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Abstrak—Aritmia jantung merupakan gangguan irama
jantung yang berpotensi memicu kondisi kardiovaskular serius
apabila tidak terdeteksi secara dini. Kompleksitas morfologi
sinyal elektrokardiogram (EKG), dimensi data yang tinggi, dan
ketidakseimbangan distribusi kelas pada dataset menjadi
tantangan dalam pengembangan sistem deteksi berbasis
kecerdasan buatan. Penelitian ini bertujuan mengembangkan
sistem Kklasifikasi aritmia berbasis sinyal EKG dari MIT-BIH
Arrhythmia Database dengan menggabungkan Discrete Wavelet
Transform (DWT) dan Kullback—Leibler Divergence (KL
Divergence) untuk ekstraksi fitur. Data diseimbangkan
menggunakan random undersampling sebelum ekstraksi,
dengan empat pendekatan distribusi pada KL Divergence, yaitu
Uniform, Exponential, Gaussian, dan Combined. Klasifikasi
dilakukan menggunakan Support Vector Machine (SVM)
dengan kernel RBF, serta dievaluasi menggunakan metrik
akurasi, F1-score, ROC AUC, log loss, average precision (AP),
efisiensi komputasi, dan Coefficient of Variation (CV). Hasil
menunjukkan bahwa KL Combined memberikan performa
terbaik dengan akurasi 0,8895, FI-score 0,9039, AUC 0,9406,
dan log loss uji 0,3012. KL Combined dinilai optimal untuk
implementasi klinis karena menggabungkan akurasi tinggi,
kestabilan, dan efisiensi, menjadikannya pilihan unggulan
dalam sistem deteksi aritmia yang konsisten dan andal.

Kata kunci: Aritmia jantung, Divergence Kullback-Leibler,
Discrete Wavelet Transform, EKG, MIT-BIH, Support Vector
Machine

1. PENDAHULUAN

Penyakit kardiovaskular merupakan penyebab
kematian tertinggi di dunia, dengan kontribusi hampir 32%
dari total kematian global setiap tahunnya menurut World
Health Organization (WHO) [1]. Salah satu bentuk gangguan
kardiovaskular yang memerlukan perhatian khusus adalah
aritmia jantung, yaitu ketidakteraturan irama detak yang
dapat berupa takikardi, bradikardi, maupun irama yang tidak
teratur [2]. Kondisi ini disebabkan oleh disfungsi sistem
kelistrikan jantung, dengan faktor risiko meliputi penyakit
jantung, ketidakseimbangan elektrolit, stres, hingga efek
samping obat-obatan tertentu [3]. Perkembangan teknologi
elektrokardiogram (EKG) sejak penemuannya oleh Willem
Einthoven telah membawa kemajuan besar dalam diagnosis
aritmia [4], namun deteksi otomatis masih menghadapi
tantangan signifikan akibat kemiripan morfologi antara
sinyal normal dan abnormal [5], tingginya dimensi data, serta
ketidakseimbangan distribusi kelas antara beat normal dan
aritmia yang dapat menurunkan sensitivitas model terhadap
beat aritmia [6].
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Penelitian ini dikembangkan dari dua permasalahan
utama, yaitu bagaimana mengembangkan algoritma deteksi
aritmia yang mampu mengklasifikasikan denyut jantung
normal dan aritmia pada dataset MIT-BIH Arrhythmia
Database [18], serta bagaimana penerapan masing-masing
pendekatan  Kullback—Leibler — Divergence  (Uniform,
Exponential, Gaussian, dan Combined) memengaruhi
performa sistem dalam hal akurasi dan efisiensi [14][15].
Untuk menjawab permasalahan tersebut, diusulkan sistem
deteksi aritmia berbasis Discrete Wavelet Transform (DWT)
[24] dan KL Divergence yang dapat memisahkan komponen
frekuensi dan waktu sinyal secara bertingkat [33],
menangkap karakteristik morfologi kompleks gelombang
QRS [26], serta menghitung perbedaan distribusi
probabilistik antara sinyal aritmia dan referensi [27]. Dataset
MIT-BIH Arrhythmia Database dengan lead MLII dan V1
digunakan melalui tahapan Preprocessing yang mencakup
filtering [11], normalisasi Min-Max [10], segmentasi berbasis
R-peak [12], serta random undersampling untuk
menyeimbangkan data [9]. Fitur hasil ekstraksi kemudian
diklasifikasikan menggunakan Support Vector Machine
(SVM) dengan kernel RBF [17], dan keempat metode KL
Divergence dianalisis menggunakan multiple metrics
evaluation [25] untuk menentukan pendekatan paling optimal
dalam klasifikasi denyut aritmia. Pendekatan ini diharapkan
mampu memberikan solusi yang akurat, stabil, dan efisien
untuk mendukung implementasi klinis deteksi aritmia
otomatis [28].

II. KAIJIAN TEORI

Kajian teori pada penelitian ini membahas secara
komprehensif landasan konseptual dan teknis yang
digunakan dalam perancangan sistem deteksi aritmia berbasis
sinyal EKG. Pembahasan diawali dengan penjelasan
mengenai elektrokardiogram (EKG) dan aritmia jantung
sebagai dasar pemahaman fenomena medis yang dianalisis,
dilanjutkan dengan MIT-BIH Arrhythmia Database sebagai
sumber data penelitian. Selanjutnya, diuraikan tahap
Preprocessing untuk meningkatkan kualitas sinyal, diikuti
metode penyeimbangan data (balancing) menggunakan
undersampling guna mengatasi ketidakseimbangan kelas.
Proses dilanjutkan pada tahap dekomposisi sinyal
menggunakan Discrete  Wavelet Transform (DWT),
kemudian Kullback—Leibler Divergence (KL Divergence)
digunakan sebagai metode ekstraksi fitur untuk membedakan
distribusi probabilistik sinyal. Bagian akhir membahas tahap
klasifikasi menggunakan Support Vector Machine dengan
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kernel Radial Basis Function (RBF), yang dioptimalkan
untuk menangani data berdimensi tinggi dan non-linear.

A. FElektrokardiogram dan Aritmia Jantung

Elektrokardiogram (EKG) merupakan metode non-
invasif untuk merekam aktivitas listrik jantung melalui
elektroda yang ditempatkan pada permukaan kulit, yang
merepresentasikan proses depolarisasi dan repolarisasi dalam
bentuk gelombang P, kompleks QRS, dan gelombang T [3].
Sinyal ini digunakan secara luas untuk mendeteksi kelainan
irama jantung atau aritmia, yaitu kondisi di mana detak
jantung menjadi terlalu cepat, terlalu lambat, atau tidak
teratur akibat gangguan sistem kelistrikan jantung [1][2].
Perkembangan teknologi sejak penemuan EKG oleh Willem
Einthoven telah menghasilkan perangkat dengan jumlah lead
lebih banyak, digitalisasi sinyal, hingga sistem berbasis
komputer untuk membantu analisis [19], termasuk penerapan
machine learning untuk mendeteksi pola aritmia secara
otomatis [20].

Rekaman EKG dapat dilakukan dengan konfigurasi
12-lead, yang mencakup lead ekstremitas (I, II, III),
augmented (aVR, aVL, aVF), dan precordial (VI-V6),
masing-masing memberikan sudut pandang berbeda terhadap
aktivitas listrik jantung [18][22]. Sinyal yang direkam
memiliki amplitudo kecil, sekitar 0,5-5 mV, sehingga
memerlukan penguatan dengan instrumentation amplifier
yang memiliki Common-Mode Rejection Ratio (CMRR)
tinggi untuk meminimalkan interferensi dari otot, peralatan
medis, maupun jaringan listrik [24]. Setelah penguatan,
sinyal difilter menggunakan bandpass filter (0,5-40 Hz)
untuk mempertahankan komponen penting gelombang P,
QRS, dan T sambil mereduksi noise seperti baseline wander,
gangguan otot, dan interferensi AC [19].

Tahap selanjutnya adalah digitalisasi melalui
Analog-to-Digital Conversion (ADC) dengan sampling rate
umum 250-1000 Hz, di mana database MIT-BIH
menggunakan 360 Hz untuk menjaga ketelitian representasi
sinyal [22]. Komponen utama EKG memiliki makna klinis
yang penting: gelombang P merefleksikan depolarisasi
atrium [3], kompleks QRS menggambarkan depolarisasi
ventrikel [4], gelombang T menunjukkan repolarisasi
ventrikel [28], sementara interval PR dan QT memberikan
informasi tentang waktu hantaran impuls dan total durasi
aktivitas ventrikel [41]. Perubahan bentuk, durasi, atau
interval dari komponen ini dapat menjadi indikator awal
adanya kelainan ritme atau struktur jantung, sehingga
pemahaman yang tepat terhadap karakteristik sinyal EKG
menjadi landasan penting dalam deteksi aritmia [1].

B. Memuat Dataset MIT-BIH Arrhytmia Database
Penelitian ini menggunakan MIT-BIH Arrhythmia
Database, salah satu dataset internasional yang paling
banyak digunakan untuk pengembangan sistem deteksi
aritmia berbasis sinyal EKG [22]. Dataset ini terdiri dari 48
rekaman berdurasi 30 menit, yang diambil dari pasien dengan
berbagai jenis gangguan irama jantung dan telah dianotasi
secara manual oleh ahli medis [26]. Setiap rekaman memiliki
frekuensi sampling sebesar 360 Hz, sehingga morfologi
gelombang seperti kompleks QRS, gelombang P, dan
gelombang T dapat diidentifikasi secara presisi [22].
Penelitian ini memanfaatkan dua lead utama, yaitu MLII yang
memberikan representasi irama jantung stabil, dan V1 yang
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lebih sensitif dalam mendeteksi aktivitas ventrikular dan
abnormalitas lokal [26].

Setiap detak jantung dalam dataset diberi simbol
satu huruf yang merepresentasikan jenis beat, berdasarkan
pengamatan ahli kardiologi. Dalam penelitian ini, penentuan
kategori beat mengacu pada standar American Heart
Association (AHA) yang digunakan di PhysioNet, yang
membagi simbol-simbol beat ke dalam enam kategori utama
berdasarkan sumber aktivitas listrik, bentuk morfologi, dan
relevansi klinisnya [18][40]. Beberapa contoh kategori
meliputi kelas Normal (N, L, R), Supraventricular (A, a, ], S,
e, j, X), Ventricular (V, E, !), Fusion (F, ), Paced (/), dan
Unknown (Q). klasifikasi ini dipilih karena tidak hanya
mempertimbangkan bentuk sinyal, tetapi juga konteks
fisiologis dan klinis, sehingga meningkatkan akurasi deteksi
[18].

Dalam implementasinya, penelitian ini menerapkan
sistem pelabelan biner, di mana beat dengan kategori Normal
diberi label 0 dan beat kategori lain (aritmia) diberi label 1.
Label ini digunakan sebagai target pada tahap pelatihan
model klasifikasi. Tahapan pengolahan data mengikuti
rancangan sistem yang terdiri dari pemuatan data,
Preprocessing  (filtering,  segmentasi,  normalisasi),
dekomposisi sinyal menggunakan Discrete Wavelet
Transform (DWT), ekstraksi fitur berbasis Kullback—Leibler
Divergence (KL Divergence), klasifikasi dengan Support
Vector Machine (SVM) kernel RBF, evaluasi model, serta
visualisasi hasil prediksi [22][26][40].

