kemungkinan 
aritmia; distribusi 

fitur sangat 
menyimpang dari 

pola normal 
𝑃𝑃(𝑥𝑥) mirip 
tetapi tidak 

sama dengan 
𝑄𝑄(𝑥𝑥) 

Rendah 

Beat cenderung 
normal; terdapat 

sedikit variasi dari 
distribusi referensi 

Dibalik, 
𝐷𝐷𝐾𝐾𝐾𝐾(𝑄𝑄||𝑃𝑃) ≠
 𝐷𝐷𝐾𝐾𝐾𝐾(𝑃𝑃||𝑄𝑄) 

Tidak sama 

Hasil perhitungan 
berubah jika arah 
distribusi ditukar; 

penting untuk 
konsistensi evaluasi 

Setelah interpretasi umum ini, pembahasan akan 
difokuskan pada dua pendekatan utama dalam perhitungan 
KL Divergence, yaitu metode individu dan metode gabungan. 
Keduanya akan dibandingkan dari berbagai aspek, meliputi 
jenis distribusi yang digunakan, sifat informasi yang 
dihasilkan, jumlah fitur, serta potensi kontribusi terhadap 
performa model klasifikasi. Dengan cara ini, perbedaan peran 
masing-masing pendekatan dapat dipahami secara lebih 
komprehensif sebelum hasilnya dianalisis pada tahap 
evaluasi. 

1) KL Divergence Individual
Pendekatan ini menghitung KL Divergence untuk

setiap jenis distribusi referensi secara terpisah, sehingga 
menghasilkan tiga kelompok nilai fitur yang berbeda. 
1. Distribusi Uniform digunakan untuk menilai sejauh mana

sinyal menyimpang dari pola acak atau tidak berpola,
relevan dalam mendeteksi baseline wander maupun
gangguan acak [14].

2. Distribusi Exponential digunakan untuk
merepresentasikan pola penurunan amplitudo alami,
misalnya pada fase repolarisasi ventrikel yang
membentuk gelombang T [26].

3. Distribusi Gaussian digunakan untuk menilai kesesuaian
bentuk sinyal dengan distribusi normal yang umum
ditemukan pada data biologis, membantu
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mengidentifikasi distorsi seperti kemiringan distribusi 
(skewness) atau keberadaan lebih dari satu puncak 
(multimodalitas) [15]. 

Ketiga nilai KL Divergence ini berfungsi sebagai indikator 
spesifik untuk mendeteksi berbagai bentuk ketidakteraturan 
morfologi sinyal, baik yang bersifat acak, fisiologis, maupun 
struktural. 

2) KL Divergence Combined
Pendekatan Combined dilakukan dengan 

menggabungkan seluruh fitur hasil KL Divergence dari 
distribusi Uniform, Exponential, dan gaussian menjadi satu 
vektor fitur terpadu. Karena sinyal EKG didekomposisi 
menjadi lima komponen (cA4, cD4, cD3, cD2, cD1), jumlah 
total fitur yang dihasilkan adalah 15, yang berasal dari lima 
komponen dikalikan tiga jenis distribusi referensi [26]. 

Strategi penggabungan ini memungkinkan seluruh 
sudut pandang analisis tetap terwakili secara bersamaan, 
sehingga model klasifikasi memperoleh informasi yang lebih 
kaya dan beragam [32][34]. Beberapa penelitian melaporkan 
bahwa pendekatan ini cenderung menghasilkan akurasi dan 
kestabilan klasifikasi yang lebih baik dibandingkan metode 
individual, terutama pada sinyal EKG yang kompleks dan 
mengandung berbagai gangguan [32]. 

G. Tahap Klasifikasi: Support Vector Machine dengan
Kernel RBF

Tahap klasifikasi pada penelitian ini menggunakan 
Support Vector Machine (SVM) dengan kernel Radial Basis 
Function (RBF). Algoritma ini dipilih karena kemampuannya 
menangani data berdimensi tinggi dengan pola non-linear, 
sesuai karakteristik sinyal Elektrokardiogram (EKG) yang 
bersifat non-stasioner dan memiliki variasi morfologi antar 
individu maupun antar waktu, khususnya pada kondisi 
aritmia seperti Premature Ventricular Contraction (PVC) 
dan atrial fibrillation [17][29]. Prinsip dasar SVM adalah 
membentuk hyperplane yang memisahkan dua kelas dengan 
margin maksimum. Pada kasus data non-linear, kernel RBF 
memetakan data ke ruang fitur berdimensi lebih tinggi agar 
pemisahan dapat dilakukan secara efektif. Secara matematis, 
kernel RBF dirumuskan sebagai: 

𝐾𝐾(𝑥𝑥, 𝑥𝑥′) = 𝑒𝑒𝑒𝑒𝑒𝑒 (−𝛾𝛾||𝑥𝑥 − 𝑥𝑥′||2)   (3) 

Fungsi ini mengukur kesamaan antar titik data berdasarkan 
jarak Euclidean, sehingga pola non-linear dapat dipisahkan 
secara optimal [30]. Pendekatan ini sangat relevan terhadap 
fitur yang dihasilkan dari Kullback–Leibler Divergence (KL 
Divergence), yang distribusinya sering kali kompleks. 

1) Parameter Model dan Bias–Variance Trade-off

Parameter C mengatur toleransi terhadap kesalahan
klasifikasi. Nilai yang terlalu besar cenderung menyebabkan 
overfitting, sedangkan nilai yang terlalu kecil berpotensi 
menyebabkan underfitting. Pada penelitian ini digunakan C = 
1.0 untuk menjaga keseimbangan antara lebar margin dan 
tingkat kesalahan yang wajar. Parameter γ diatur dengan 
skema scale: 

𝛾𝛾 = 1
𝑛𝑛𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓 .𝑉𝑉𝑉𝑉𝑉𝑉(𝑋𝑋)

,𝐶𝐶 = 1.0, 𝛾𝛾 = 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 (4) 

Pengaturan ini membuat γ beradaptasi terhadap jumlah fitur 
dan varians data, menghasilkan bias rendah dan varians 

sedang. Secara teoretis, hubungan bias–variance dapat 
dirumuskan sebagai: 

𝐸𝐸𝐸𝐸𝐸𝐸(𝑥𝑥) = 𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵(𝑥𝑥)2 + 𝑉𝑉𝑉𝑉𝑉𝑉(𝑥𝑥) + 𝜎𝜎 (5) 
Pendekatan ini memastikan model cukup fleksibel untuk 
menangkap pola kompleks namun tetap stabil terhadap 
variasi data [29][32]. 

2) Kompleksitas Model dan Margin
Evaluasi kompleksitas dilakukan dengan melihat jumlah 
support vector: 

𝑆𝑆𝑉𝑉𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 = |𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠_|              (6) 
𝑆𝑆𝑉𝑉𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐0 = ∑ [𝑦𝑦𝑦𝑦 = 0]𝑖𝑖∈𝑆𝑆𝑆𝑆 , 𝑆𝑆𝑉𝑉𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐1 = ∑ [𝑦𝑦𝑦𝑦 = 1]𝑖𝑖∈𝑆𝑆𝑆𝑆    (7) 

Kelas dengan jumlah support vector lebih banyak biasanya 
lebih sulit dipisahkan. Estimasi margin teoritis adalah: 

1
||𝜔𝜔||

     (8) 

Karena pada SVM-RBF nilai ω tidak dihitung secara 
eksplisit, digunakan pendekatan: 

𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑒𝑒𝑒𝑒𝑒𝑒 = 1
�∑ (𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑_𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐_2)𝑖𝑖

    (9) 

Selain itu, waktu pelatihan dan prediksi dicatat dalam 
milidetik untuk mengukur efisiensi algoritma [32]. 

3) Kompleksitas Teoretis dan Implementasi
Berdasarkan literatur, metode KL Divergence

Uniform memiliki kompleksitas terendah karena tidak 
memerlukan estimasi parameter [14][26]. Exponential sedikit 
lebih kompleks karena memerlukan fungsi eksponensial [25], 
sedangkan Gaussian paling kompleks karena membutuhkan 
estimasi mean, varians, dan operasi eksponensial-logaritmik 
[34]. Pendekatan Combined memiliki kompleksitas tertinggi 
karena menggabungkan ketiganya, yang secara teoritis dapat 
meningkatkan waktu proses hingga 2–3 kali lipat. Namun, 
hasil aktual dapat berbeda tergantung optimasi kode, 
penggunaan komputasi tervektorisasi (array programming), 
dan backend BLAS/LAPACK yang memproses operasi 
matriks secara efisien [41][42]. Faktor ini memungkinkan 
perbedaan signifikan antara estimasi teoretis dan waktu 
eksekusi di lapangan. 

