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Abstract—Low Earth Orbit (LEO) missions increasingly re- 

quire design tools that are both accessible and sufficiently accu- 
rate for early trade studies. This paper presents a browser-native 
LEO Satellite Orbit Design Application that combines analyti- 
cal 𝐽2-averaged propagation, constellation synthesis (Train and 
Walker–Delta), footprint coverage from spherical geometry, and 
narrowband link-budget calculations within interactive 2D/3D 
visualizations. The computational core is implemented in double- 
precision JavaScript and validated against NASA GMAT (RK4) 
and closed-form theory. Over a 60 min propagation at ∼1,000 km 
circular equatorial orbit, the analytical model exhibits a 24.4– 
40.2 km position-error envelope (RMSE 31.8 km), reflecting short- 
period terms captured by GMAT but intentionally averaged 
for real-time performance. Constellation placement is exact; at 
2,000 km with 60◦ beamwidth, footprint radius error is 0.05 km 
(0.004%). Uplink/downlink C/N and margins match manual 

This paper introduces a web-based LEO satellite orbit 
design application using analytical 𝐽2-averaged propagation to 
balance efficiency and accuracy. By averaging short-period 
perturbations and focusing on secular effects, our approach 
enables real-time interaction while achieving accuracy suitable 
for preliminary design. The application integrates propagation, 
constellation design, coverage analysis, and link budgeting in 
an accessible browser-based platform. 

 
II. THEORETICAL REVIEW 

A. Orbital Mechanics and Propagation 
The unperturbed mean motion is 

 ߤ √
calculations and imply ≈1.12 Gbps Shannon capacity at 100 MHz. 
Ground-station access scheduling reproduces pass counts and 

݊0 = ܽ3 , (1) 

timing (11 passes/day; mean 8.55 min; first access 40.05 min). We 
conclude that analytical 𝐽2 propagation offers accuracy adequate 
for education and early design with instant, browser-only work- 
flows, while high-fidelity numerical tools remain appropriate for 
final verification and operations. 
Keywords——LEO satellites; analytical propagation; J2 per- 

turbation; web application; constellation design; link budget 
 

I. InTRODUCTIOn 
Low Earth Orbit (LEO) satellites have become increasingly 

where 398,600.4418 = ߤ km3/s2 is Earth’s gravitational 
parameter and ܽ the semi-major axis. 

 
B. 𝐽2 Perturbation Effects 

Earth’s oblateness, characterized by 𝐽2 = 1.08263 × 10−3, 
causes secular element rates [6]: 

˙ 3 
 ܴ⊕

 2 

crucial for modern communication systems, Earth observation, Ω = − 2 𝐽2 ݌ ݊ cos ݅, (2) 

and scientific missions. Operating at altitudes between 500 
and 2,000 km, LEO satellites offer advantages including lower 
latency (typically < 50 ms), reduced launch costs, and higher- 

3 ߱̇  = 4 𝐽2 ܴ⊕ 
2 

 cos2 ݅ − 1 , (3) 5 ݌݊ 

resolution imaging compared to higher orbits [1]. The prolifer- 
ation of mega-constellations such as Starlink and OneWeb has 
further emphasized the need for accessible orbit design tools 
[2]. 

Professional tools like AGI’s Systems Tool Kit (STK) and 
NASA’s General Mission Analysis Tool (GMAT) provide high- 
fidelity simulations but present barriers: licensing costs, steep 
learning curves, and significant computational requirements 
[3], [4]. While GMAT is open-source, its numerical integration 
workflows can be prohibitive for large constellations in web 
contexts [5]. 

with ܴ⊕ = 6,378.137 km, 1) ܽ = ݌ − ݁ 2), and ݅ the inclination. 
C. Analytical vs. Numerical Propagation 

1) Analytical Method (This Application): We compute sec- 
ular rates under 𝐽2 and advance elements in closed form, e.g., 

Ω(ݐ) = Ω0 + Ω̇ (4) .ݐ 
This averages short-period oscillations, uses closed-form up- 
dates, and has low constant per-step cost—well-suited for real- 
time web use. 
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√ 
 ܰ  ݇