C. Rancangan sistem

Rancangan sistem deteksi aritmia yang diusulkan
pada penelitian ini dirancang untuk memproses sinyal EKG
dari MIT-BIH Arrhythmia Database melalui serangkaian
tahapan yang saling terintegrasi.

Data MIT-IBH — Preprocessing — Dekomposisi

I

— Ekstraksi Fitur

Multi Matrics 4

Evaluation Klasifikasi

GAMBAR 1
Framework sistem penelitian

Proses diawali dengan pemuatan data mentah yang
kemudian masuk ke tahap Preprocessing berupa filtering
untuk menghilangkan noise dan baseline wander, segmentasi
berbasis puncak R (R-peak), serta normalisasi Min—Max guna
menyamakan skala amplitudo antar beat [7][17]. Setelah itu,
dilakukan penyeimbangan data (balancing) dengan metode
undersampling untuk mengatasi ketidakseimbangan jumlah
antara beat normal dan aritmia sehingga model dapat belajar
secara proporsional [22][26]. Selanjutnya, sinyal yang telah
diproses didekomposisi menggunakan Discrete Wavelet
Transform (DWT) dengan basis Daubechies 4 hingga level
tertentu untuk memisahkan komponen frekuensi dan waktu,
sehingga dapat menangkap detail morfologi gelombang
PQRST secara optimal [24]. Fitur yang dihasilkan dari setiap
level koefisien kemudian diekstraksi menggunakan metode
Kullback—Leibler Divergence (KL Divergence) dalam empat
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pendekatan distribusi referensi, yaitu Uniform, Exponential,
Gaussian, dan Combined, guna mengukur perbedaan
probabilistik antara beat aritmia dan referensi normal
[29][36]. Hasil ekstraksi ini selanjutnya menjadi masukan
bagi algoritma Support Vector Machine (SVM) dengan
kernel Radial Basis Function (RBF) untuk klasifikasi beat
menjadi kategori normal atau aritmia [41].

D. Tahap Preprocessing

Preprocessing merupakan langkah awal pengolahan
sinyal EKG untuk meningkatkan kualitas dan mengurangi
gangguan sebelum analisis lanjutan. Proses ini meliputi
filtering untuk mereduksi noise, normalisasi untuk
menyeragamkan skala amplitudo, segmentasi untuk
memisahkan siklus jantung, dan penyeimbangan data agar
model klasifikasi dapat belajar secara proporsional [22].

1)  Filtering

Filtering merupakan tahap awal yang krusial dalam
Preprocessing sinyal EKG untuk mempertahankan morfologi
gelombang P, QRS, dan T, sekaligus mereduksi gangguan
seperti baseline wander, powerline interference, dan muscle
noise [12]. Meskipun dataset MIT-BIH Arrhythmia telah
banyak digunakan secara klinis, sinyal tetap berpotensi
mengandung noise akibat faktor fisiologis maupun teknis
perekaman [6]. Penelitian ini menggunakan Butterworth
bandpass filter orde-4 dengan rentang 0,5-40 Hz. Pemilihan
rentang ini mempertahankan komponen utama gelombang P
(+0,5-10 Hz), QRS (1040 Hz), dan T (<10 Hz), sekaligus
menekan gangguan di luar spektrum tersebut [15][17]. Filter
Butterworth dipilih karena respons frekuensinya halus tanpa
ripple pada passband maupun stopband [11], dengan orde 4
yang dinilai optimal dalam memisahkan noise tanpa
mengubah bentuk morfologi sinyal [19]. Dalam mencegah
distorsi fase, digunakan metode zero-phase filtering dengan
fungsi filtfilt() dari SciPy, yang memproses sinyal dua arah
sehingga tidak terjadi time shift pada posisi PQRST [31].
Pendekatan ini penting karena pergeseran waktu sekecil apa
pun dapat mengubah interpretasi diagnostik [17].
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GAMBAR 2

perbandingan visual sinyal EKG sebelum dan sesudah
filtering dengan Butterworth bandpass 0.5-40 Hz dan
metode zero-phase filtering

Sebagai ilustrasi, Gambar 2, menampilkan perbandingan
sinyal mentah gabungan MLII dan VI sebelum dan sesudah
filtering. Terlihat bahwa sinyal hasil penyaringan menjadi
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lebih bersih, baseline stabil, amplitudo gelombang R lebih
menonjol, dan komponen P serta T lebih jelas, sehingga
meningkatkan efektivitas ekstraksi fitur pada tahap
selanjutnya.

2)  Min—Max Normalization

Normalisasi dilakukan untuk menyamakan skala
amplitudo antar-beat dan antar-pasien, yang dapat bervariasi
akibat perbedaan penempatan elektroda atau karakteristik
alat perekam [21]. Metode yang digunakan adalah Min—Max
Normalization per-beat, memetakan nilai minimum menjadi

0 dan maksimum menjadi 1 menggunakan persamaan:
’ X~ Xmin (l)

X =
Xmax~Xmin

Pendekatan ini mempertahankan bentuk relatif gelombang
dan  membantu  mempercepat konvergensi  model
pembelajaran mesin seperti SVM, serta membuat klasifikasi
lebih stabil terhadap variasi individu [20][21].

3) Segmentasi Beat

Segmentasi beat dilakukan untuk memotong sinyal
EKG kontinu menjadi satu siklus detak jantung penuh,
sehingga komponen penting seperti gelombang P, kompleks
QRS, dan gelombang T dapat dianalisis secara akurat [20].
Penelitian ini menggunakan metode fixed-window sepanjang
256 sampel, terdiri dari £128 sampel sebelum dan sesudah
puncak R (R-peak), dengan sampling rate 360 Hz atau setara
+0,71 detik per beat. Pemilihan R-peak sebagai pusat
segmentasi didasarkan pada kestabilan dan dominasi titik ini
dalam siklus jantung [21], sehingga morfologi P-QRS-T
dapat terekam secara utuh.

Label setiap beat ditentukan dengan mencocokkan
segmen terhadap anotasi file .atr pada MIT-BIH Arrhythmia
Database sesuai standar AHA  PhysioNet, yang
mengklasifikasikan beat menjadi enam kategori: Normal (N,
L, R), Supraventrikular (S), Ventrikular (V), Fusi (F), Paced
(P), dan Unclassifiable (Q) [18]. Untuk memudahkan
klasifikasi, kategori ini dikonversi menjadi dua kelas biner,
yaitu Kelas 0 untuk beat normal (N, L, R) dan Kelas 1 untuk
beat aritmia (seluruh kategori lainnya). Simbol non-
fungsional seperti “[”, “]”, dan *“|” dikecualikan karena hanya
menandai ritme atau artefak teknis. Gambar 3 di bawah ini
memperlihatkan contoh segmen beat normal, meliputi
normal beat, left bundle branch block, dan right bundle
branch block, yang tetap dikategorikan normal meskipun
terdapat variasi morfologi [18].

Beat Index: 36809 | Simbol: 'N' | Kategori: N | Label: Normal beat

Beat Index: 29855 | Simbol: ‘R’ | Kategori: N | Label: Right bundle branch block beat

GAMBAR 3
Contoh beat normal berdasarkan MIT-BIH Arrhythmia
Database
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Sementara itu, Gambar 4, berikut menunjukkan
berbagai beat aritmia seperti atrial premature beat,
premature ventricular contraction, fusion beat, paced beat,
dan unclassifiable beat, yang ditandai dengan penyimpangan
pada bentuk, durasi, atau keteraturan siklus [18].

Beat Index: 90258 | Simbel: ‘A" |

S | Label: Atrial beat

Beat Index: 101542 | Simbal: V" | V | Label:

Beat Index: 44253 | Simbol: 'F* | Kategori: F | Label: Fusion of ventricular and normal beat

Beat Index: 11517 | Simbol: '/ | Kategori: P | Label: Paced beat

Beat index: 7957 | Simbol: 'Q’ | Kategori: Q | Label: Unclassifiable beat

GAMBAR 4
Contoh beat aritmia berdasarkan MIT-BIH Arrhythmia
Database.

Proses segmentasi ini memastikan konsistensi data dan
memudahkan model pembelajaran mesin membedakan
antara beat normal dan aritmia secara efektif.

4)  Penyeimbangan Data (Balancing)

Dalam pemrosesan dataset MIT-BIH Arrhythmia,
ditemukan ketidakseimbangan yang signifikan antara jumlah
beat jantung normal dan beat aritmia. Sebelum
penyeimbangan, jumlah beat normal tercatat sebanyak
90.086, sedangkan beat aritmia hanya 15.616. Perbedaan
proporsi yang besar ini berpotensi menimbulkan bias pada
model  klasifikasi, di  mana model cenderung
memprioritaskan prediksi terhadap kelas mayoritas (normal)
dan mengabaikan kelas minoritas (aritmia) [10]. Dalam
konteks sistem deteksi medis, bias seperti ini dapat
mengurangi sensitivitas model terhadap deteksi pola aritmia,
yang justru menjadi fokus utama dalam diagnosis dini
penyakit jantung. Kondisi tersebut juga dapat menghasilkan
metrik evaluasi yang menyesatkan, di mana akurasi tampak
tinggi namun kemampuan deteksi aritmia rendah [18].

Untuk mengatasi ketimpangan ini, diterapkan
random wundersampling dengan rasio 1:1, yakni mengurangi
jumlah sampel pada kelas mayoritas hingga setara dengan
kelas minoritas. Setelah proses ini, kedua kelas memiliki
jumlah beat yang sama, yaitu 15.616 untuk normal dan
15.616 untuk aritmia. Strategi ini membantu mengurangi
dominasi kelas mayoritas, meningkatkan sensitivitas model
terhadap aritmia, serta menghasilkan evaluasi yang lebih
representatif terhadap performa sebenarnya.
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GAMBAR 5
Distribusi beat normal dan aritmia sebelum dan sesudah
undersampling.

Proses penyeimbangan ini dilakukan sebelum tahap
utama, yaitu dekomposisi sinyal menggunakan Discrete
Wavelet Transform (DWT) dan ekstraksi fitur berbasis
Kullback—Leibler Divergence (KL Divergence). Dengan
distribusi data yang seimbang, proses pembelajaran model
berlangsung lebih adil, dan fitur yang dihasilkan dari DWT—
KL Divergence memiliki kualitas yang lebih baik dalam
membedakan antara beat normal dan aritmia [10][18].

E. Tahap Dekomposisi Discrete Wavelet Transform (DWT)

Sinyal elektrokardiogram (EKG) termasuk kategori
sinyal non-stasioner, schingga analisisnya memerlukan
metode yang mampu merepresentasikan informasi secara
simultan pada domain waktu dan frekuensi. Discrete Wavelet
Transform (DWT) menjadi pilihan yang tepat karena mampu
melakukan dekomposisi bertingkat untuk memisahkan
komponen frekuensi rendah dan tinggi dengan resolusi
adaptif [11]. Pada sinyal EKG, komponen frekuensi rendah
biasanya memuat gelombang T dan baseline, sedangkan
komponen frekuensi tinggi berkaitan dengan perubahan cepat
seperti kompleks QRS [24].

DWT bekerja berdasarkan prinsip analisis multi-
resolusi dengan menggunakan fungsi dasar mother wavelet
yang mengalami dilasi (perubahan skala) dan translasi
(pergeseran waktu). Prinsip ini memungkinkan deteksi pola
global seperti gelombang T pada skala besar, sekaligus
mengidentifikasi perubahan cepat seperti puncak QRS pada
skala kecil [26]. Selain itu, DWT efektif dalam mereduksi
noise umum seperti baseline wander, interferensi jaringan
listrik, dan sinyal otot (EMG) [25].