4) Integrasi dalam Pipeline Penelitian
Sebelum klasifikasi, dataset diseimbangkan

menggunakan random undersampling dengan rasio 1:1, 
kemudian dibagi menggunakan stratified train–test split 
80:20 untuk menjaga proporsi kelas [6][31]. Konfigurasi 
SVM-RBF, evaluasi kompleksitas, serta kalibrasi 
probabilitas menjadi fondasi dalam analisis hasil yang 
dibahas pada Bab 4, sehingga keterkaitan antara desain model 
dan performa dapat dipahami secara menyeluruh. 

H. Penghitungan Feature Importance Berdasarkan
Ekstraksi KL Divergence

Setelah sinyal EKG melalui Discrete Wavelet 
Transform (DWT) hingga beberapa level dekomposisi, nilai 
Kullback–Leibler Divergence (KL Divergence) dihitung 
untuk setiap level menggunakan tiga distribusi referensi: 
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Uniform, Exponential, dan gaussian [14]. Nilai KL 
Divergence diperoleh dari perbandingan distribusi aktual 
koefisien sinyal (P) dengan distribusi referensi (Q) masing-
masing [35]. 
Hasil perhitungan dari tiap distribusi membentuk vektor fitur 
yang kemudian diuji kontribusinya terhadap klasifikasi beat 
normal dan aritmia menggunakan Support Vector Machine – 
Radial Basis Function (SVM-RBF) [6]. Penilaian dilakukan 
melalui permutation importance, yaitu mengukur penurunan 
akurasi model saat suatu fitur diacak. Semakin besar 
penurunannya, semakin tinggi nilai importance-nya [37]. 

Selain evaluasi per distribusi, penelitian ini 
menerapkan pendekatan KL Combined, yaitu 
menggabungkan seluruh fitur dari ketiga distribusi menjadi 
satu himpunan berisi 15 fitur (5 level × 3 distribusi) [14]. 
Proses penggabungan dilakukan tanpa mengubah distribusi 
referensi, sehingga setiap keluaran KL Divergence tetap 
merepresentasikan karakteristik asli Q masing-masing. 
Integrasi ini memungkinkan interaksi non-linear dan saling 
melengkapi antarfitur dari distribusi berbeda, sehingga fitur 
yang semula kurang dominan dapat menjadi relevan, 
sedangkan fitur redundan cenderung menurun kontribusinya 
[39]. Pendekatan KL Combined diharapkan mampu 
menangkap variasi morfologi sinyal EKG secara lebih 
komprehensif, sekaligus meningkatkan akurasi dan stabilitas 
model klasifikasi. 

I. Kerangka Multiple Metrics Evaluation
Penilaian performa sistem deteksi aritmia dilakukan 

menggunakan kerangka multiple metrics evaluation untuk 
memastikan kinerja model tidak bergantung pada satu 
indikator saja, melainkan mencakup aspek akurasi, 
sensitivitas, kualitas probabilistik, efisiensi, dan stabilitas 
model [14][29]. Pendekatan ini penting dalam konteks 
aplikasi medis berbasis sinyal EKG yang menuntut ketelitian 
tinggi. 

1) Akurasi (Accuracy)
Mengukur proporsi prediksi benar terhadap seluruh data, 
dihitung dengan: 

𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴 = 𝑇𝑇𝑇𝑇 +𝑇𝑇𝑇𝑇
𝑇𝑇𝑇𝑇 +𝑇𝑇𝑇𝑇 + 𝐹𝐹𝐹𝐹 + 𝐹𝐹𝐹𝐹

(3.16) 

di mana TP adalah aritmia terdeteksi benar, TN normal 
dikenali benar, FP normal salah terdeteksi sebagai aritmia, 
dan FN aritmia tidak terdeteksi [14]. 

2) Precision, Recall, F1-Score, Specificity, dan FPR
• Precision: ketepatan prediksi aritmia terhadap total

deteksi aritmia.
𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 = 𝑇𝑇𝑇𝑇

𝑇𝑇𝑇𝑇+𝐹𝐹𝐹𝐹
(11) 

• Recall / Sensitivity (TPR): mengukur seberapa banyak
kasus aritmia yang berhasil terdeteksi.

𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 = 𝑇𝑇𝑇𝑇
𝑇𝑇𝑇𝑇+𝐹𝐹𝐹𝐹

     (12) 

• F1-Score: rata-rata harmonik dari precision dan recall,
yang sesuai untuk kondisi data yang tidak seimbang.

𝐹𝐹1 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆 = 2 ×  𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 × 𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅
𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 + 𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅

        (13) 

• Specificity: Metrik ini mengukur kemampuan model
dalam mengenali beat normal secara benar.

𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆 = 𝑇𝑇𝑇𝑇
𝑇𝑇𝑇𝑇+𝐹𝐹𝐹𝐹

     (14) 

• False Positive Rate (FPR): merupakan kebalikan dari
specificity

• 𝐹𝐹𝐹𝐹𝐹𝐹 = 𝐹𝐹𝐹𝐹
𝐹𝐹𝐹𝐹+𝑇𝑇𝑇𝑇

   (15) 

3) Evaluasi Probabilistik
Kualitas probabilitas prediksi dinilai dengan Average 
Precision (AP) yang merepresentasikan area rata-rata di 
bawah kurva Precision–Recall, serta Receiver Operating 
Characteristic (ROC) yang memplot TPR terhadap FPR. 
Nilai Area Under Curve (AUC) yang mendekati 1 
menunjukkan kemampuan diskriminasi kelas yang baik [14]. 

4) Logarithmic Loss (Log loss)
Mengukur seberapa tepat prediksi probabilistik model, 
dengan. Dalam penelitian ini, log loss dihitung pada dua jenis 
data: 
• Log loss Train mengukur tingkat keyakinan model

terhadap data pelatihan.
• Log loss Test mengevaluasi kualitas prediksi pada data

pengujian, dan menjadi indikator utama dalam menilai
akurasi probabilistik model.

Dengan rumus: 

𝐿𝐿𝐿𝐿𝐿𝐿 𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿 = − 1
𝑁𝑁

= 1∑ [𝑦𝑦𝑦𝑦 𝑙𝑙𝑙𝑙𝑙𝑙(𝑝𝑝𝑝𝑝) + (1 − 𝑦𝑦𝑦𝑦)𝑙𝑙𝑙𝑙𝑙𝑙(1 −𝑁𝑁
𝑖𝑖=1

𝑝𝑝𝑝𝑝)]   (16) 

di mana y_i adalah label sebenarnya, p_i probabilitas 
prediksi, dan N jumlah data [37]. Perhitungan dilakukan 
untuk data pelatihan (Log loss Train) dan pengujian (Log loss 
Test) sebagai indikator generalisasi model. 

5) Efisiensi Model
Efisiensi dihitung dengan membandingkan performa 
terhadap jumlah fitur: 

• Log loss Efficiency: Metrik ini mengukur efisiensi model
dalam menghasilkan prediksi probabilistik terhadap
jumlah fitur yang digunakan.

𝐿𝐿𝐿𝐿 𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸 =  1
𝐿𝐿𝐿𝐿𝐿𝐿 𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇×𝐽𝐽𝐽𝐽𝐽𝐽𝐽𝐽𝐽𝐽ℎ 𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓

      (17) 

• Metrik ini menghitung efektivitas model dalam
memisahkan kelas berdasarkan rasio nilai AUC terhadap
jumlah fitur

𝑅𝑅𝑅𝑅𝑅𝑅 𝐴𝐴𝐴𝐴𝐴𝐴 𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸 =  𝑅𝑅𝑅𝑅𝑅𝑅 𝐴𝐴𝐴𝐴𝐴𝐴 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆
𝐽𝐽𝐽𝐽𝐽𝐽𝐽𝐽𝐽𝐽ℎ 𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹

  (18) 

Nilai lebih tinggi menunjukkan kinerja optimal dengan 
kompleksitas minimal [39]. 

6) Overfitting Indicator
Mengukur selisih antara log loss pelatihan dan pengujian: 
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𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂 = |𝐿𝐿𝐿𝐿𝐿𝐿 𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇 − 𝐿𝐿𝐿𝐿𝐿𝐿 𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇|    (19) 

Nilai kecil menunjukkan generalisasi yang baik [36]. 