2) Numerical Method (NASA GMAT): GMAT typically 
employs RK4: 

• Constellation checks: Train and Walker–Delta (e.g., ܲ:ܵ:6:4:1 = ܨ) to verify plane RAAN spacing and in- 
 

r݊+1 
 
= r݊ + 6 (݇1 + 

2݇2 + 2݇3 + ݇4),  
(5) 

plane phasing. 
• Link budget sanity case: a nominal LEO bent-pipe link 

with multiple force evaluations per step, capturing instanta- 
neous perturbations (including short-period terms) at higher 
per-step computational cost. 
D. Constellation Design Algorithms 

1) Train Constellation: Satellites in one plane with uniform 
mean-anomaly spacing: 0ܯ = ݅ܯ + ݅  Δ(6) .1 − ܰ , . . . ,1 ,0 = ݅ ,ܯ 

2) Walker–Delta: For ܲ planes, ܵ satellites per plane, 
phasing ܨ: 

360◦ 

with fixed EIRP, antenna gains, path loss at slant range, 
and ܶsys to reproduce the stated C/N and margins. 

Unless noted otherwise, Earth radius ܴ⊕ = 6378.137 km, ߤ = 
398600.4418 km3/s2, and 𝐽2 = 1.08263 × 10−3. 
C. GMAT Configuration and Synchronization 

GMAT is used as a numerical reference: 
• Force model: central body gravity with 𝐽2 only to match 

the analytical model; no drag, SRP, or third-body. 
• Integrator: RK4 with fixed step small enough to be 

stable over 1 h (e.g., sub-minute). The application samples 
GMAT states every 10 min to form the comparison series. 

RAAN݌ = ݌ ·  ܲ
360◦ 

, (7) 
360◦ 

• Epoch and frames: identical epoch and mean-element 
initialization. Positions are compared in an Earth-centered ݏ = ݌ ,ݏߥ ·  ܵ ܵ  ܲ ܨ ݌ + , (8) inertial frame to avoid rendering-frame artifacts. 

for plane index ݌ and satellite index ݏ. 
E. Link Budget Calculations 

A narrowband link budget: ܥ 
= EIRP − ܮpath − ܮatm + ܩrx − ܰ 0 − 10 log (BW), (9) ܰ 

where ܰ0 = ݇ܶ (dBW/Hz) and all terms are in dB units. 
III. REsEARCH METHODs 

A. System Architecture 
Frontend: Three.js for 3D Earth; HTML5 Canvas for 2D 

ground tracks; vanilla JavaScript for orbital math; responsive 
CSS for layout. The UI is event-driven and deterministic: given 

D. Time Stepping and Numerical Stability 
The web app advances mean elements with closed-form 𝐽2 rates and evaluates ߥ → ܧ → ܯ every frame step Δݐ; display 

sampling is decoupled from physics update to keep visuals 
smooth under variable browser frame times. Angles are 
wrapped to [0, 2ߨ) after each update. GMST accumulation is 
periodically re-seeded to limit floating-point drift in long runs. 

 
E. Error Metrics and Statistical Treatment 

Propagation accuracy against GMAT uses: 
• Pointwise position error ߳ ݇ = rapp(݇ݐ) − rGMAT(݇ݐ)  in 

km.   

• RMSE =  1 
.݇ ߳  2 over a 1 h window. 

reproduced. 
Computational Core: A pure-JS module that operates in km, 
rad, s. It includes: (i) Kepler solver (Newton–Raphson) for ܧ with anomaly transforms ܯ ↔ ߥ ↔ ܧ; (ii) secular 𝐽2 
element-rate updates for Ω, ߱, and ܯ; (iii) frame transforms 
perifocal to ECI and ECI to ECEF; (iv) coverage geometry 
from spherical relationships; and (v) simple ground-station 
access checks. All math uses IEEE-754 double precision. 
Data Management: Session state in LocalStorage (JSON). 
Parameters and results are passed as plain objects to keep the 
pipeline transparent and debuggable. 
B. Experimental Setup and Test Cases 

To evaluate accuracy and performance under representative 
conditions, we defined a small suite of test cases: 

• Propagation baseline: circular, equatorial LEO with ܽ 
selected for approximately 1,000 km altitude; ݁ = 0, ݅ = 0 
for clean separation of short-period effects. 