Dalam penelitian ini, DWT diterapkan hingga /evel
4 dengan menggunakan mother wavelet Daubechies-4 (db4)
karena kemampuannya menyesuaikan morfologi kompleks
QRS serta kestabilannya terhadap variasi karakteristik sinyal
EKG [34]. Penerapan DWT ini memisahkan sinyal ke dalam
domain waktu dan frekuensi secara simultan, sehingga setiap
level dekomposisi memuat informasi fisiologis yang spesifik
[11][26].
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TABEL 1
Pembagian frekuensi DWT berdasarkan sampling rate
360Hz [24].
Rentan Informasi yan
Level | Komponen frekuensi (gHz) terkandung ¢
Noise frekuensi
cDI Detail 90 — 180 tinggi umumnya
diabaikan
Komponen
utama QRS
cD?2 Detail 45-90 kompleks
(tajam, khas
aritmia)
Detail kompleks
cD3 Detail 22.5-45 QRS yang lebih
halus
D4 | Dewil | 1125-225 | GeclombangP
dan T
Tren lambat dan
cA4 Approx. <11.25 komponen
baseline.

Di antara komponen tersebut, cD2 memiliki peran
paling signifikan dalam membedakan detak jantung normal
dan aritmia karena mencakup rentang frekuensi dominan
kompleks QRS yang sering mengalami perubahan morfologi
pada kondisi aritmia [26][34]. Informasi ini menjadi krusial
dalam mendukung proses klasifikasi gangguan irama
jantung, terutama ketika digunakan dalam ekstraksi fitur
berbasis Kullback—Leibler Divergence, yang memanfaatkan
distribusi statistik dari setiap level dekomposisi untuk
membedakan detak normal dan aritmia [33].

F. Kullback—Leibler Divergence (KL Divergence) sebagai
Ekstraksi Fitur

Setelah sinyal EKG didekomposisi menggunakan
Discrete Wavelet Transform (DWT), tahap selanjutnya
adalah ekstraksi fitur untuk merepresentasikan karakteristik
morfologi sinyal dalam bentuk numerik. Penelitian ini
menggunakan Kullback—Leibler Divergence (KL
Divergence) untuk mengukur perbedaan antara distribusi
probabilitas koefisien hasil dekomposisi yang bersifat
empiris (P) dan distribusi referensi yang bersifat teoritis (Q)
[14]. Pendekatan ini efektif untuk mengidentifikasi
perubahan morfologi serta ketidakteraturan gelombang yang
menjadi indikator aritmia [30].

Distribusi empiris P dihitung berdasarkan histogram
koefisien pada setiap level dekomposisi DWT, sedangkan
distribusi referensi O dibentuk dari model matematis berupa
Uniform, Exponential, atau gaussian dengan parameter yang
disesuaikan terhadap data aktual [15][16]. Pemilihan ketiga
distribusi ini memberikan sudut pandang yang berbeda, yaitu
penyimpangan dari kondisi acak, pola penurunan amplitudo
fisiologis, dan kesesuaian terhadap bentuk distribusi normal.
Untuk mencegah ketidakstabilan perhitungan akibat adanya
probabilitas nol, digunakan teknik e-smoothing dengan
menambahkan nilai kecil € = 107® pada setiap probabilitas
[14].
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P .log G ()

Dk, (Pl1Q) =
dengan P(x) sebagai probabilitas aktual, QO(x) sebagai
distribusi referensi, dan »n jumlah bin pada histogram [26].
Nilai KL Divergence yang tinggi menunjukkan adanya
perbedaan signifikan antara kedua distribusi, sedangkan nilai
rendah menunjukkan kesamaan yang kuat.

TABEL 2
Interpretasi nilai KL Divergence dalam konteks sinyal EKG
[14][16][32]

Kondisi
Perbandinga Nilai KL Interpretasi dalam
P(x) dan Divergence | Konteks Sinyal EKG
Q(x)
P(x) = Beat kemungklrllan
00x) 0 . t?esar. normal;
. : distribusi fitur serupa
(identik) d P .
engan referensi
Beat kemungkinan
P(x) sangat aritmia; distribusi
berbeda dari Tinggi fitur sangat
Q(x) menyimpang dari
pola normal
P (x) mirip Beat cenderung
tetapi tidak Rendah no'rn.1a1; te.rd.apat'
sama dengan sedikit variasi dari
Q) distribusi referensi
Hasil perhitungan
Dibalik, berubabh jika arah
Dk, (Q]|P) # | Tidak sama distribusi ditukar;
Dy (P]1Q) penting untuk
konsistensi evaluasi

Setelah interpretasi umum ini, pembahasan akan
difokuskan pada dua pendekatan utama dalam perhitungan
KL Divergence, yaitu metode individu dan metode gabungan.
Keduanya akan dibandingkan dari berbagai aspek, meliputi
jenis distribusi yang digunakan, sifat informasi yang
dihasilkan, jumlah fitur, serta potensi kontribusi terhadap
performa model klasifikasi. Dengan cara ini, perbedaan peran
masing-masing pendekatan dapat dipahami secara lebih
komprehensif sebelum hasilnya dianalisis pada tahap
evaluasi.

1) KL Divergence Individual
Pendekatan ini menghitung KL Divergence untuk
setiap jenis distribusi referensi secara terpisah, sehingga
menghasilkan tiga kelompok nilai fitur yang berbeda.

1. Distribusi Uniform digunakan untuk menilai sejauh mana
sinyal menyimpang dari pola acak atau tidak berpola,
relevan dalam mendeteksi baseline wander maupun
gangguan acak [14].

2. Distribusi Exponential digunakan untuk
merepresentasikan pola penurunan amplitudo alami,
misalnya pada fase repolarisasi ventrikel yang
membentuk gelombang T [26].

3. Distribusi Gaussian digunakan untuk menilai kesesuaian
bentuk sinyal dengan distribusi normal yang umum
ditemukan pada data biologis, membantu
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mengidentifikasi distorsi seperti kemiringan distribusi
(skewness) atau keberadaan lebih dari satu puncak
(multimodalitas) [15].
Ketiga nilai KL Divergence ini berfungsi sebagai indikator
spesifik untuk mendeteksi berbagai bentuk ketidakteraturan
morfologi sinyal, baik yang bersifat acak, fisiologis, maupun
struktural.

2) KL Divergence Combined

Pendekatan =~ Combined  dilakukan  dengan
menggabungkan seluruh fitur hasil KL Divergence dari
distribusi Uniform, Exponential, dan gaussian menjadi satu
vektor fitur terpadu. Karena sinyal EKG didekomposisi
menjadi lima komponen (cA4, cD4, c¢cD3, ¢cD2, ¢cD1), jumlah
total fitur yang dihasilkan adalah 15, yang berasal dari lima
komponen dikalikan tiga jenis distribusi referensi [26].

Strategi penggabungan ini memungkinkan seluruh
sudut pandang analisis tetap terwakili secara bersamaan,
sehingga model klasifikasi memperoleh informasi yang lebih
kaya dan beragam [32][34]. Beberapa penelitian melaporkan
bahwa pendekatan ini cenderung menghasilkan akurasi dan
kestabilan klasifikasi yang lebih baik dibandingkan metode
individual, terutama pada sinyal EKG yang kompleks dan
mengandung berbagai gangguan [32].

G. Tahap Klasifikasi: Support Vector Machine dengan
Kernel RBF

Tahap klasifikasi pada penelitian ini menggunakan
Support Vector Machine (SVM) dengan kernel Radial Basis
Function (RBF). Algoritma ini dipilih karena kemampuannya
menangani data berdimensi tinggi dengan pola non-linear,
sesuai karakteristik sinyal Elektrokardiogram (EKG) yang
bersifat non-stasioner dan memiliki variasi morfologi antar
individu maupun antar waktu, khususnya pada kondisi
aritmia seperti Premature Ventricular Contraction (PVC)
dan atrial fibrillation [17][29]. Prinsip dasar SVM adalah
membentuk hyperplane yang memisahkan dua kelas dengan
margin maksimum. Pada kasus data non-linear, kerne/ RBF
memetakan data ke ruang fitur berdimensi lebih tinggi agar
pemisahan dapat dilakukan secara efektif. Secara matematis,
kernel RBF dirumuskan sebagai:

K(x,x") = exp (=y|lx — x'[|*) )

Fungsi ini mengukur kesamaan antar titik data berdasarkan
jarak Euclidean, sehingga pola non-linear dapat dipisahkan
secara optimal [30]. Pendekatan ini sangat relevan terhadap
fitur yang dihasilkan dari Kullback—Leibler Divergence (KL
Divergence), yang distribusinya sering kali kompleks.

1)  Parameter Model dan Bias—Variance Trade-off

Parameter C mengatur toleransi terhadap kesalahan
klasifikasi. Nilai yang terlalu besar cenderung menyebabkan
overfitting, sedangkan nilai yang terlalu kecil berpotensi
menyebabkan underfitting. Pada penelitian ini digunakan C =
1.0 untuk menjaga keseimbangan antara lebar margin dan
tingkat kesalahan yang wajar. Parameter y diatur dengan
skema scale:

’y:

1

)
Nfeatures -V ar(X)

C=1.0, y =scale (4)

Pengaturan ini membuat y beradaptasi terhadap jumlah fitur
dan varians data, menghasilkan bias rendah dan varians
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sedang. Secara teoretis, hubungan bias—variance dapat
dirumuskan sebagai:

Err(x) = Bias(x)?> + Var(x) + o (5)

Pendekatan ini memastikan model cukup fleksibel untuk
menangkap pola kompleks namun tetap stabil terhadap
variasi data [29][32].

2)  Kompleksitas Model dan Margin
Evaluasi kompleksitas dilakukan dengan melihat jumlah
support vector:

SVigga = lswpport | (6)
SVeiasso = ZieSV[yl =0], SVeiass1 = ZiESV[yl =1] (7

Kelas dengan jumlah support vector lebih banyak biasanya
lebih sulit dipisahkan. Estimasi margin teoritis adalah:

1
Tall (3

Karena pada SVM-RBF nilai o tidak dihitung secara
eksplisit, digunakan pendekatan:

1

Margines, = VXi(dual_coef 2) (9)

Selain itu, waktu pelatihan dan prediksi dicatat dalam
milidetik untuk mengukur efisiensi algoritma [32].

3)  Kompleksitas Teoretis dan Implementasi

Berdasarkan literatur, metode KL Divergence
Uniform memiliki kompleksitas terendah karena tidak
memerlukan estimasi parameter [ 14][26]. Exponential sedikit
lebih kompleks karena memerlukan fungsi eksponensial [25],
sedangkan Gaussian paling kompleks karena membutuhkan
estimasi mean, varians, dan operasi eksponensial-logaritmik
[34]. Pendekatan Combined memiliki kompleksitas tertinggi
karena menggabungkan ketiganya, yang secara teoritis dapat
meningkatkan waktu proses hingga 2—3 kali lipat. Namun,
hasil aktual dapat berbeda tergantung optimasi kode,
penggunaan komputasi tervektorisasi (array programming),
dan backend BLAS/LAPACK yang memproses operasi
matriks secara efisien [41][42]. Faktor ini memungkinkan
perbedaan signifikan antara estimasi teoretis dan waktu
eksekusi di lapangan.