7) Stabilitas Model – Coefficient of Variation (CV%)
Metrik ini digunakan untuk menilai kemampuan

model selama proses cross-validation. Semakin kecil nilai 
CV, semakin stabil dan andal performa model. 

• Cross-Validation
Merupakan metode evaluasi model yang membagi dataset
menjadi beberapa bagian (fold). Untuk 5-fold cross-
validation, dataset dibagi menjadi 5 bagian. Pada setiap
iterasi, 4 fold digunakan untuk pelatihan dan 1 fold untuk
pengujian. Proses ini diulang 5 kali, memastikan setiap fold
pernah menjadi data pengujian. Akurasi dihitung pada setiap
iterasi, kemudian kelima hasilnya dirata-ratakan untuk
mendapatkan evaluasi model yang lebih konsisten dan stabil.

𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆 = 𝐽𝐽𝐽𝐽𝐽𝐽𝐽𝐽𝐽𝐽ℎ 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆
𝑘𝑘

  (20) 

• Mean Accuracy (μ)
Merupakan rata-rata nilai akurasi yang diperoleh dari seluruh
fold pada proses cross-validation. jika 𝐴𝐴𝐴𝐴𝑐𝑐𝑖𝑖  adalah akurasi
pada fold ke-𝑖𝑖, maka:

𝜇𝜇 = ∑ 𝐴𝐴𝐴𝐴𝑐𝑐𝑖𝑖
𝑘𝑘
𝑖𝑖=1
𝑘𝑘

       (21) 

• Standard Deviasi (σ)
Simpangan baku mengukur seberapa besar penyebaran nilai
akurasi antar fold dari nilai rata-rata. Semakin kecil σ,
semakin konsisten performa model di setiap fold. Rumus:

𝜎𝜎 = �∑ (𝐴𝐴𝐴𝐴𝑐𝑐𝑖𝑖−𝜇𝜇 )2𝑘𝑘
𝑖𝑖=1

𝑘𝑘
    (22) 

• Coefficient of Variation (CV%)
Coefficient of Variation adalah ukuran stabilitas relatif yang
dinyatakan dalam persen (%). CV membandingkan besarnya
penyebaran (σ) terhadap rata-rata (μ):

𝐶𝐶𝐶𝐶 % = 𝜎𝜎
𝜇𝜇

 ×  100%       (23) 

Nilai CV < 1% menunjukkan performa yang sangat stabil 
dalam aplikasi medis [29][39] 

III. HASIL PENELITIAN

Memberikan gambaran rancangan penelitian yang 
meliputi prosedur atau langkah-langkah penelitian, waktu 
peneltian, sumber data, cara perolehan data dan menjelaskan 
metode yang akan digunakan dalam penelitian [10 pts]. 

A. Evaluasi Feature Importance Berdasarkan Metode KL
Divergence

Definisikan Bagian ini memaparkan evaluasi 
kontribusi fitur hasil ekstraksi sinyal EKG menggunakan 
Kullback–Leibler Divergence (KL Divergence) setelah 
dekomposisi sinyal dengan Discrete Wavelet Transform 
(DWT) hingga level 4. Analisis dilakukan pada tiga 

pendekatan distribusi individu (Uniform, Exponential, dan 
Gaussian) serta pendekatan gabungan (KL Combined). 
Evaluasi ini bertujuan mengidentifikasi fitur paling 
berpengaruh dalam membedakan detak jantung normal dan 
aritmia, serta membandingkan efektivitas antar metode 
berdasarkan perubahan peringkat (ranking) fitur. 

1) Analisis Feature Importance – Metode Individu
Pendekatan individu mengevaluasi kontribusi fitur dari 
masing-masing distribusi referensi KL Divergence secara 
terpisah. Setiap distribusi menghasilkan lima fitur dari level 
DWT yang berbeda. 

GAMBAR 6 
Feature Importance  dari Pendekatan KL 

Divergence (Metode Individu) 

Pada pendekatan KL Uniform, fitur dengan 
kontribusi tertinggi berasal dari level DWT-2 dengan nilai 
importance sebesar 0,1470, diikuti oleh DWT-4 (0,0759) dan 
DWT-5 (0,0552), sedangkan DWT-3 dan DWT-1 menempati 
posisi keempat dan kelima. Level DWT-2 berkorespondensi 
dengan rentang frekuensi 45–90 Hz, yang menurut (tabel 3.2) 
merupakan wilayah dominan kompleks QRS yang tajam dan 
sering menjadi indikator utama aritmia ventrikular. Dominasi 
pada level ini menegaskan bahwa KL Uniform efektif 
menyoroti informasi terkait aktivitas listrik ventrikel, 
terutama pada sinyal dengan pola QRS yang abnormal [26]. 
Urutan peringkat yang jelas juga menunjukkan bahwa 
metode ini lebih selektif pada level tertentu dibandingkan 
menyebar ke seluruh level DWT. 

Pendekatan KL Exponential menampilkan distribusi 
kontribusi fitur yang lebih merata dibandingkan KL Uniform. 
Fitur dengan nilai tertinggi berasal dari DWT-1 (0,0994), 
diikuti oleh DWT-4 (0,0881) dan DWT-3 (0,0827), sedangkan 
DWT-5 dan DWT-2 menempati peringkat keempat dan 
kelima. Level DWT-1 berada pada rentang 90 hingga 180 Hz 
yang umumnya dikaitkan dengan komponen frekuensi tinggi, 
mencakup noise maupun transien tajam. Meskipun demikian, 
pada kasus aritmia rentang ini juga dapat memuat detail 
perubahan cepat pada kompleks QRS. Level DWT-3 dengan 
rentang 22,5 hingga 45 Hz serta DWT-4 dengan rentang 11,25 
hingga 22,5 Hz yang turut dominan mengindikasikan bahwa 
KL Exponential mampu menangkap pola transien pada 
gelombang QRS dan T yang abnormal [34]. Hal ini 
menunjukkan bahwa metode ini cenderung lebih adaptif 
terhadap perubahan bentuk gelombang yang tidak menetap 
pada satu frekuensi tertentu. 

Pada pendekatan KL Gaussian, fitur dengan 
kontribusi terbesar kembali berasal dari DWT-2 (0,1191), 
diikuti oleh DWT-5 (0,0628) dan DWT-4 (0,0618), dengan 
DWT-3 dan DWT-1 di posisi berikutnya. Level DWT-5 
(approximation) mencakup frekuensi <11,25 Hz yang 
berhubungan dengan gelombang P, T, dan baseline trend. 
Meskipun urutan level mirip dengan KL Uniform, nilai 
keseluruhan lebih rendah, menunjukkan bahwa KL Gaussian 
lebih peka terhadap variasi fisiologis normal (misalnya 
variasi gelombang P/T) dibandingkan mendeteksi pola QRS 
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yang ekstrem. Hal ini menjadikan KL Gaussian lebih stabil 
pada sinyal normal, namun kurang tajam untuk pola khas 
aritmia [26]. 

Secara umum, metode individu memberikan 
informasi spesifik keunggulan masing-masing distribusi, 
tetapi kurang mampu mengintegrasikan kekuatan fitur dari 
berbagai spektrum frekuensi secara bersamaan. 

2) Analisis Feature Importance – Metode Combined
Pendekatan Combined mengintegrasikan seluruh

fitur dari ketiga distribusi referensi KL Divergence (Uniform, 
Exponential, Gaussian) pada lima level DWT, menghasilkan 
total 15 fitur yang dianalisis secara simultan [34]. 

GAMBAR 7 
Feature Importance dari Pendekatan KL Divergence (Metode 

Combined) 

Pendekatan KL Combined mengintegrasikan 
seluruh fitur dari distribusi referensi Uniform, Exponential, 
dan gaussian menjadi satu himpunan berisi 15 fitur yang 
dievaluasi secara global. Integrasi ini bertujuan 
memanfaatkan keunggulan masing-masing distribusi untuk 
menghasilkan representasi fitur yang lebih kaya dan 
seimbang dalam mendukung klasifikasi detak normal dan 
aritmia [34]. 

Berdasarkan hasil perhitungan, fitur 
dwt2_KL_Uniform menempati peringkat tertinggi dengan 
nilai importance sebesar 0,3163, jauh melebihi fitur lainnya. 
Level DWT-2 (45–90 Hz) diketahui merupakan rentang 
frekuensi yang mendominasi morfologi kompleks QRS, 
sehingga tingginya nilai pada fitur ini konsisten dengan 
temuan metode individual yang menegaskan peran 
pentingnya dalam membedakan detak normal dan aritmia 
ventrikular [34][36]. 