• Coverage baseline: altitude 2,000 km with beamwidth 
60◦ for a closed-form footprint radius check. 

• Range of errors (min–max) to illustrate short-period 
mismatch amplitude. 

For coverage, we compare the theoretical footprint radius ݎth 
with the computed radius ݎapp and report absolute and relative 
errors. Constellation placement error is reported as angular 
deviation in degrees for RAAN and true-anomaly phase. Link 
budgets are checked by difference of all terms in dB and 
reproduced margins. 
F. Coverage and Access Computation Protocol 

Coverage derives from spherical geometry without rasteri- 
zation: 

• Footprint radius: from altitude and beam half-angle, 
clipped by the geometric horizon. The closed-form re- 
lationship is used for both numeric and visual elements. 

• Access windows: a ground station is visible if (i) the 
satellite is above the horizon central angle and (ii) the 
line-of-sight vector lies within the half-beam. Event times 
are found by scanning at a coarse step and refining with 
bisection to second-level resolution. 

the same inputs and epoch, the same states and visuals are 

ℎ 
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G. Link-Budget Verification Protocol 
For uplink and downlink we compute: 
C/N = EIRP − ܮpath − ܮatm + ܩrx − ܰ 0 − 10 log10(ܹܤ), 

with ܰ0 = ݇ܶsys (dBW/Hz). Link margin is C/N − (required 
C/N). Shannon capacity ܤ = ܥ log2(1 + SNR) is reported as a 
reference upper bound with SNR from linearized 
C/N. 
H. Performance and UX Evaluation 

We automated 350 iterations per browser (Chrome, Firefox, 
Edge) for a total of 1,050 runs. Each iteration executes: pa- 
rameter load, single-satellite propagation for 1 h, constellation 
synthesis, coverage compute, access list generation, and link- 
budget evaluation. Timings use the browser high-resolution 
clock, with warm cache and no network activity. We record 
median, 90th, and 95th percentiles for core actions, task 
success/failure, and any console errors. 
I. Reproducibility and Threats to Validity 

To aid reproduction, all constants are fixed, units are docu- 
mented, and randomization is not used. Known threats include: 
(i) JavaScript floating-point sensitivity in long runs; (ii) frame- 
time jitter on lower-end devices; (iii) mismatch from compar- 
ing mean-element analytical states to GMAT’s instantaneous 
states, which introduces expected short-period differences; and 
(iv) omission of drag and higher-order perturbations that would 
matter for days-to-weeks analysis. These are mitigated by 
short validation windows, consistent force models, and explicit 
reporting of limits. 
J. Implementation Details 

1) Data Flow, Units, and Validation: All internal physics 
are computed in SI-like orbital units (km, rad, s). The 3D scene 
uses a normalized Earth radius, so we convert scene units to 
km consistently. Before any propagation, inputs are validated: 

• Eccentricity: 0 ≤ ݁  < 1 (elliptic only). 
• Perigee Height: ℎ 1) ܽ = ݌ − ݁ ) − ܴ⊕ ≥ 100 km. 
• Beamwidth: 0◦ ≤ BW ≤ 180◦ (warn if outside usual 

range). 

 

 
2) Kepler Solver and Anomaly Transforms: We solve ܧ = ܯ − ݁ sin ܧ via Newton–Raphson with: (i) mean-anomaly 

normalization to [0, 2ߨ), (ii) eccentricity-aware initial guess, 
and (iii) capped iterations with tolerance 10−8 = ߝ. We also 
provide anomaly converters ߥ ↔ ܧ and ܯ ↔ ܧ. 