4) Integrasi dalam Pipeline Penelitian

Sebelum  Kklasifikasi, dataset diseimbangkan
menggunakan random undersampling dengan rasio 1:1,
kemudian dibagi menggunakan stratified train—test split
80:20 untuk menjaga proporsi kelas [6][31]. Konfigurasi
SVM-RBF, evaluasi kompleksitas, serta kalibrasi
probabilitas menjadi fondasi dalam analisis hasil yang
dibahas pada Bab 4, sehingga keterkaitan antara desain model
dan performa dapat dipahami secara menyeluruh.

H. Penghitungan Feature Importance Berdasarkan
Ekstraksi KL Divergence

Setelah sinyal EKG melalui Discrete Wavelet
Transform (DWT) hingga beberapa level dekomposisi, nilai
Kullback—Leibler Divergence (KL Divergence) dihitung
untuk setiap level menggunakan tiga distribusi referensi:
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Uniform, Exponential, dan gaussian [14]. Nilai KL
Divergence diperoleh dari perbandingan distribusi aktual
koefisien sinyal (P) dengan distribusi referensi (Q) masing-
masing [35].
Hasil perhitungan dari tiap distribusi membentuk vektor fitur
yang kemudian diuji kontribusinya terhadap klasifikasi beat
normal dan aritmia menggunakan Support Vector Machine —
Radial Basis Function (SVM-RBF) [6]. Penilaian dilakukan
melalui permutation importance, yaitu mengukur penurunan
akurasi model saat suatu fitur diacak. Semakin besar
penurunannya, semakin tinggi nilai importance-nya [37].
Selain evaluasi per distribusi, penelitian ini
menerapkan ~ pendekatan = KL Combined, yaitu
menggabungkan seluruh fitur dari ketiga distribusi menjadi
satu himpunan berisi 15 fitur (5 /evel x 3 distribusi) [14].
Proses penggabungan dilakukan tanpa mengubah distribusi
referensi, sehingga setiap keluaran KL Divergence tetap
merepresentasikan  karakteristik asli Q masing-masing.
Integrasi ini memungkinkan interaksi non-linear dan saling
melengkapi antarfitur dari distribusi berbeda, sehingga fitur
yang semula kurang dominan dapat menjadi relevan,
sedangkan fitur redundan cenderung menurun kontribusinya
[39]. Pendekatan KL Combined diharapkan mampu
menangkap variasi morfologi sinyal EKG secara lebih
komprehensif, sekaligus meningkatkan akurasi dan stabilitas
model klasifikasi.

I. Kerangka Multiple Metrics Evaluation

Penilaian performa sistem deteksi aritmia dilakukan
menggunakan kerangka multiple metrics evaluation untuk
memastikan kinerja model tidak bergantung pada satu
indikator saja, melainkan mencakup aspek akurasi,
sensitivitas, kualitas probabilistik, efisiensi, dan stabilitas
model [14][29]. Pendekatan ini penting dalam konteks
aplikasi medis berbasis sinyal EKG yang menuntut ketelitian

tinggi.

1)  Akurasi (Accuracy)
Mengukur proporsi prediksi benar terhadap seluruh data,

dihitung dengan:
TP +TN

Accuracy = ————
TP +TN + FP + FN

(3.16)

di mana TP adalah aritmia terdeteksi benar, 7N normal
dikenali benar, FP normal salah terdeteksi sebagai aritmia,
dan FN aritmia tidak terdeteksi [14].

2)  Precision, Recall, F1-Score, Specificity, dan FPR
e Precision: ketepatan prediksi aritmia terhadap total

deteksi aritmia.
TP

TP+FP

Precision =

QY
e Recall / Sensitivity (TPR): mengukur seberapa banyak
kasus aritmia yang berhasil terdeteksi.

TP
TP+FN

Recall =

(12)

e FI-Score: rata-rata harmonik dari precision dan recall,
yang sesuai untuk kondisi data yang tidak seimbang.

Precision X Recall

Fl1Score =2 X ——— (13)

Precision + Recall
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e Specificity: Metrik ini mengukur kemampuan model
dalam mengenali beat normal secara benar.

TN
TN+FP

Specificity = (14)

e False Positive Rate (FPR): merupakan kebalikan dari

specificity
FP

FP+TN

e FPR =

(15)

3)  Evaluasi Probabilistik
Kualitas probabilitas prediksi dinilai dengan Average
Precision (AP) yang merepresentasikan area rata-rata di
bawah kurva Precision—Recall, serta Receiver Operating
Characteristic (ROC) yang memplot TPR terhadap FPR.
Nilai Area Under Curve (AUC) yang mendekati 1
menunjukkan kemampuan diskriminasi kelas yang baik [14].

4)  Logarithmic Loss (Log loss)

Mengukur seberapa tepat prediksi probabilistik model,

dengan. Dalam penelitian ini, /og loss dihitung pada dua jenis

data:

e Log loss Train mengukur tingkat keyakinan model
terhadap data pelatihan.

o Log loss Test mengevaluasi kualitas prediksi pada data
pengujian, dan menjadi indikator utama dalam menilai
akurasi probabilistik model.

Dengan rumus:

Log Loss = —% =1YN [yilog(pi) + (1 — yi)log(1 —
pi] (16)

di mana y i adalah label sebenarnya, p i probabilitas
prediksi, dan N jumlah data [37]. Perhitungan dilakukan
untuk data pelatihan (Log loss Train) dan pengujian (Log loss
Test) sebagai indikator generalisasi model.

5)  Efisiensi Model
Efisiensi dihitung dengan membandingkan performa
terhadap jumlah fitur:

e Log loss Efficiency: Metrik ini mengukur efisiensi model
dalam menghasilkan prediksi probabilistik terhadap
jumlah fitur yang digunakan.

1
Log LossTeseXJumlah fitur

LL Ef ficiency = (17)

e Metrik ini menghitung efektivitas model dalam
memisahkan kelas berdasarkan rasio nilai AUC terhadap
jumlah fitur

ROC AUC Score
Jumlah Fitur

ROC AUC Efficiency = (18)

Nilai lebih tinggi menunjukkan kinerja optimal dengan
kompleksitas minimal [39].

6)  Overfitting Indicator
Mengukur selisih antara log loss pelatihan dan pengujian:
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Overfitting = |Log LOSStyqin — LOg LOSS7est|  (19)
Nilai kecil menunjukkan generalisasi yang baik [36].

7)  Stabilitas Model — Coefficient of Variation (CV%)
Metrik ini digunakan untuk menilai kemampuan
model selama proses cross-validation. Semakin kecil nilai
CV, semakin stabil dan andal performa model.

e Cross-Validation

Merupakan metode evaluasi model yang membagi dataset
menjadi beberapa bagian (fold). Untuk 5-fold cross-
validation, dataset dibagi menjadi 5 bagian. Pada setiap
iterasi, 4 fold digunakan untuk pelatihan dan 1 fold untuk
pengujian. Proses ini diulang 5 kali, memastikan setiap fold
pernah menjadi data pengujian. Akurasi dihitung pada setiap
iterasi, kemudian kelima hasilnya dirata-ratakan untuk
mendapatkan evaluasi model yang lebih konsisten dan stabil.

Fold Size = ’—“’”l“hks“m”e’ (20)

o  Mean Accuracy (1)

Merupakan rata-rata nilai akurasi yang diperoleh dari seluruh
fold pada proses cross-validation. jika Acc; adalah akurasi
pada fold ke-i, maka:

_ Z’i(=1 Acc
= H= i ¥3))
o Standard Deviasi (o)

Simpangan baku mengukur seberapa besar penyebaran nilai
akurasi antar fold dari nilai rata-rata. Semakin kecil o,
semakin konsisten performa model di setiap fold. Rumus:

o= 2{-‘=1(Aici—u )2 22)

o Coefficient of Variation (CV%)

Coefficient of Variation adalah ukuran stabilitas relatif yang
dinyatakan dalam persen (%). CV membandingkan besarnya
penyebaran (o) terhadap rata-rata (p):

CV % =% x 100% (23)

Nilai CV < 1% menunjukkan performa yang sangat stabil
dalam aplikasi medis [29][39]

III. HASIL PENELITIAN

Memberikan gambaran rancangan penelitian yang
meliputi prosedur atau langkah-langkah penelitian, waktu
peneltian, sumber data, cara perolehan data dan menjelaskan
metode yang akan digunakan dalam penelitian [10 pts].

A. Evaluasi Feature Importance Berdasarkan Metode KL
Divergence

Definisikan Bagian ini memaparkan evaluasi
kontribusi fitur hasil ekstraksi sinyal EKG menggunakan
Kullback—Leibler Divergence (KL Divergence) setelah
dekomposisi sinyal dengan Discrete Wavelet Transform
(DWT) hingga level 4. Analisis dilakukan pada tiga
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pendekatan distribusi individu (Uniform, Exponential, dan
Gaussian) serta pendekatan gabungan (KL Combined).
Evaluasi ini bertujuan mengidentifikasi fitur paling
berpengaruh dalam membedakan detak jantung normal dan
aritmia, serta membandingkan efektivitas antar metode
berdasarkan perubahan peringkat (ranking) fitur.

1)  Analisis Feature Importance — Metode Individu
Pendekatan individu mengevaluasi kontribusi fitur dari
masing-masing distribusi referensi KL Divergence secara
terpisah. Setiap distribusi menghasilkan lima fitur dari level
DWT yang berbeda.

Rank KL Uniform Imp KL Exponential Imp

1 0.8994

xpor 1 0.0881
nential 0.0827
duts _k1_exponential 0.0668

11 dwt2_kl_exponential 0.0432

GAMBAR 6
Feature Importance dari Pendekatan KL
Divergence (Metode Individu)

Pada pendekatan KL Uniform, fitur dengan
kontribusi tertinggi berasal dari level DWT-2 dengan nilai
importance sebesar 0,1470, diikuti oleh DWT-4 (0,0759) dan
DWT-5 (0,0552), sedangkan DWT-3 dan DWT-1 menempati
posisi keempat dan kelima. Level DWT-2 berkorespondensi
dengan rentang frekuensi 45-90 Hz, yang menurut (tabel 3.2)
merupakan wilayah dominan kompleks QRS yang tajam dan
sering menjadi indikator utama aritmia ventrikular. Dominasi
pada level ini menegaskan bahwa KL Uniform efektif
menyoroti informasi terkait aktivitas listrik ventrikel,
terutama pada sinyal dengan pola QRS yang abnormal [26].
Urutan peringkat yang jelas juga menunjukkan bahwa
metode ini lebih selektif pada level tertentu dibandingkan
menyebar ke seluruh level DWT.

Pendekatan KL Exponential menampilkan distribusi
kontribusi fitur yang lebih merata dibandingkan KL Uniform.
Fitur dengan nilai tertinggi berasal dari DWT-1 (0,0994),
diikuti oleh DWT-4(0,0881) dan DWT-3 (0,0827), sedangkan
DWT-5 dan DWT-2 menempati peringkat keempat dan
kelima. Level DWT-1 berada pada rentang 90 hingga 180 Hz
yang umumnya dikaitkan dengan komponen frekuensi tinggi,
mencakup noise maupun transien tajam. Meskipun demikian,
pada kasus aritmia rentang ini juga dapat memuat detail
perubahan cepat pada kompleks QRS. Level DWT-3 dengan
rentang 22,5 hingga 45 Hz serta DWT-4 dengan rentang 11,25
hingga 22,5 Hz yang turut dominan mengindikasikan bahwa
KL Exponential mampu menangkap pola transien pada
gelombang QRS dan T yang abnormal [34]. Hal ini
menunjukkan bahwa metode ini cenderung lebih adaptif
terhadap perubahan bentuk gelombang yang tidak menetap
pada satu frekuensi tertentu.