Di posisi berikutnya, dwt2_KL_Exponential 
(0,1278) dan dwt5_KL_Exponential (0,1268) menunjukkan 
kontribusi tinggi dari metode Exponential. Level DWT-5 
(<11,25 Hz) merepresentasikan tren lambat, termasuk 
komponen baseline dan gelombang T, yang relevan untuk 
mendeteksi perubahan repolarisasi pada beberapa jenis 
aritmia. Kombinasi level 2 dan level 5 ini memperlihatkan 
bahwa metode Exponential tetap mempertahankan 
pengaruhnya dalam pendekatan gabungan, meskipun hanya 
sebagian fiturnya yang berada pada peringkat atas. 

Fitur dwt3_KL_Uniform (0,0901) yang pada metode 
individual tidak selalu dominan, mengalami kenaikan 
signifikan dalam pendekatan gabungan. Level DWT-3 (22,5–
45 Hz) mengandung detail kompleks QRS yang lebih halus, 
sehingga posisinya yang tinggi mengindikasikan bahwa 

sinergi antar distribusi mampu meningkatkan relevansi 
informasi detail ini. Sementara itu, dwt5_KL_gaussian 
(0,0765) menjadi salah satu perwakilan gaussian dengan 
kontribusi terbesar. Hal ini menandakan bahwa meskipun 
gaussian cenderung stabil pada data normal, kontribusinya 
tetap signifikan dalam melengkapi informasi frekuensi 
rendah untuk klasifikasi gabungan [38]. 

Pola peringkat ini juga memperlihatkan bahwa fitur 
yang sebelumnya kurang menonjol, seperti 
dwt1_KL_gaussian (0,0684) dan dwt1_KL_Exponential 
(0,0718), tetap memberikan kontribusi yang berarti dalam 
pendekatan gabungan. Level DWT-1 (90–180 Hz) umumnya 
berkaitan dengan noise atau transien tajam, namun pada 
sinyal aritmia rentang ini dapat memuat perubahan cepat pada 
morfologi QRS. Keberadaan fitur-fitur tersebut pada posisi 
menengah menunjukkan perannya yang penting sebagai 
pelengkap informasi dari level frekuensi yang lebih rendah 
[34]. 

Fenomena pergeseran posisi ini merupakan 
konsekuensi wajar dari integrasi ketiga metode individual 
dalam sistem klasifikasi berbasis machine learning. 
Perubahan peringkat fitur pada KL Combined dipengaruhi 
oleh beberapa faktor utama, antara lain: 
• Interaksi antar fitur: Model SVM dengan kernel RBF

memproses semua fitur secara simultan sehingga
hubungan antar fitur saling memengaruhi. Fitur yang
sebelumnya kurang dominan dapat menjadi signifikan
ketika memperkuat kontribusi fitur lain, seperti
dwt3_KL_Uniform dan dwt1_KL_gaussian yang naik
peringkat [36].

• Redundansi dan komplementaritas: Fitur dengan
informasi yang tumpang tindih akan cenderung berkurang
kontribusinya, sedangkan fitur yang melengkapi
informasi distribusi lain akan meningkat peringkatnya.
Contohnya, dwt5_KL_gaussian dan
dwt1_KL_Exponential berperan melengkapi informasi
yang tidak sepenuhnya diwakili oleh distribusi Uniform.

• Curse of dimensionality: Dengan 15 fitur, ruang fitur
menjadi lebih kompleks sehingga hanya kombinasi
tertentu yang relevan dalam membentuk decision
boundary. Hal ini menyebabkan fitur dominan di metode
individu tidak selalu mempertahankan posisinya di
pendekatan gabungan [38].

• Perbedaan ruang solusi: Pada metode individu, penilaian
dilakukan terhadap lima kandidat fitur, sedangkan KL
Combined mengevaluasi seluruh 15 fitur sekaligus,
membuat seleksi menjadi lebih kompetitif dan stabil [36].

Dengan demikian, perubahan peringkat dalam KL 
Combined bukanlah kelemahan, melainkan representasi dari 
interaksi non-linear antar fitur dalam ruang berdimensi 
tinggi. Pendekatan ini tidak hanya mempertahankan kekuatan 
fitur dominan, tetapi juga mengangkat kontribusi fitur 
pendukung yang sebelumnya kurang menonjol, sehingga 
mampu meningkatkan akurasi serta memperkaya representasi 
morfologis sinyal EKG [34][38]. 

B. Evaluasi Multiple Matrics Evaluation Berdasarkan
Metode KL Divergence

Bab ini menyajikan evaluasi performa sistem 
deteksi aritmia berdasarkan berbagai metrik KLasifikasi. 
Empat pendekatan distribusi KL Divergence yang diuji 
meliputi KL Uniform, KL Exponential, KL Gaussian, dan KL 
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Combined, dengan model KLasifikasi Support Vector 
Machine (SVM) berbasis kernel RBF. Evaluasi dilakukan 
secara komprehensif melalui pengukuran confusion matrix, 
akurasi, metrik probabilistik (AP dan AUC), log loss, 
efisiensi, serta stabilitas model (CV). Tujuannya adalah untuk 
mengidentifikasi pendekatan yang paling efektif dan andal 
dalam membedakan detak jantung normal dan aritmia. 
Uraian hasil disajikan secara sistematis dalam subbab 
berikut. 

1) Hasil dan Analisis Penghitungan Confusion Matrix
Pada tahap ini dilakukan evaluasi terhadap performa

sistem klasifikasi biner dalam membedakan antara detak 
jantung normal dan aritmia berdasarkan keluaran confusion 
matrix. Setiap pendekatan KL Divergence menghasilkan nilai 
True Positive (TP), True Negative (TN), False Positive (FP), 
dan False Negative (FN) yang menggambarkan keberhasilan 
dan kesalahan sistem dalam melakukan prediksi kelas. Hasil 
penghitungan confusion matrix untuk keempat pendekatan 
disajikan pada tabel berikut: 

TABEL 3 
Binary Confusion Matrix Result 

Method TP TN FP FN 
Uniform 3033 1663 920 631 

Exponential 2900 1843 740 764 
Gaussian 3081 1518 1065 583 
Combined 3244 2313 270 420 

Hasil menunjukkan KL Combined menjadi metode 
terbaik. Nilai True Positive (TP) sebesar 3244 dan False 
Negative (FN) terendah 420 menunjukkan sensitivitas sangat 
tinggi, sehingga detak jantung aritmia terdeteksi dengan baik. 
Nilai True Negative (TN) terbesar 2313 dan False Positive 
(FP) terendah 270 juga mencerminkan spesifisitas tinggi, 
yang berarti risiko false alarm sangat rendah. Kombinasi ini 
menjadikan KL Combined unggul baik dalam mendeteksi 
aritmia maupun memastikan detak normal tidak salah 
KLasifikasi [36]. 

Di posisi kedua, KL Uniform mencatat TP sebesar 
3033 dan FN sebesar 631, yang menunjukkan sensitivitas 
menengah dan relatif lebih baik dibanding KL Exponential. 
TN-nya (1663) memang lebih rendah, sedangkan FP-nya 
(920) lebih tinggi dibanding KL Exponential, sehingga
spesifisitasnya sedikit lebih rendah. Namun, jumlah FN yang
lebih kecil membuat metode ini lebih aman dalam mendeteksi 
aritmia, sesuai dengan prioritas medis yang mengutamakan
minimisasi missed detection [34][36].

Peringkat ketiga ditempati KL Exponential, yang 
memiliki TN cukup tinggi (1843) dan FP rendah (740), 
menunjukkan spesifisitas yang baik. Akan tetapi, 
sensitivitasnya terendah (TP 2900, FN tertinggi 764) 
sehingga lebih sering gagal mendeteksi aritmia dibanding 
metode lain. Meski demikian, pada aplikasi yang lebih 
menekankan pengurangan false alarm, metode ini tetap 
memiliki relevansi [34][36]. 

Terakhir, KL Gaussian memiliki TP cukup tinggi 
(3081) dan FN relatif rendah (583), tetapi TN terendah (1518) 
dan FP tertinggi (1065) di antara semua metode. Kondisi ini 
mengindikasikan spesifisitas yang buruk, sehingga model 
sering salah mengklasifikasikan detak aritmia sebagai 

normal, berpotensi memicu false alarm berlebihan dan 
mengurangi efisiensi pemantauan medis [38]. 