Pada pendekatan KL Gaussian, fitur dengan
kontribusi terbesar kembali berasal dari DWT-2 (0,1191),
diikuti oleh DWT-5 (0,0628) dan DWT-4 (0,0618), dengan
DWT-3 dan DWT-1 di posisi berikutnya. Level DWT-5
(approximation) mencakup frekuensi <11,25 Hz yang
berhubungan dengan gelombang P, T, dan baseline trend.
Meskipun urutan leve/ mirip dengan KL Uniform, nilai
keseluruhan lebih rendah, menunjukkan bahwa KL Gaussian
lebih peka terhadap variasi fisiologis normal (misalnya
variasi gelombang P/T) dibandingkan mendeteksi pola QRS
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yang ekstrem. Hal ini menjadikan KL Gaussian lebih stabil
pada sinyal normal, namun kurang tajam untuk pola khas
aritmia [26].

Secara umum, metode individu memberikan
informasi spesifik keunggulan masing-masing distribusi,
tetapi kurang mampu mengintegrasikan kekuatan fitur dari
berbagai spektrum frekuensi secara bersamaan.

2)  Analisis Feature Importance — Metode Combined
Pendekatan Combined mengintegrasikan seluruh
fitur dari ketiga distribusi referensi KL Divergence (Uniform,
Exponential, Gaussian) pada lima level DWT, menghasilkan
total 15 fitur yang dianalisis secara simultan [34].

Rank Feature Importance

1 dwt2_kl_uniform
2 dwt2_kl_exponential
3 dwt5_k1l_exponential
4 dwt3_kl_uniform
5 dwt5_k1l_gaussian
6 dwt4_kl_exponential
74 dwtl_kl_exponential
8 dwtl_kl_gaussian

OO OOOOOODDOOO O
©
o
o
IS

9 dwt3_k1l_exponential 8572
1e dwtl_kl_uniform ©549
1. dwt3_kl_gaussian o440
12, dwt4_kl_uniform e4e2
13 dwt2_kl_gaussian ©319
14 dwt5_kl_uniform 0319
15 dwt4_kl_gaussian 0262
GAMBAR 7
Feature Importance dari Pendekatan KL Divergence (Metode
Combined)
Pendekatan KL Combined mengintegrasikan

seluruh fitur dari distribusi referensi Uniform, Exponential,
dan gaussian menjadi satu himpunan berisi 15 fitur yang
dievaluasi secara global. Integrasi ini bertujuan
memanfaatkan keunggulan masing-masing distribusi untuk
menghasilkan representasi fitur yang lebih kaya dan
seimbang dalam mendukung klasifikasi detak normal dan
aritmia [34].

Berdasarkan hasil perhitungan, fitur
dwt2 KL Uniform menempati peringkat tertinggi dengan
nilai importance sebesar 0,3163, jauh melebihi fitur lainnya.
Level DWT-2 (45-90 Hz) diketahui merupakan rentang
frekuensi yang mendominasi morfologi kompleks QRS,
sehingga tingginya nilai pada fitur ini konsisten dengan
temuan metode individual yang menegaskan peran
pentingnya dalam membedakan detak normal dan aritmia
ventrikular [34][36].

Di posisi berikutnya, dwt2 KL Exponential
(0,1278) dan dwt5_ KL FExponential (0,1268) menunjukkan
kontribusi tinggi dari metode Exponential. Level DWT-5
(<11,25 Hz) merepresentasikan tren lambat, termasuk
komponen baseline dan gelombang T, yang relevan untuk
mendeteksi perubahan repolarisasi pada beberapa jenis
aritmia. Kombinasi level 2 dan level 5 ini memperlihatkan
bahwa metode Exponential tetap mempertahankan
pengaruhnya dalam pendekatan gabungan, meskipun hanya
sebagian fiturnya yang berada pada peringkat atas.

Fitur dwt3 KL Uniform (0,0901) yang pada metode
individual tidak selalu dominan, mengalami kenaikan
signifikan dalam pendekatan gabungan. Level DWT-3 (22,5~
45 Hz) mengandung detail kompleks QRS yang lebih halus,
sehingga posisinya yang tinggi mengindikasikan bahwa
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sinergi antar distribusi mampu meningkatkan relevansi

informasi detail ini. Sementara itu, dwt5 KL gaussian

(0,0765) menjadi salah satu perwakilan gaussian dengan

kontribusi terbesar. Hal ini menandakan bahwa meskipun

gaussian cenderung stabil pada data normal, kontribusinya
tetap signifikan dalam melengkapi informasi frekuensi

rendah untuk klasifikasi gabungan [38].

Pola peringkat ini juga memperlihatkan bahwa fitur
yang sebelumnya kurang menonjol, seperti
dwtl KL gaussian (0,0684) dan dwtl KL Exponential
(0,0718), tetap memberikan kontribusi yang berarti dalam
pendekatan gabungan. Level DWT-1 (90-180 Hz) umumnya
berkaitan dengan noise atau transien tajam, namun pada
sinyal aritmia rentang ini dapat memuat perubahan cepat pada
morfologi QRS. Keberadaan fitur-fitur tersebut pada posisi
menengah menunjukkan perannya yang penting sebagai
pelengkap informasi dari level frekuensi yang lebih rendah
[34].

Fenomena pergeseran posisi ini merupakan
konsekuensi wajar dari integrasi ketiga metode individual
dalam sistem klasifikasi berbasis machine learning.
Perubahan peringkat fitur pada KL Combined dipengaruhi
oleh beberapa faktor utama, antara lain:

o Interaksi antar fitur: Model SVM dengan kernel RBF
memproses semua fitur secara simultan sehingga
hubungan antar fitur saling memengaruhi. Fitur yang
sebelumnya kurang dominan dapat menjadi signifikan
ketika memperkuat kontribusi fitur lain, seperti
dwt3 KL Uniform dan dwtl KL gaussian yang naik
peringkat [36].

e Redundansi dan komplementaritas: Fitur dengan
informasi yang tumpang tindih akan cenderung berkurang
kontribusinya, sedangkan fitur yang melengkapi
informasi distribusi lain akan meningkat peringkatnya.
Contohnya, dwt5 KL gaussian dan
dwtl KL Exponential berperan melengkapi informasi
yang tidak sepenuhnya diwakili oleh distribusi Uniform.

e Curse of dimensionality: Dengan 15 fitur, ruang fitur
menjadi lebih kompleks schingga hanya kombinasi
tertentu yang relevan dalam membentuk decision
boundary. Hal ini menyebabkan fitur dominan di metode
individu tidak selalu mempertahankan posisinya di
pendekatan gabungan [38].

e Perbedaan ruang solusi: Pada metode individu, penilaian
dilakukan terhadap lima kandidat fitur, sedangkan KL
Combined mengevaluasi seluruh 15 fitur sekaligus,
membuat seleksi menjadi lebih kompetitif dan stabil [36].

Dengan demikian, perubahan peringkat dalam KL
Combined bukanlah kelemahan, melainkan representasi dari
interaksi non-linear antar fitur dalam ruang berdimensi
tinggi. Pendekatan ini tidak hanya mempertahankan kekuatan
fitur dominan, tetapi juga mengangkat kontribusi fitur
pendukung yang sebelumnya kurang menonjol, sehingga
mampu meningkatkan akurasi serta memperkaya representasi
morfologis sinyal EKG [34][38].

B. Evaluasi Multiple Matrics Evaluation Berdasarkan
Metode KL Divergence

Bab ini menyajikan evaluasi performa sistem
deteksi aritmia berdasarkan berbagai metrik KLasifikasi.
Empat pendekatan distribusi KL Divergence yang diuji
meliputi KL Uniform, KL Exponential, KL Gaussian, dan KL
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Combined, dengan model KLasifikasi Support Vector
Machine (SVM) berbasis kernel RBF. Evaluasi dilakukan
secara komprehensif melalui pengukuran confiision matrix,
akurasi, metrik probabilistik (AP dan AUC), log loss,
efisiensi, serta stabilitas model (CV). Tujuannya adalah untuk
mengidentifikasi pendekatan yang paling efektif dan andal
dalam membedakan detak jantung normal dan aritmia.
Uraian hasil disajikan secara sistematis dalam subbab
berikut.

1)  Hasil dan Analisis Penghitungan Confusion Matrix

Pada tahap ini dilakukan evaluasi terhadap performa
sistem klasifikasi biner dalam membedakan antara detak
jantung normal dan aritmia berdasarkan keluaran confusion
matrix. Setiap pendekatan KL Divergence menghasilkan nilai
True Positive (TP), True Negative (TN), False Positive (FP),
dan False Negative (FN) yang menggambarkan keberhasilan
dan kesalahan sistem dalam melakukan prediksi kelas. Hasil
penghitungan confusion matrix untuk keempat pendekatan
disajikan pada tabel berikut:

TABEL 3
Binary Confusion Matrix Result
Method TP TN FP FN
Uniform 3033 1663 920 631
Exponential | 2900 1843 740 764
Gaussian 3081 1518 1065 583
Combined 3244 2313 270 420

Hasil menunjukkan KL Combined menjadi metode
terbaik. Nilai True Positive (TP) sebesar 3244 dan False
Negative (FN) terendah 420 menunjukkan sensitivitas sangat
tinggi, sehingga detak jantung aritmia terdeteksi dengan baik.
Nilai True Negative (TN) terbesar 2313 dan False Positive
(FP) terendah 270 juga mencerminkan spesifisitas tinggi,
yang berarti risiko false alarm sangat rendah. Kombinasi ini
menjadikan KL Combined unggul baik dalam mendeteksi
aritmia maupun memastikan detak normal tidak salah
KlLasifikasi [36].

Di posisi kedua, KL Uniform mencatat TP sebesar
3033 dan FN sebesar 631, yang menunjukkan sensitivitas
menengah dan relatif lebih baik dibanding KL Exponential.
TN-nya (1663) memang lebih rendah, sedangkan FP-nya
(920) lebih tinggi dibanding KL Exponential, sehingga
spesifisitasnya sedikit lebih rendah. Namun, jumlah FN yang
lebih kecil membuat metode ini lebih aman dalam mendeteksi
aritmia, sesuai dengan prioritas medis yang mengutamakan
minimisasi missed detection [34][36].

Peringkat ketiga ditempati KL Exponential, yang
memiliki TN cukup tinggi (1843) dan FP rendah (740),
menunjukkan spesifisitas yang baik. Akan tetapi,
sensitivitasnya terendah (TP 2900, FN tertinggi 764)
sehingga lebih sering gagal mendeteksi aritmia dibanding
metode lain. Meski demikian, pada aplikasi yang lebih
menekankan pengurangan false alarm, metode ini tetap
memiliki relevansi [34][36].

Terakhir, KL Gaussian memiliki TP cukup tinggi
(3081) dan FN relatif rendah (583), tetapi TN terendah (1518)
dan FP tertinggi (1065) di antara semua metode. Kondisi ini
mengindikasikan spesifisitas yang buruk, sehingga model
sering salah mengklasifikasikan detak aritmia sebagai
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normal, berpotensi memicu false alarm berlebihan dan
mengurangi efisiensi pemantauan medis [38].