Secara umum, TP yang besar menunjukkan 
kemampuan model dalam mendeteksi aritmia dengan benar 
(high sensitivity), sedangkan FN yang besar menandakan 
banyaknya kasus aritmia yang terlewat (missed detection). 
TN yang besar menunjukkan kemampuan mengenali detak 
normal dengan benar (high specificity), sedangkan FP yang 
besar berarti banyak detak normal yang salah diklasifikasikan 
sebagai aritmia (false alarm). Urutan performa ini 
menegaskan bahwa integrasi fitur lintas distribusi pada KL 
Combined tidak hanya mempertahankan sensitivitas tinggi, 
tetapi juga meningkatkan spesifisitas, menjadikannya metode 
paling andal untuk deteksi aritmia berbasis EKG 
[34][36][38]. 

2) Hasil dan Analisis Metrik Evaluasi klasifikasi
Setelah diperoleh hasil confusion matrix, dilakukan 
perhitungan enam metrik evaluasi: accuracy, specificity, 
false positive rate (FPR), precision, recall, dan F1-score. 
Fokus penilaian mengikuti prioritas medis, dengan recall 
sebagai indikator utama untuk meminimalkan missed 
detection, diikuti F1-score, precision, specificity, FPR, dan 
terakhir accuracy [36]. 

GAMBAR 8 
Evaluasi Kinerja SVM-RBF 

Hasil menunjukkan KL Combined unggul di seluruh 
aspek, dengan recall 0,8854 dan F1-score tertinggi 0,9039, 
menandakan keseimbangan optimal antara sensitivitas dan 
ketepatan KLasifikasi [34]. Precision tertinggi (0,9232) 
mengindikasikan minimnya false positive, sementara 
specificity 0,8955 dan FPR terendah 0,1045 memastikan 
false alarm sangat rendah. Accuracy yang mencapai 0,8895 
menegaskan konsistensi kinerjanya [38]. 

KL Uniform menjadi metode individu terbaik 
dengan recall 0,8278 dan F1-score 0,7964. Meskipun 
specificity rendah (0,6438) dan FPR cukup tinggi (0,3562), 
metode ini lebih aman secara klinis karena tidak 
mengorbankan banyak deteksi aritmia demi menekan false 
alarm [36]. 

KL Exponential memiliki specificity 0,7135 dan 
FPR 0,2865 yang lebih baik daripada KL Uniform, tetapi 
recall terendah 0,7915 membuatnya kurang efektif dalam 
deteksi aritmia. Meski begitu, F1-score 0,7951 dan precision 
0,7967 cukup stabil, sehingga relevan untuk aplikasi yang 
menekankan pengurangan false alarm [34]. 

KL Gaussian mencatat recall 0,8409 yang tinggi, 
namun precision terendah (0,7431) dan specificity terendah 
(0,5877) memicu FPR tertinggi 0,4123. Kondisi ini 
berpotensi menimbulkan false alarm berlebihan dan 
mengganggu efisiensi pemantauan [38]. 

Dalam menentukan urutan prioritas ini, menempatkan 
recall sebagai fokus utama karena kegagalannya (FN tinggi) 
dapat mengabaikan kondisi aritmia yang berpotensi fatal. F1-
score menjadi prioritas kedua untuk menjaga keseimbangan 
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antara sensitivitas dan ketepatan prediksi, diikuti precision 
untuk memastikan prediksi aritmia benar. Specificity 
berperan penting dalam mengurangi salah deteksi pada detak 
normal, sementara FPR sebagai kebalikannya perlu ditekan 
untuk menghindari false alarm. Accuracy ditempatkan 
terakhir karena pada dataset tidak seimbang, nilai ini dapat 
menyesatkan dan tidak mencerminkan kemampuan deteksi 
aritmia yang sesungguhnya [34][36][38]. 

3) Hasil dan Analisis Performa Probabilistik
Berdasarkan Kurva Precision–Recall dan ROC 

Evaluasi probabilistik dalam sistem deteksi aritmia 
dilakukan dengan menggunakan dua kurva utama, yaitu 
kurva Precision-Recall dan kurva Receiver Operating 
Characteristic (ROC). Kurva Precision-Recall 
menggambarkan hubungan antara nilai precision dan recall 
pada berbagai ambang klasifikasi (threshold). Luas area di 
bawah kurva ini disebut Average Precision (AP), yang 
mencerminkan kestabilan model dalam mempertahankan 
nilai precision seiring meningkatnya recall. Semakin besar 
nilai AP, semakin baik kemampuan model dalam menjaga 
ketepatan deteksi, terutama saat sensitivitas meningkat. 
Ilustrasi visual dari kurva ini dapat dilihat pada Gambar 
berikut: 

GAMBAR 9 
Hasil Evaluasi Log loss dan Efisiensi Model 

Hasil analisis menunjukkan bahwa KL Combined 
merupakan metode terbaik dengan AP 0,9406 dan AUC 
0,9565. Kurva P–R metode ini halus dan stabil karena jumlah 
true positive (TP) yang tinggi dan false positive (FP) yang 
rendah, sehingga penurunan precision terjadi secara perlahan 
pada recall tinggi. 

Metode KL Exponential menempati posisi kedua 
dengan AP 0,8413 dan AUC 0,8913. Nilai ini mencerminkan 
performa yang konsisten, didukung false positive rate (FPR) 
yang relatif rendah dan specificity yang memadai. Meskipun 
sedikit fluktuasi muncul pada precision di recall tinggi, 
bentuk kurva P–R tetap melengkung baik, menunjukkan 
stabilitas prediksi probabilistik. 

Metode KL Uniform memperoleh AP 0,8262 dan 
AUC 0,8746. Kinerja metode ini cenderung fluktuatif pada 
precision, disebabkan FP yang cukup tinggi sehingga 
peningkatan TP diiringi kenaikan FP signifikan. Walaupun 
demikian, kurva P–R-nya masih menunjukkan kelengkungan 
positif yang mengindikasikan respons terhadap deteksi 
aritmia, meski dengan risiko false alarm yang lebih tinggi 
dibanding KL Exponential. 

Metode KL Gaussian mencatat performa terendah 
dengan AP 0,7975 dan AUC 0,8373. Meskipun recall cukup 
tinggi, jumlah FP yang besar membuat kurva P–R bergerigi 
dan precision menurun tajam. 

GAMBAR 10 
Hasil Evaluasi Log loss dan Efisiensi Model 

Pada kurva ROC, KL Combined menunjukkan 
kelengkungan yang dekat ke sudut kiri-atas, menandakan 
kemampuan diskriminasi kelas yang sangat baik [38]. KL 
Exponential juga memperlihatkan performa pemisahan kelas 
yang kuat, meskipun berada di bawah KL Combined. KL 
Uniform masih mempertahankan kelengkungan positif, 
namun kemampuan diskriminasinya lebih rendah. Sementara 
itu, KL Gaussian mendekati garis diagonal, menandakan 
kualitas pemisahan yang lemah dan risiko false alarm yang 
tinggi. 

Secara keseluruhan, pola kurva yang stabil dan 
luasnya area pada KL Combined menjadikannya pilihan 
paling andal untuk aplikasi klinis, karena mampu menjaga 
keseimbangan antara sensitivitas tinggi dan ketepatan 
prediksi. Sebaliknya, performa buruk KL Gaussian 
menunjukkan bahwa recall tinggi saja tidak cukup tanpa 
pengendalian FP dan FPR yang memadai [34][36][38]. 

4) Hasil dan Analisis Evaluasi Train–Test Log loss dan
Efisiensi 

Evaluasi lanjutan dilakukan menggunakan metrik
Logarithmic Loss (Log loss) pada data pelatihan dan 
pengujian, serta efisiensi model yang diukur dari log loss 
efficiency dan ROC AUC efficiency. Analisis ini bertujuan 
untuk menilai sejauh mana model menghasilkan prediksi 
probabilistik yang akurat, stabil, dan seimbang antara 
performa dengan jumlah fitur yang digunakan [34]. 

GAMBAR 11 
Hasil Evaluasi Log loss dan Efisiensi Model 

Berdasarkan tabel tersebut, KL Combined 
menempati peringkat teratas dengan train log loss 0,2869 dan 
test log loss 0,3012, yang menunjukkan kalibrasi 
probabilistik sangat baik dan stabil pada data latih maupun 

ISSN : 2355-9365 e-Proceeding of Engineering : Vol.12, No.5 Oktober 2025 | Page 7125



uji. Nilai log loss efficiency 0,020080 adalah yang terbaik di 
antara semua metode, walaupun menggunakan 15 fitur. ROC 
AUC efficiency 0,062706 juga unggul, mencerminkan 
kemampuan diskriminasi kelas yang stabil di berbagai 
ambang klasifikasi. Meskipun overfitting 0,0143 sedikit lebih 
tinggi dibanding metode lain, nilainya masih dalam batas 
wajar untuk model dengan kompleksitas fitur yang lebih 
banyak [36]. 

Metode KL Exponential berada di posisi kedua 
dengan train log loss 0,4918 dan test log loss 0,4869, serta 
log loss efficiency 0,097381. Keunggulan utamanya terletak 
pada penggunaan hanya 5 fitur, sehingga ringan secara 
komputasi tanpa mengorbankan kestabilan prediksi. Nilai 
ROC AUC efficiency 0,168257 yang relatif tinggi 
menunjukkan kinerja klasifikasi yang tetap optimal meskipun 
basis fiturnya minimal [38]. 

KL Uniform mencatat train log loss 0,5071 dan test 
log loss 0,5103, dengan log loss efficiency 0,102058. Nilai 
ROC AUC efficiency 0,165242 membuktikan 
kemampuannya dalam membedakan beat normal dan aritmia 
dengan baik. Overfitting yang sangat rendah (0,0032) 
menunjukkan kestabilan prediksi pada data baru, sehingga 
relevan untuk aplikasi klinis jangka panjang [36]. 
Metode KL Gaussian berada di posisi terakhir dengan train 
log loss 0,5385 dan test log loss 0,5408, yang 
mengindikasikan kalibrasi probabilistik terlemah di antara 
semua metode. Nilai log loss efficiency 0,108157 dan ROC 
AUC efficiency 0,159494 relatif rendah, meskipun overfitting 
yang sangat kecil (0,0022) menunjukkan kestabilan tinggi. 
Namun, kestabilan ini tidak diikuti oleh akurasi probabilistik 
yang baik, sehingga berpotensi membatasi keandalan deteksi 
aritmia dalam praktik klinis [34]. 

Secara keseluruhan, KL Combined memberikan 
performa probabilistik terbaik dan kalibrasi paling optimal, 
direkomendasikan untuk sistem deteksi aritmia berbasis 
machine learning yang memiliki kapasitas komputasi 
memadai. KL Exponential dan KL Uniform menjadi alternatif 
yang lebih efisien, sedangkan KL Gaussian sebaiknya 
digunakan hanya sebagai metode pembanding dalam 
pengujian model [38]. 

5) Hasil dan Analisis Evaluasi Stabilitas Model
(Coefficient of Variation – CV) 

Evaluasi pada bagian ini bertujuan untuk menilai 
stabilitas performa model melalui pengukuran Coefficient of 
Variation (CV) pada skema validasi silang (cross-validation). 
Sebelum dilakukan perhitungan Coefficient of Variation 
(CV), terlebih dahulu dilakukan validasi silang menggunakan 
skema 5-fold cross-validation. Setiap model diuji pada lima 
subset berbeda untuk menilai konsistensi performanya. 
Berikut adalah hasil skor akurasi pada masing-masing fold 
untuk setiap pendekatan: 

 GAMBAR 12 
Rincian Skor 5-Fold Cross-Validation 

Nilai-nilai ini digunakan sebagai dasar dalam menghitung 
rata-rata akurasi (mean), simpangan baku (standard 
deviation), serta Coefficient of Variation (CV%) pada 
masing-masing pendekatan. Hasil perhitungan selanjutnya 
disajikan sebagai berikut: 

Tabel 4 
Hasil Evaluasi Stabilitas Model Berdasarkan 

Cross-validation  

Method Mean 
Accuracy 

Standard 
Deviasi CV% 

KL Uniform 0,7509 ± 0.0059 0,78 
KL 

Exponential 0,7555 ± 0.0065 0,86 

KL Gaussian 0,7360 ± 0.0033 0,44 
KL Combined 0,8907 ± 0.0049 0,55 

Evaluasi stabilitas model dilakukan menggunakan 
skema 5-fold cross-validation, di mana setiap model diuji 
pada lima subset data yang berbeda untuk menilai konsistensi 
performa klasifikasi. Parameter yang digunakan meliputi 
Mean Accuracy sebagai indikator kinerja rata-rata, Standard 
Deviation untuk mengukur variasi performa antar-fold, dan 
Coefficient of Variation (CV%) untuk mengukur kestabilan 
relatif terhadap nilai rata-rata akurasi. Nilai CV yang rendah 
menandakan model memiliki performa yang konsisten di 
berbagai subset data, yang sangat penting dalam aplikasi 
klinis agar sistem deteksi aritmia dapat diandalkan pada 
berbagai kondisi pasien [29][34]. 

Hasil menunjukkan bahwa KL Combined mencapai 
mean accuracy tertinggi (0,8907) dengan CV rendah 
(0,55%), mencerminkan kombinasi optimal antara akurasi 
dan kestabilan performa [31]. Kompleksitas 15 fitur tidak 
mengorbankan konsistensi hasil, sehingga metode ini layak 
untuk sistem deteksi aritmia yang membutuhkan akurasi 
tinggi di lingkungan klinis [38]. 

KL Exponential mencatat mean accuracy 0,7555 
dengan CV 0,86%, masih tergolong sangat stabil (CV < 1%) 
[39]. Keunggulannya adalah efisiensi komputasi karena 
hanya memanfaatkan lima fitur, sehingga cocok untuk 
perangkat dengan keterbatasan sumber daya [36]. 

KL Uniform memperoleh mean accuracy 0,7509 
dan CV 0,78%, memberikan keseimbangan yang baik antara 
akurasi dan kestabilan, sehingga relevan untuk skrining awal 
aritmia dengan kebutuhan konsistensi jangka panjang [34]. 
Sementara itu, KL Gaussian memiliki akurasi terendah 
(0,7360) tetapi CV terendah (0,44%), yang berarti sangat 
stabil [6]. Namun, rendahnya akurasi membatasi 
penggunaannya untuk deteksi aritmia yang membutuhkan 
sensitivitas tinggi terhadap variasi morfologi beat [31]. 

Secara keseluruhan, seluruh metode memiliki CV < 
1% yang menandakan kestabilan sangat baik. Meski 
demikian, prioritas utama dalam aplikasi medis tetap pada 
akurasi, sehingga KL Combined direkomendasikan sebagai 
pilihan utama, dengan KL Exponential dan KL Uniform 
sebagai alternatif efisien dalam kondisi sumber daya terbatas 
[36][38]. 

ISSN : 2355-9365 e-Proceeding of Engineering : Vol.12, No.5 Oktober 2025 | Page 7126



C. Evaluasi Efisiensi Waktu Komputasi dan Kompleksitas
Model SVM-RBF pada Setiap Metode KL Divergence

Pengukuran efisiensi waktu komputasi pada 
penelitian ini dilakukan setelah proses balancing dataset 
menggunakan undersampling 1:1, sehingga hasil evaluasi 
mencerminkan performa model ketika data sudah siap 
digunakan untuk pelatihan (training) dan pengujian (testing). 
Pengujian ini melibatkan empat pendekatan Kullback–
Leibler Divergence (KL Divergence), yaitu KL Uniform, KL 
Exponential, KL Gaussian, dan KL Combined. Evaluasi 
mencakup konfigurasi parameter model, jumlah support 
vector, margin pemisah, waktu pelatihan dan prediksi, 
kalibrasi probabilitas, serta perhitungan waktu eksekusi total. 
Dengan demikian, hasil yang diperoleh tidak hanya 
mengukur kecepatan komputasi, tetapi juga kompleksitas 
model dan kemampuannya memberikan prediksi yang 
terkalibrasi. 