Secara umum, TP yang besar menunjukkan
kemampuan model dalam mendeteksi aritmia dengan benar
(high sensitivity), sedangkan FN yang besar menandakan
banyaknya kasus aritmia yang terlewat (missed detection).
TN yang besar menunjukkan kemampuan mengenali detak
normal dengan benar (high specificity), sedangkan FP yang
besar berarti banyak detak normal yang salah diklasifikasikan
sebagai aritmia (false alarm). Urutan performa ini
menegaskan bahwa integrasi fitur lintas distribusi pada KL
Combined tidak hanya mempertahankan sensitivitas tinggi,
tetapi juga meningkatkan spesifisitas, menjadikannya metode
paling andal untuk deteksi aritmia berbasis EKG
[34][36][38].

2)  Hasil dan Analisis Metrik Evaluasi klasifikasi
Setelah  diperoleh hasil confusion matrix, dilakukan
perhitungan enam metrik evaluasi: accuracy, specificity,
false positive rate (FPR), precision, recall, dan F1-score.
Fokus penilaian mengikuti prioritas medis, dengan recall
sebagai indikator utama untuk meminimalkan missed
detection, diikuti F1-score, precision, specificity, FPR, dan
terakhir accuracy [36].

Methed Accuracy  Specificity FPR Precision Recall F1-Score

KL Uniform 0.7517 8.6438 9.3562 0.7673 9.8278 0.7964
KL Exponential 0.7592 8.7135 9.2865 ©.7967 0.7915 0.7941
KL Gaussian 0.7362 @.5877 9.4123  ©.7431 ©9.8489 0.73%@
KL Combined 8.8895 8.8955 @.1845 09.9232 6.8854 8.9839

GAMBAR 8
Evaluasi Kinerja SVM-RBF

Hasil menunjukkan KL Combined unggul di seluruh
aspek, dengan recall 0,8854 dan F1-score tertinggi 0,9039,
menandakan keseimbangan optimal antara sensitivitas dan
ketepatan KlLasifikasi [34]. Precision tertinggi (0,9232)
mengindikasikan minimnya false positive, sementara
specificity 0,8955 dan FPR terendah 0,1045 memastikan
false alarm sangat rendah. Accuracy yang mencapai 0,8895
menegaskan konsistensi kinerjanya [38].

KL Uniform menjadi metode individu terbaik
dengan recall 0,8278 dan Fl-score 0,7964. Meskipun
specificity rendah (0,6438) dan FPR cukup tinggi (0,3562),
metode ini lebih aman secara klinis karena tidak
mengorbankan banyak deteksi aritmia demi menekan false
alarm [36].

KL Exponential memiliki specificity 0,7135 dan
FPR 0,2865 yang lebih baik daripada KL Uniform, tetapi
recall terendah 0,7915 membuatnya kurang efektif dalam
deteksi aritmia. Meski begitu, F1-score 0,7951 dan precision
0,7967 cukup stabil, sehingga relevan untuk aplikasi yang
menekankan pengurangan false alarm [34].

KL Gaussian mencatat recall 0,8409 yang tinggi,
namun precision terendah (0,7431) dan specificity terendah
(0,5877) memicu FPR tertinggi 0,4123. Kondisi ini
berpotensi menimbulkan false alarm berlebihan dan
mengganggu efisiensi pemantauan [38].

Dalam menentukan urutan prioritas ini, menempatkan
recall sebagai fokus utama karena kegagalannya (FN tinggi)
dapat mengabaikan kondisi aritmia yang berpotensi fatal. F/-
score menjadi prioritas kedua untuk menjaga keseimbangan
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antara sensitivitas dan ketepatan prediksi, diikuti precision
untuk memastikan prediksi aritmia benar. Specificity
berperan penting dalam mengurangi salah deteksi pada detak
normal, sementara FPR sebagai kebalikannya perlu ditekan
untuk menghindari false alarm. Accuracy ditempatkan
terakhir karena pada dataset tidak seimbang, nilai ini dapat
menyesatkan dan tidak mencerminkan kemampuan deteksi
aritmia yang sesungguhnya [34][36][38].

3) Hasil dan Analisis Performa Probabilistik
Berdasarkan Kurva Precision—Recall dan ROC

Evaluasi probabilistik dalam sistem deteksi aritmia
dilakukan dengan menggunakan dua kurva utama, yaitu
kurva Precision-Recall dan kurva Receiver Operating
Characteristic (ROC). Kurva Precision-Recall
menggambarkan hubungan antara nilai precision dan recall
pada berbagai ambang klasifikasi (threshold). Luas area di
bawah kurva ini disebut Average Precision (AP), yang
mencerminkan kestabilan model dalam mempertahankan
nilai precision seiring meningkatnya recall. Semakin besar
nilai AP, semakin baik kemampuan model dalam menjaga
ketepatan deteksi, terutama saat sensitivitas meningkat.
Tlustrasi visual dari kurva ini dapat dilihat pada Gambar
berikut:

Precision-Recall Curve - SVM RBF

00 02 04 06 08 1o
Recall

GAMBAR 9
Hasil Evaluasi Log loss dan Efisiensi Model

Hasil analisis menunjukkan bahwa KL Combined
merupakan metode terbaik dengan AP 0,9406 dan AUC
0,9565. Kurva P-R metode ini halus dan stabil karena jumlah
true positive (TP) yang tinggi dan false positive (FP) yang
rendah, sehingga penurunan precision terjadi secara perlahan
pada recall tinggi.

Metode KL Exponential menempati posisi kedua
dengan AP 0,8413 dan AUC 0,8913. Nilai ini mencerminkan
performa yang konsisten, didukung false positive rate (FPR)
yang relatif rendah dan specificity yang memadai. Meskipun
sedikit fluktuasi muncul pada precision di recall tinggi,
bentuk kurva P-R tetap melengkung baik, menunjukkan
stabilitas prediksi probabilistik.

Metode KL Uniform memperoleh AP 0,8262 dan
AUC 0,8746. Kinerja metode ini cenderung fluktuatif pada
precision, disebabkan FP yang cukup tinggi sehingga
peningkatan TP diiringi kenaikan FP signifikan. Walaupun
demikian, kurva P-R-nya masih menunjukkan kelengkungan
positif yang mengindikasikan respons terhadap deteksi
aritmia, meski dengan risiko false alarm yang lebih tinggi
dibanding KL Exponential.
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Metode KL Gaussian mencatat performa terendah
dengan AP 0,7975 dan AUC 0,8373. Meskipun recall cukup
tinggi, jumlah FP yang besar membuat kurva P-R bergerigi

dan precision menurun tajam.
ROC Curve - SVM RBF

02

—— KL Uniform (AUC = 0.8262)
KL Exponential {AUC = 0.8413)
— KL Gaussian (AUC = 0.7975)

- — KL Combined {AUC = 0.9406}
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GAMBAR 10
Hasil Evaluasi Log loss dan Efisiensi Model

Pada kurva ROC, KL Combined menunjukkan
kelengkungan yang dekat ke sudut kiri-atas, menandakan
kemampuan diskriminasi kelas yang sangat baik [38]. KL
Exponential juga memperlihatkan performa pemisahan kelas
yang kuat, meskipun berada di bawah KL Combined. KL
Uniform masih mempertahankan kelengkungan positif,
namun kemampuan diskriminasinya lebih rendah. Sementara
itu, KL Gaussian mendekati garis diagonal, menandakan
kualitas pemisahan yang lemah dan risiko false alarm yang
tinggi.

Secara keseluruhan, pola kurva yang stabil dan
luasnya area pada KL Combined menjadikannya pilihan
paling andal untuk aplikasi klinis, karena mampu menjaga
keseimbangan antara sensitivitas tinggi dan ketepatan
prediksi. Sebaliknya, performa buruk KL Gaussian
menunjukkan bahwa recall tinggi saja tidak cukup tanpa
pengendalian FP dan FPR yang memadai [34][36][38].

4)  Hasil dan Analisis Evaluasi Train—Test Log loss dan
Efisiensi
Evaluasi lanjutan dilakukan menggunakan metrik
Logarithmic Loss (Log loss) pada data pelatihan dan
pengujian, serta efisiensi model yang diukur dari log loss
efficiency dan ROC AUC efficiency. Analisis ini bertujuan
untuk menilai sejauh mana model menghasilkan prediksi
probabilistik yang akurat, stabil, dan seimbang antara
performa dengan jumlah fitur yang digunakan [34].

Method Train LL Test LL LL Eff AUC EFf

KL Uniform 9.5871 @.5183 ©0.102058 ©.165242 0.0032
KL Exponential 0.4918 0.4869 0.897381 ©.168257 0.0049
KL Gaussian 09.5385 0.5408 ©9.108157 ©.159494 9.0022
KL Combined @9.2869 0.3012 0.020080 ©.062706 0.0143

GAMBAR 11
Hasil Evaluasi Log loss dan Efisiensi Model

Berdasarkan tabel tersebut, KL Combined
menempati peringkat teratas dengan train log loss 0,2869 dan
test log loss 0,3012, yang menunjukkan kalibrasi
probabilistik sangat baik dan stabil pada data latih maupun
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uji. Nilai log loss efficiency 0,020080 adalah yang terbaik di
antara semua metode, walaupun menggunakan 15 fitur. ROC
AUC efficiency 0,062706 juga unggul, mencerminkan
kemampuan diskriminasi kelas yang stabil di berbagai
ambang klasifikasi. Meskipun overfitting 0,0143 sedikit lebih
tinggi dibanding metode lain, nilainya masih dalam batas
wajar untuk model dengan kompleksitas fitur yang lebih
banyak [36].

Metode KL Exponential berada di posisi kedua
dengan train log loss 0,4918 dan test log loss 0,4869, serta
log loss efficiency 0,097381. Keunggulan utamanya terletak
pada penggunaan hanya 5 fitur, schingga ringan secara
komputasi tanpa mengorbankan kestabilan prediksi. Nilai
ROC AUC efficiency 0,168257 yang relatif tinggi
menunjukkan kinerja klasifikasi yang tetap optimal meskipun
basis fiturnya minimal [38].

KL Uniform mencatat train log loss 0,5071 dan test

log loss 0,5103, dengan log loss efficiency 0,102058. Nilai
ROC  AUC  efficiency 0,165242 membuktikan
kemampuannya dalam membedakan beat normal dan aritmia
dengan baik. Overfitting yang sangat rendah (0,0032)
menunjukkan kestabilan prediksi pada data baru, sehingga
relevan untuk aplikasi klinis jangka panjang [36].
Metode KL Gaussian berada di posisi terakhir dengan train
log loss 0,5385 dan test log loss 0,5408, yang
mengindikasikan kalibrasi probabilistik terlemah di antara
semua metode. Nilai log loss efficiency 0,108157 dan ROC
AUC efficiency 0,159494 relatif rendah, meskipun overfitting
yang sangat kecil (0,0022) menunjukkan kestabilan tinggi.
Namun, kestabilan ini tidak diikuti oleh akurasi probabilistik
yang baik, sehingga berpotensi membatasi keandalan deteksi
aritmia dalam praktik klinis [34].