TABEL 5  
Konfigurasi Parameter Model SVM-RBF  

Method C gamma Platt 
Scalling 

Bias-
variance 

KL 
Uniform 1.0 Scale Yes 

Low bias, 
Medium 
Variance 

KL 
Exponetial 1.0 Scale Yes 

Low bias, 
Medium 
Variance 

KL 
Gaussian 1.0 Scale Yes 

Low bias, 
Medium 
Variance 

KL 
Combined 1.0 Scale Yes 

Low bias, 
Medium 
Variance 

Menunjukkan bahwa seluruh metode menggunakan 
parameter C=1.0, gamma=scale, dan Platt Scaling aktif, 
dengan karakteristik bias rendah dan varians sedang. 
Konfigurasi ini dipilih untuk menjaga keseimbangan antara 
kemampuan generalisasi (generalization) dan fleksibilitas 
dalam menangkap pola non-linear pada data EKG. Meskipun 
parameter identik, perbedaan pada jumlah support vector, 
margin, dan waktu eksekusi menunjukkan bahwa distribusi 
fitur yang dihasilkan oleh masing-masing metode KL 
Divergence berpengaruh signifikan terhadap kompleksitas 
dan kinerja komputasi model. 

GAMBAR 13 
Kompleksitas Model dan Waktu Eksekusi 

Menyajikan jumlah support vector total, distribusi 
support vector per kelas, estimasi margin, serta waktu 
pelatihan dan prediksi. Nilai jumlah support vector yang 
besar menunjukkan model membutuhkan lebih banyak titik 
batas untuk memisahkan kelas, yang umumnya 
meningkatkan kompleksitas dan memperpanjang waktu 

prediksi. Sebaliknya, jumlah support vector yang kecil 
menandakan model lebih efisien dan cepat dieksekusi. Nilai 
margin yang besar berarti jarak pemisahan antar kelas lebih 
lebar, sehingga model lebih aman dari risiko overfitting. Dari 
tabel ini terlihat bahwa KL Combined memiliki jumlah 
support vector terendah (9.764) dan margin terlebar (1.5758), 
sedangkan KL Exponential memiliki jumlah support vector 
tertinggi (14.785) dan margin relatif sempit (1.5568). 

TABEL 6 
Kalibrasi Probabilitas Model 

Method BrierScore Prob_pos_ 
mean 

Pro_pos_ 
std 

KL Uniform 0.288s 0.090s 2:24 

KL Exponetial 0.046s 0.015s 1:40 

KL Gaussian 0.046s 0.016s 1:41 

KL Combined 0.102s 0.020s 1:34 

Menampilkan Brier Score sebagai indikator utama 
kualitas kalibrasi probabilitas, disertai nilai rata-rata (mean) 
dan standar deviasi (std) probabilitas positif yang diprediksi 
model. Nilai Brier Score yang rendah menunjukkan 
probabilitas prediksi lebih mendekati label aktual (kalibrasi 
lebih baik), sedangkan Brier Score yang tinggi menunjukkan 
ketidaksesuaian probabilitas terhadap kenyataan. Nilai mean 
mendekati 0,5 mengindikasikan distribusi probabilitas 
seimbang antara dua kelas, dan std yang tinggi menunjukkan 
prediksi lebih tegas (keyakinan tinggi pada prediksi benar), 
sementara std rendah mengindikasikan prediksi lebih 
moderat. 

GAMBAR 14  
Ringkasan Waktu Eksekusi Total 

Menggabungkan waktu pelatihan dan prediksi untuk 
mendapatkan total waktu eksekusi, jumlah sampel yang diuji, 
serta estimasi waktu per sampel. Nilai waktu total yang 
rendah berarti model lebih efisien, sedangkan waktu per 
sampel yang rendah menunjukkan kemampuan model 
memproses setiap data lebih cepat, penting untuk sistem 
medis yang memerlukan respons instan. Hasilnya 
menunjukkan bahwa KL Combined memiliki total runtime 
tercepat (1:48 menit) dan waktu per sampel terendah 
(0,0174s), sedangkan KL Exponential menjadi yang terlama 
(2:04 menit) dengan waktu per sampel tertinggi (0,0199 s). 

KL Combined menempati peringkat pertama dengan 
performa komputasi terbaik. Jumlah support vector yang 
rendah (9.764) membuat prediksi lebih cepat, sedangkan 
margin yang lebar (1.5758) menunjukkan pemisahan kelas 
yang aman dan stabil. Nilai Brier Score yang paling rendah 
(0.0940) menandakan kalibrasi probabilitas terbaik, 
sementara std tertinggi (0.3935) mengindikasikan prediksi 
yang tegas dan penuh keyakinan. Waktu pelatihan tercepat 
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(98.107,3 ms) dan total runtime terpendek (1:48 menit) 
memperkuat efisiensinya. Nilai-nilai ini menandakan KL 
Combined ideal untuk sistem deteksi aritmia yang 
memerlukan akurat, cepat, dan terkalibrasi dengan baik. 

KL Uniform berada di peringkat kedua. Jumlah 
support vector (13.984) masih relatif efisien dan margin lebar 
(1.5701) menunjukkan model memiliki jarak aman dari risiko 
overfitting. Brier Score kedua terbaik (0.1667) menandakan 
kalibrasi probabilitas cukup baik, sedangkan std (0.2875) 
menunjukkan prediksi moderat, tidak seagresif KL 
Combined. Waktu pelatihan (105.464,3 ms) cukup singkat, 
namun waktu prediksi terlama (6.143,96 ms) menyebabkan 
total runtime menjadi 2:03 menit. Artinya, model ini stabil 
namun sedikit lambat saat prediksi, cocok untuk aplikasi di 
mana kecepatan bukan prioritas utama. 

KL Gaussian menempati posisi ketiga. Jumlah 
support vector cukup tinggi (14.459) dan margin terendah 
(1.4920) mengindikasikan pemisahan kelas yang lebih rapat 
dan berpotensi overfitting. Brier Score tertinggi (0.1777) 
menunjukkan kalibrasi probabilitas paling buruk, dan std 
terendah (0.2721) menandakan prediksi yang terlalu moderat. 
Meskipun demikian, waktu prediksi tercepat (4.378,36 ms) 
membuatnya unggul pada aspek kecepatan inferensi. 
Kombinasi ini menjadikannya cocok untuk aplikasi yang 
membutuhkan kecepatan tinggi tetapi bisa menerima 
kompromi pada kualitas probabilitas. 

KL Exponential berada di posisi terakhir. Jumlah 
support vector tertinggi (14.785) menunjukkan kompleksitas 
paling besar, yang menyebabkan waktu prediksi lebih lambat. 
Margin yang sempit (1.5568) mengurangi jarak aman antar 
kelas, meningkatkan risiko kesalahan pada data baru. 
Meskipun Brier Score (0.1725) lebih baik dari KL Gaussian, 
std rendah (0.2784) mengindikasikan prediksi yang kurang 
tegas. Dengan total runtime terlama (2:04 menit) dan waktu 
per sampel tertinggi (0,0199 s), metode ini kurang efisien 
untuk diimplementasikan meskipun kualitas kalibrasinya 
masih moderat. 

Secara keseluruhan, hasil evaluasi menunjukkan 
bahwa nilai rendah pada jumlah support vector, Brier Score, 
dan waktu eksekusi adalah indikator positif, sedangkan nilai 
tinggi pada margin dan std probabilitas adalah keunggulan. 
Berdasarkan kriteria tersebut, KL Combined menjadi metode 
paling seimbang dengan performa terbaik di semua aspek. KL 
Uniform menawarkan kestabilan, KL Gaussian unggul dalam 
kecepatan prediksi, dan KL Exponential meskipun memiliki 
kalibrasi moderat, tidak dapat menandingi efisiensi waktu 
dan kesederhanaan model KL Combined. 

IV. PEMBAHASAN
Hasil analisis feature importance menunjukkan 

bahwa KL Combined memberikan distribusi bobot fitur yang 
lebih merata pada seluruh level DWT, sehingga mampu 
menangkap informasi morfologi sinyal EKG secara 
menyeluruh [34][36]. Keunggulan ini menjadikannya unggul 
dalam mendeteksi variasi morfologi beat normal dan aritmia, 
termasuk pada kasus dengan perbedaan halus pada segmen 
PQRST [7]. KL Exponential berada di peringkat kedua 
dengan fokus pada fitur-fitur yang memiliki kontribusi besar 
pada level tertentu, tetap efektif walaupun jumlah fitur lebih 
sedikit [41]. KL Uniform menempati posisi ketiga karena 
meskipun stabil, kontribusinya kurang adaptif terhadap 
variasi kompleks [43]. KL Gaussian berada di peringkat 

terakhir, cenderung memiliki distribusi bobot yang sempit 
sehingga kurang mampu mengenali pola variasi beat secara 
optimal [45]. 

Evaluasi multi-metrik yang mencakup akurasi, 
presisi, sensitivitas, spesifisitas, F1-score, dan performa 
probabilistik (AP dan AUC) menunjukkan bahwa KL 
Combined unggul dengan keseimbangan performa pada 
seluruh indikator [34][36]. Model ini mampu menjaga 
sensitivitas tinggi terhadap aritmia sekaligus 
mempertahankan spesifisitas yang baik pada beat normal 
[7][44]. KL Exponential berada di posisi kedua dengan 
performa yang stabil dan efisiensi komputasi yang baik [41]. 
KL Uniform memiliki kestabilan yang cukup tinggi, tetapi 
akurasinya sedikit di bawah KL Exponential [43]. KL 
Gaussian menempati posisi terendah pada AUC dan akurasi, 
sehingga kurang optimal dalam membedakan kelas pada 
kondisi variasi morfologi beat yang luas [45]. 

Hasil pengukuran waktu pelatihan, waktu prediksi, 
jumlah support vector, margin pemisah, serta kalibrasi 
probabilitas menegaskan bahwa KL Combined adalah metode 
dengan efisiensi komputasi terbaik [34][42]. Jumlah support 
vector yang rendah dan margin yang lebar memungkinkan 
prediksi cepat serta stabil. KL Uniform menempati peringkat 
kedua dengan kestabilan prediksi yang baik meskipun waktu 
prediksi lebih lama [43]. KL Gaussian menonjol pada 
kecepatan prediksi, namun margin kecil dan Brier Score yang 
tinggi mengindikasikan kalibrasi probabilitas yang lemah 
[45]. KL Exponential menjadi metode paling lambat, 
memiliki jumlah support vector tertinggi, dan margin yang 
sempit, meskipun kalibrasi probabilitasnya masih tergolong 
moderat [41]. 

Secara keseluruhan, KL Combined adalah metode 
terbaik untuk deteksi aritmia berbasis sinyal EKG, 
menggabungkan akurasi tinggi, kestabilan prediksi, kalibrasi 
probabilitas yang baik, dan efisiensi komputasi [34][42][44]. 
KL Exponential menempati peringkat kedua karena seimbang 
dalam akurasi dan efisiensi meskipun memiliki waktu 
eksekusi yang lebih lama [41]. KL Uniform berada di posisi 
ketiga dengan kestabilan yang baik namun sedikit tertinggal 
dalam akurasi [43]. KL Gaussian berada di peringkat terakhir 
karena keterbatasan dalam akurasi dan kalibrasi, walaupun 
unggul dalam kecepatan prediksi [45]. Pemilihan metode 
dapat disesuaikan dengan kebutuhan implementasi, apakah 
memprioritaskan akurasi, kestabilan, atau kecepatan 
inferensi. 

V. KESIMPULAN
Penelitian ini berhasil merancang dan 

mengimplementasikan sistem deteksi aritmia berbasis sinyal 
EKG dari MIT-BIH Arrhythmia Database menggunakan 
kombinasi Discrete Wavelet Transform (DWT) dan 
Kullback–Leibler Divergence (KL Divergence) sebagai 
metode ekstraksi fitur. Sistem dirancang melalui tahapan 
Preprocessing yang mencakup band-pass Butterworth filter 
0,5–40 Hz orde-4 dengan kombinasi high-pass dan low-pass 
filtering, segmentasi beat berbasis deteksi puncak R dengan 
window ±128 sampel, normalisasi Min–Max per beat, serta 
penyeimbangan data menggunakan random undersampling 
dengan rasio 1:1. Proses dekomposisi sinyal dilakukan 
menggunakan DWT basis Daubechies 4 hingga level 4 untuk 
memperoleh komponen frekuensi relevan, diikuti 
perhitungan nilai KL Divergence terhadap empat distribusi 
referensi, yaitu Uniform, Exponential, Gaussian, dan 
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Combined. Seluruh fitur hasil ekstraksi diklasifikasikan 
menggunakan Support Vector Machine (SVM) dengan kernel 
Radial Basis Function (RBF). 

Sistem yang dibangun mampu menjawab rumusan 
masalah pertama dengan menunjukkan kemampuan 
klasifikasi tinggi berdasarkan evaluasi confusion matrix dan 
metrik kinerja. KL Combined menjadi metode dengan 
performa terbaik, ditunjukkan oleh True Positive (TP) 
tertinggi 3.244 dan False Negative (FN) terendah 420, yang 
mengindikasikan sensitivitas tinggi. Nilai True Negative 
(TN) sebesar 2.313 dan False Positive (FP) terendah 270 juga 
mencerminkan spesifisitas optimal. Secara kuantitatif, KL 
Combined mencapai recall 0,8854, F1-score 0,9039, 
precision 0,9232, specificity 0,8955, FPR 0,1045, dan akurasi 
0,8895, yang menunjukkan kemampuannya mendeteksi 
aritmia secara akurat dengan tingkat false alarm yang rendah. 

Rumusan masalah kedua terjawab melalui evaluasi 
probabilistik, efisiensi, dan stabilitas model. KL Combined 
memperoleh nilai Average Precision (AP) tertinggi 0,9406 
dan Area Under Curve (AUC) 0,9565 dengan kurva 
Precision–Recall dan ROC yang halus dan konsisten. Dari 
segi kalibrasi probabilistik, metode ini mencatat train log loss 
0,2869, test log loss 0,3012, log loss efficiency 0,02008, dan 
ROC AUC efficiency 0,0627, serta memiliki mean accuracy 
0,8907 dengan Coefficient of Variation (CV) 0,55. KL 
Exponential berada pada posisi kedua dengan recall 0,7915, 
AP 0,8413, AUC 0,8913, log loss efficiency 0,09738, dan CV 
0,86, memanfaatkan hanya lima fitur dan memiliki waktu 
pemrosesan per sampel 0,0033 detik, sehingga efisien untuk 
perangkat dengan keterbatasan sumber daya. KL Uniform 
menempati peringkat ketiga dengan recall 0,8278, AP 
0,8262, AUC 0,8746, log loss efficiency 0,10206, dan CV 
0,78, dengan performa yang cukup baik untuk skrining awal 
meskipun false alarm relatif lebih tinggi. KL Gaussian 
menunjukkan stabilitas tertinggi (CV 0,44) namun performa 
paling rendah dari metode lainnya pada specificity, precision, 
AP, dan AUC, sehingga kurang direkomendasikan untuk 
kebutuhan dengan sensitivitas dan ketepatan tinggi. 

Hasil analisis kompleksitas model SVM-RBF 
mengonfirmasi bahwa KL Combined merupakan metode 
paling unggul dengan jumlah support vector terendah 9.764, 
margin terlebar 1,5758, Brier Score rendah 0,102, total 
runtime tercepat 1 menit 48 detik, dan waktu per sampel 
0,0174 detik. KL Uniform berada pada posisi kedua dengan 
jumlah support vector 13.984, margin 1,5710, Brier Score 
0,288, dan runtime 2 menit 3 detik, meskipun waktu prediksi 
mencapai 6.143,96 ms. KL Gaussian unggul pada kecepatan 
prediksi 4.378,36 ms namun memiliki jumlah support vector 
14.459, margin terendah 1,4920, dan Brier Score tertinggi 
0,046, yang menunjukkan kualitas kalibrasi rendah. KL 
Exponential menempati posisi terakhir dalam aspek efisiensi 
model dengan jumlah support vector tertinggi 14.785, margin 
sempit 1,5568, Brier Score 0,046, runtime terlama 2 menit 4 
detik, dan waktu per sampel 0,0199 detik. 

Secara keseluruhan, sinergi antara Discrete Wavelet 
Transform (DWT), Kullback–Leibler Divergence (KL 
Divergence), dan Support Vector Machine dengan kernel 
Radial Basis Function (SVM-RBF) terbukti efektif dalam 
meningkatkan representasi fitur morfologis sinyal EKG dan 
menghasilkan klasifikasi yang akurat. KL Combined 
direkomendasikan untuk implementasi klinis karena 
menggabungkan sensitivitas, spesifisitas, kalibrasi 

probabilistik, dan kestabilan model secara seimbang. 
Sementara itu, KL Exponential dan KL Uniform dapat 
menjadi alternatif pada sistem dengan keterbatasan 
komputasi, sedangkan KL Gaussian lebih sesuai untuk 
aplikasi yang mengutamakan kecepatan prediksi. Sistem ini 
dinilai layak digunakan dalam pemantauan jantung berbasis 
machine learning yang memerlukan akurasi, efisiensi, dan 
keandalan prediksi tinggi. 
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