Secara keseluruhan, KL Combined memberikan
performa probabilistik terbaik dan kalibrasi paling optimal,
direkomendasikan untuk sistem deteksi aritmia berbasis
machine learning yang memiliki kapasitas komputasi
memadai. KL Exponential dan KL Uniform menjadi alternatif
yang lebih efisien, sedangkan KL Gaussian sebaiknya
digunakan hanya sebagai metode pembanding dalam
pengujian model [38].

5)  Hasil dan Analisis Evaluasi Stabilitas Model
(Coefficient of Variation — CV)

Evaluasi pada bagian ini bertujuan untuk menilai
stabilitas performa model melalui pengukuran Coefficient of
Variation (CV) pada skema validasi silang (cross-validation).
Sebelum dilakukan perhitungan Coefficient of Variation
(CV), terlebih dahulu dilakukan validasi silang menggunakan
skema 5-fold cross-validation. Setiap model diuji pada lima
subset berbeda untuk menilai konsistensi performanya.
Berikut adalah hasil skor akurasi pada masing-masing fold
untuk setiap pendekatan:

Method Fold-1 Fold-2 Fold-3 Fold-4 Fold-5

KL Uniform

KL Exponential
KL Gaussian
KL Combined

GAMBAR 12
Rincian Skor 5-Fold Cross-Validation

e-Proceeding of Engineering : Vol.12, No.5 Oktober 2025 | Page 7126

Nilai-nilai ini digunakan sebagai dasar dalam menghitung
rata-rata akurasi (mean), simpangan baku (standard
deviation), serta Coefficient of Variation (CV%) pada
masing-masing pendekatan. Hasil perhitungan selanjutnya
disajikan sebagai berikut:

Tabel 4
Hasil Evaluasi Stabilitas Model Berdasarkan
Cross-validation

Method Mean Standard |y,
Accuracy Deviasi
KL Uniform 0,7509 +0.0059 0,78
KL . 0,7555 +0.0065 0,86
Exponential
KL Gaussian 0,7360 +0.0033 0,44
KL Combined 0,8907 +0.0049 0,55

Evaluasi stabilitas model dilakukan menggunakan
skema 5-fold cross-validation, di mana setiap model diuji
pada lima subset data yang berbeda untuk menilai konsistensi
performa klasifikasi. Parameter yang digunakan meliputi
Mean Accuracy sebagai indikator kinerja rata-rata, Standard
Deviation untuk mengukur variasi performa antar-fold, dan
Coefficient of Variation (CV%) untuk mengukur kestabilan
relatif terhadap nilai rata-rata akurasi. Nilai CV yang rendah
menandakan model memiliki performa yang konsisten di
berbagai subset data, yang sangat penting dalam aplikasi
klinis agar sistem deteksi aritmia dapat diandalkan pada
berbagai kondisi pasien [29][34].

Hasil menunjukkan bahwa KL Combined mencapai
mean accuracy tertinggi (0,8907) dengan CV rendah
(0,55%), mencerminkan kombinasi optimal antara akurasi
dan kestabilan performa [31]. Kompleksitas 15 fitur tidak
mengorbankan konsistensi hasil, sehingga metode ini layak
untuk sistem deteksi aritmia yang membutuhkan akurasi
tinggi di lingkungan klinis [38].

KL Exponential mencatat mean accuracy 0,7555
dengan CV 0,86%, masih tergolong sangat stabil (CV < 1%)
[39]. Keunggulannya adalah efisiensi komputasi karena
hanya memanfaatkan lima fitur, sehingga cocok untuk
perangkat dengan keterbatasan sumber daya [36].

KL Uniform memperoleh mean accuracy 0,7509
dan CV 0,78%, memberikan keseimbangan yang baik antara
akurasi dan kestabilan, sehingga relevan untuk skrining awal
aritmia dengan kebutuhan konsistensi jangka panjang [34].
Sementara itu, KL Gaussian memiliki akurasi terendah
(0,7360) tetapi CV terendah (0,44%), yang berarti sangat
stabil [6]. Namun, rendahnya akurasi —membatasi
penggunaannya untuk deteksi aritmia yang membutuhkan
sensitivitas tinggi terhadap variasi morfologi beat [31].

Secara keseluruhan, seluruh metode memiliki CV <
1% yang menandakan kestabilan sangat baik. Meski
demikian, prioritas utama dalam aplikasi medis tetap pada
akurasi, sehingga KL Combined direkomendasikan sebagai
pilihan utama, dengan KL Exponential dan KL Uniform
sebagai alternatif efisien dalam kondisi sumber daya terbatas
[36][38].
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C. Evaluasi Efisiensi Waktu Komputasi dan Kompleksitas
Model SVM-RBF pada Setiap Metode KL Divergence

Pengukuran efisiensi waktu komputasi pada
penelitian ini dilakukan setelah proses balancing dataset
menggunakan undersampling 1:1, sehingga hasil evaluasi
mencerminkan performa model ketika data sudah siap
digunakan untuk pelatihan (training) dan pengujian (testing).
Pengujian ini melibatkan empat pendekatan Kullback—
Leibler Divergence (KL Divergence), yaitu KL Uniform, KL
Exponential, KL Gaussian, dan KL Combined. Evaluasi
mencakup konfigurasi parameter model, jumlah support
vector, margin pemisah, waktu pelatithan dan prediksi,
kalibrasi probabilitas, serta perhitungan waktu eksekusi total.
Dengan demikian, hasil yang diperoleh tidak hanya
mengukur kecepatan komputasi, tetapi juga kompleksitas
model dan kemampuannya memberikan prediksi yang
terkalibrasi.

TABEL 5
Konfigurasi Parameter Model SVM-RBF
Platt Bias-
Lo C | gamma Scalling variance
KL Low l?las,
. 1.0 Scale Yes Medium
Uniform .
Variance
XL Low l?las,
. 1.0 Scale Yes Medium
Exponetial .
Variance
Low bias,
KL . 1.0 Scale Yes Medium
Gaussian .
Variance
Low bias,
KL. 1.0 Scale Yes Medium
Combined .
Variance

Menunjukkan bahwa seluruh metode menggunakan
parameter C=1.0, gamma=scale, dan Platt Scaling aktif,
dengan Kkarakteristik bias rendah dan varians sedang.
Konfigurasi ini dipilih untuk menjaga keseimbangan antara
kemampuan generalisasi (generalization) dan fleksibilitas
dalam menangkap pola non-linear pada data EKG. Meskipun
parameter identik, perbedaan pada jumlah support vector,
margin, dan waktu eksekusi menunjukkan bahwa distribusi
fitur yang dihasilkan oleh masing-masing metode KL
Divergence berpengaruh signifikan terhadap kompleksitas
dan kinerja komputasi model.

Approach SV_total SV_class@ SV_classl Margin_est train_time_ms predict_time_ms

KL Uniform 13984 6996 6988 15701 1188963 4286623

KL Exponential 14785 7395 7390 15568 1176312 6421.066

KL Gaussian 14459 7225 7234 1.4920 117598.0 5637.302

KL Combined 9764 4885 4879 15758

GAMBAR 13
Kompleksitas Model dan Waktu Eksekusi

104708.0 3878.370

Menyajikan jumlah support vector total, distribusi
support vector per kelas, estimasi margin, serta waktu
pelatihan dan prediksi. Nilai jumlah support vector yang
besar menunjukkan model membutuhkan lebih banyak titik
batas untuk memisahkan kelas, yang umumnya
meningkatkan kompleksitas dan memperpanjang waktu
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prediksi. Sebaliknya, jumlah support vector yang kecil
menandakan model lebih efisien dan cepat dieksekusi. Nilai
margin yang besar berarti jarak pemisahan antar kelas lebih
lebar, sehingga model lebih aman dari risiko overfitting. Dari
tabel ini terlihat bahwa KL Combined memiliki jumlah
support vector terendah (9.764) dan margin terlebar (1.5758),
sedangkan KL Exponential memiliki jumlah support vector
tertinggi (14.785) dan margin relatif sempit (1.5568).

TABEL 6
Kalibrasi Probabilitas Model

Method BrierScore LARTDTORL | AR TN
mean std
KL Uniform 0.288s 0.090s 2:24
KL Exponetial 0.046s 0.015s 1:40
KL Gaussian 0.046s 0.016s 1:41
KL Combined 0.102s 0.020s 1:34

Menampilkan Brier Score sebagai indikator utama
kualitas kalibrasi probabilitas, disertai nilai rata-rata (mean)
dan standar deviasi (std) probabilitas positif yang diprediksi
model. Nilai Brier Score yang rendah menunjukkan
probabilitas prediksi lebih mendekati label aktual (kalibrasi
lebih baik), sedangkan Brier Score yang tinggi menunjukkan
ketidaksesuaian probabilitas terhadap kenyataan. Nilai mean
mendekati 0,5 mengindikasikan distribusi probabilitas
seimbang antara dua kelas, dan std yang tinggi menunjukkan
prediksi lebih tegas (keyakinan tinggi pada prediksi benar),
sementara std rendah mengindikasikan prediksi lebih
moderat.

Approach Training (m:s) Prediction (s) Total Runtime (m:s) Samples_tested Logloss Waktu per Sampel (s)

KL Uniform 1.58 4287 203 6247 05037 0.0197
KL Exponential 157 6.421 204 6247 05147 0.0199
KL Gaussian 1.57 5837 203 6247 05333 00197

KL Combined 144 3878 148 6247 03147 00174

GAMBAR 14
Ringkasan Waktu Eksekusi Total

Menggabungkan waktu pelatihan dan prediksi untuk
mendapatkan total waktu eksekusi, jumlah sampel yang diuji,
serta estimasi waktu per sampel. Nilai waktu total yang
rendah berarti model lebih efisien, sedangkan waktu per
sampel yang rendah menunjukkan kemampuan model
memproses setiap data lebih cepat, penting untuk sistem
medis yang memerlukan respons instan. Hasilnya
menunjukkan bahwa KL Combined memiliki total runtime
tercepat (1:48 menit) dan waktu per sampel terendah
(0,0174s), sedangkan KL Exponential menjadi yang terlama
(2:04 menit) dengan waktu per sampel tertinggi (0,0199 s).

KL Combined menempati peringkat pertama dengan
performa komputasi terbaik. Jumlah support vector yang
rendah (9.764) membuat prediksi lebih cepat, sedangkan
margin yang lebar (1.5758) menunjukkan pemisahan kelas
yang aman dan stabil. Nilai Brier Score yang paling rendah
(0.0940) menandakan kalibrasi probabilitas terbaik,
sementara std tertinggi (0.3935) mengindikasikan prediksi
yang tegas dan penuh keyakinan. Waktu pelatihan tercepat
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(98.107,3 ms) dan total runtime terpendek (1:48 menit)
memperkuat efisiensinya. Nilai-nilai ini menandakan KL
Combined ideal untuk sistem deteksi aritmia yang
memerlukan akurat, cepat, dan terkalibrasi dengan baik.

KL Uniform berada di peringkat kedua. Jumlah
support vector (13.984) masih relatif efisien dan margin lebar
(1.5701) menunjukkan model memiliki jarak aman dari risiko
overfitting. Brier Score kedua terbaik (0.1667) menandakan
kalibrasi probabilitas cukup baik, sedangkan std (0.2875)
menunjukkan prediksi moderat, tidak seagresif KL
Combined. Waktu pelatihan (105.464,3 ms) cukup singkat,
namun waktu prediksi terlama (6.143,96 ms) menyebabkan
total runtime menjadi 2:03 menit. Artinya, model ini stabil
namun sedikit lambat saat prediksi, cocok untuk aplikasi di
mana kecepatan bukan prioritas utama.

KL Gaussian menempati posisi ketiga. Jumlah
support vector cukup tinggi (14.459) dan margin terendah
(1.4920) mengindikasikan pemisahan kelas yang lebih rapat
dan berpotensi overfitting. Brier Score tertinggi (0.1777)
menunjukkan kalibrasi probabilitas paling buruk, dan std
terendah (0.2721) menandakan prediksi yang terlalu moderat.
Meskipun demikian, waktu prediksi tercepat (4.378,36 ms)
membuatnya unggul pada aspek kecepatan inferensi.
Kombinasi ini menjadikannya cocok untuk aplikasi yang
membutuhkan kecepatan tinggi tetapi bisa menerima
kompromi pada kualitas probabilitas.

KL Exponential berada di posisi terakhir. Jumlah
support vector tertinggi (14.785) menunjukkan kompleksitas
paling besar, yang menyebabkan waktu prediksi lebih lambat.
Margin yang sempit (1.5568) mengurangi jarak aman antar
kelas, meningkatkan risiko kesalahan pada data baru.
Meskipun Brier Score (0.1725) lebih baik dari KL Gaussian,
std rendah (0.2784) mengindikasikan prediksi yang kurang
tegas. Dengan total runtime terlama (2:04 menit) dan waktu
per sampel tertinggi (0,0199 s), metode ini kurang efisien
untuk diimplementasikan meskipun kualitas kalibrasinya
masih moderat.

Secara keseluruhan, hasil evaluasi menunjukkan
bahwa nilai rendah pada jumlah support vector, Brier Score,
dan waktu eksekusi adalah indikator positif, sedangkan nilai
tinggi pada margin dan std probabilitas adalah keunggulan.
Berdasarkan kriteria tersebut, KL Combined menjadi metode
paling seimbang dengan performa terbaik di semua aspek. KL
Uniform menawarkan kestabilan, KL Gaussian unggul dalam
kecepatan prediksi, dan KL Exponential meskipun memiliki
kalibrasi moderat, tidak dapat menandingi efisiensi waktu
dan kesederhanaan model KL Combined.

IV. PEMBAHASAN

Hasil analisis feature importance menunjukkan
bahwa KL Combined memberikan distribusi bobot fitur yang
lebih merata pada seluruh level DWT, sehingga mampu
menangkap informasi morfologi sinyal EKG secara
menyeluruh [34][36]. Keunggulan ini menjadikannya unggul
dalam mendeteksi variasi morfologi beat normal dan aritmia,
termasuk pada kasus dengan perbedaan halus pada segmen
PQRST [7]. KL Exponential berada di peringkat kedua
dengan fokus pada fitur-fitur yang memiliki kontribusi besar
pada level tertentu, tetap efektif walaupun jumlah fitur lebih
sedikit [41]. KL Uniform menempati posisi ketiga karena
meskipun stabil, kontribusinya kurang adaptif terhadap
variasi kompleks [43]. KL Gaussian berada di peringkat
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terakhir, cenderung memiliki distribusi bobot yang sempit
sehingga kurang mampu mengenali pola variasi beat secara
optimal [45].

Evaluasi multi-metrik yang mencakup akurasi,
presisi, sensitivitas, spesifisitas, Fl-score, dan performa
probabilistik (AP dan AUC) menunjukkan bahwa KL
Combined unggul dengan keseimbangan performa pada
seluruh indikator [34][36]. Model ini mampu menjaga
sensitivitas tinggi terhadap aritmia sekaligus
mempertahankan spesifisitas yang baik pada beat normal
[7][44]. KL Exponential berada di posisi kedua dengan
performa yang stabil dan efisiensi komputasi yang baik [41].
KL Uniform memiliki kestabilan yang cukup tinggi, tetapi
akurasinya sedikit di bawah KL Exponential [43]. KL
Gaussian menempati posisi terendah pada AUC dan akurasi,
sehingga kurang optimal dalam membedakan kelas pada
kondisi variasi morfologi beat yang luas [45].

Hasil pengukuran waktu pelatihan, waktu prediksi,
jumlah support vector, margin pemisah, serta kalibrasi
probabilitas menegaskan bahwa KL Combined adalah metode
dengan efisiensi komputasi terbaik [34][42]. Jumlah support
vector yang rendah dan margin yang lebar memungkinkan
prediksi cepat serta stabil. KL Uniform menempati peringkat
kedua dengan kestabilan prediksi yang baik meskipun waktu
prediksi lebih lama [43]. KL Gaussian menonjol pada
kecepatan prediksi, namun margin kecil dan Brier Score yang
tinggi mengindikasikan kalibrasi probabilitas yang lemah
[45]. KL Exponential menjadi metode paling lambat,
memiliki jumlah support vector tertinggi, dan margin yang
sempit, meskipun kalibrasi probabilitasnya masih tergolong
moderat [41].

Secara keseluruhan, KL Combined adalah metode
terbaik untuk deteksi aritmia berbasis sinyal EKG,
menggabungkan akurasi tinggi, kestabilan prediksi, kalibrasi
probabilitas yang baik, dan efisiensi komputasi [34][42][44].
KL Exponential menempati peringkat kedua karena seimbang
dalam akurasi dan efisiensi meskipun memiliki waktu
eksekusi yang lebih lama [41]. KL Uniform berada di posisi
ketiga dengan kestabilan yang baik namun sedikit tertinggal
dalam akurasi [43]. KL Gaussian berada di peringkat terakhir
karena keterbatasan dalam akurasi dan kalibrasi, walaupun
unggul dalam kecepatan prediksi [45]. Pemilihan metode
dapat disesuaikan dengan kebutuhan implementasi, apakah
memprioritaskan  akurasi, kestabilan, atau kecepatan
inferensi.

V. KESIMPULAN

Penelitian ~ ini  berhasil  merancang  dan
mengimplementasikan sistem deteksi aritmia berbasis sinyal
EKG dari MIT-BIH Arrhythmia Database menggunakan
kombinasi Discrete Wavelet Transform (DWT) dan
Kullback—Leibler Divergence (KL Divergence) sebagai
metode ekstraksi fitur. Sistem dirancang melalui tahapan
Preprocessing yang mencakup band-pass Butterworth filter
0,5-40 Hz orde-4 dengan kombinasi high-pass dan low-pass
filtering, segmentasi beat berbasis deteksi puncak R dengan
window £128 sampel, normalisasi Min—Max per beat, serta
penyeimbangan data menggunakan random undersampling
dengan rasio 1:1. Proses dekomposisi sinyal dilakukan
menggunakan DWT basis Daubechies 4 hingga level 4 untuk
memperoleh  komponen frekuensi relevan, diikuti
perhitungan nilai KL Divergence terhadap empat distribusi
referensi, yaitu Uniform, Exponential, Gaussian, dan
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Combined. Seluruh fitur hasil ekstraksi diklasifikasikan
menggunakan Support Vector Machine (SVM) dengan kernel
Radial Basis Function (RBF).

Sistem yang dibangun mampu menjawab rumusan
masalah pertama dengan menunjukkan kemampuan
klasifikasi tinggi berdasarkan evaluasi confusion matrix dan
metrik kinerja. KL Combined menjadi metode dengan
performa terbaik, ditunjukkan oleh True Positive (TP)
tertinggi 3.244 dan False Negative (FN) terendah 420, yang
mengindikasikan sensitivitas tinggi. Nilai True Negative
(TN) sebesar 2.313 dan False Positive (FP) terendah 270 juga
mencerminkan spesifisitas optimal. Secara kuantitatif, KL
Combined mencapai recall 0,8854, Fl-score 0,9039,
precision 0,9232, specificity 0,8955, FPR 0,1045, dan akurasi
0,8895, yang menunjukkan kemampuannya mendeteksi
aritmia secara akurat dengan tingkat false alarm yang rendah.

Rumusan masalah kedua terjawab melalui evaluasi
probabilistik, efisiensi, dan stabilitas model. KL Combined
memperoleh nilai Average Precision (AP) tertinggi 0,9406
dan Area Under Curve (AUC) 0,9565 dengan kurva
Precision—Recall dan ROC yang halus dan konsisten. Dari
segi kalibrasi probabilistik, metode ini mencatat train log loss
0,2869, test log loss 0,3012, log loss efficiency 0,02008, dan
ROC AUC efficiency 0,0627, serta memiliki mean accuracy
0,8907 dengan Coefficient of Variation (CV) 0,55. KL
Exponential berada pada posisi kedua dengan recall 0,7915,
AP 0,8413, AUC 0,8913, log loss efficiency 0,09738, dan CV
0,86, memanfaatkan hanya lima fitur dan memiliki waktu
pemrosesan per sampel 0,0033 detik, sechingga efisien untuk
perangkat dengan keterbatasan sumber daya. KL Uniform
menempati peringkat ketiga dengan recall 0,8278, AP
0,8262, AUC 0,8746, log loss efficiency 0,10206, dan CV
0,78, dengan performa yang cukup baik untuk skrining awal
meskipun false alarm relatif lebih tinggi. KL Gaussian
menunjukkan stabilitas tertinggi (CV 0,44) namun performa
paling rendah dari metode lainnya pada specificity, precision,
AP, dan AUC, sehingga kurang direkomendasikan untuk
kebutuhan dengan sensitivitas dan ketepatan tinggi.

Hasil analisis kompleksitas model SVM-RBF
mengonfirmasi bahwa KL Combined merupakan metode
paling unggul dengan jumlah support vector terendah 9.764,
margin terlebar 1,5758, Brier Score rendah 0,102, total
runtime tercepat 1 menit 48 detik, dan waktu per sampel
0,0174 detik. KL Uniform berada pada posisi kedua dengan
jumlah support vector 13.984, margin 1,5710, Brier Score
0,288, dan runtime 2 menit 3 detik, meskipun waktu prediksi
mencapai 6.143,96 ms. KL Gaussian unggul pada kecepatan
prediksi 4.378,36 ms namun memiliki jumlah support vector
14.459, margin terendah 1,4920, dan Brier Score tertinggi
0,046, yang menunjukkan kualitas kalibrasi rendah. KL
Exponential menempati posisi terakhir dalam aspek efisiensi
model dengan jumlah support vector tertinggi 14.785, margin
sempit 1,5568, Brier Score 0,046, runtime terlama 2 menit 4
detik, dan waktu per sampel 0,0199 detik.

Secara keseluruhan, sinergi antara Discrete Wavelet
Transform (DWT), Kullback—Leibler Divergence (KL
Divergence), dan Support Vector Machine dengan kernel
Radial Basis Function (SVM-RBF) terbukti efektif dalam
meningkatkan representasi fitur morfologis sinyal EKG dan
menghasilkan klasifikasi yang akurat. KL Combined
direkomendasikan untuk implementasi klinis karena
menggabungkan  sensitivitas,  spesifisitas,  kalibrasi
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probabilistik, dan kestabilan model secara seimbang.
Sementara itu, KL Exponential dan KL Uniform dapat
menjadi alternatif pada sistem dengan keterbatasan
komputasi, sedangkan KL Gaussian lebih sesuai untuk
aplikasi yang mengutamakan kecepatan prediksi. Sistem ini
dinilai layak digunakan dalam pemantauan jantung berbasis
machine learning yang memerlukan akurasi, efisiensi, dan
keandalan prediksi tinggi.
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