 

 
3) State Reconstruction in ECI: At each step, we recon- 

struct the position in the orbital (perifocal) frame and rotate 
into ECI using RAAN (Omega), inclination (i), and argument 
of perigee (omega): ܽ (1 − ݁  = ݎ (2

1 + ݁  cos ߥ 
, 

ݎ cos ߥ 
rpf = ݎ sin (10) , ߥ 

 0  
 

rECI = R3(Ω) R1(݅) R3(߱) rpf . 
Three.js uses a different axis convention, so we map ECI 
 .as the up-axis ݕ with (ݕ− ,ݖ ,ݔ) to scene (ݖ ,ݕ ,ݔ)

console.warn(’Beamwidth ’ + params.beamwidth 
 

’ deg is outside 0-180 deg’); 
17 } 

1 function solveKepler(M, e, epsilon = 1e-8, 
↩→ maxIter = 50) { 

2 if (e < 0 || e >= 1) throw new Error(’Invalid e 
↩→ : ’ + e); 

3 // normalize M to [0, 2*pi) 
4 M = ((M % (2*Math.PI)) + 2*Math.PI) % (2*Math. 

↩→ PI); 
5 
6 // initial guess (good for high e as well) 
7 let E = (e < 0.8) 
8 ? M 
9 : M + e * Math.sin(M) / (1 - Math.sin(M + e) 

↩→ + Math.sin(M)); 
10 
11 for (let i = 0; i < maxIter; i++) { 
12 const sinE = Math.sin(E), cosE = Math.cos(E); 
13 const f = E - e * sinE - M; 
14 const fp = 1 - e * cosE; 
15 const dE = f / fp; 
16 E -= dE; 
17 if (Math.abs(dE) < epsilon) break; 
18 } 
19 return E; 
20 } 
21 function E_to_TrueAnomaly(E, e) { 
22 const t = Math.sqrt((1+e)/(1-e)) * Math.tan(E 

↩→ /2); 
23 return 2 * Math.atan(t); 
24 } 
25 function E_to_M(E, e) { return E - e * Math.sin( 

↩→ E); } 

function validateOrbitalParameters(params) { 
if (params.eccentricity < 0 || params. 

→ eccentricity >= 1) 
throw new Error(’Invalid e: ’ + params. 

 eccentricity); 
4 
5 
6 

7 
8 

const semiMajorAxisKm = 
params.semiMajorAxis * (EarthRadius / 

 SCENE_EARTH_RADIUS); 
const perigeeAltitudeKm = 
semiMajorAxisKm * (1 - params.eccentricity) - 

  
9 

10 
11 
12 
13 
14 

if (perigeeAltitudeKm < 100) 
throw new Error(’Perigee too low: ’ + 
perigeeAltitudeKm.toFixed(1) + ’ km’); 

if (params.beamwidth < 0 || params.beamwidth > 
 180) 
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1 function calculateSatellitePositionECI(params, M 

↩→ , currentRAAN, 
2 sceneEarthRadius = 

↩→ 1) { 
3 validateOrbitalParameters(params); 
4 const a = params.semiMajorAxis * (EarthRadius / 

↩→ sceneEarthRadius); 
5 const e = params.eccentricity, i = params. 

↩→ inclinationRad; 
6 const w = params.argPerigeeRad; 
7 
8 const E = solveKepler(M, e); 
9 const nu = E_to_TrueAnomaly(E, e); 

10 const r = a * (1 - e*e) / (1 + e*Math.cos(nu)); 
11 const xpf = r * Math.cos(nu), ypf = r * Math. 

↩→ sin(nu); 
12 
13 // Rotate perifocal -> ECI: R3(Omega) * R1(i) * 

↩→ R3(omega) 
14 const position_km = new THREE.Vector3(xpf, ypf, 

↩→ 0); 
15 const Rw = new THREE.Matrix4().makeRotationZ(w) 

↩→ ; 
16 const Ri = new THREE.Matrix4().makeRotationX(i) 

↩→ ; 
17 const RO = new THREE.Matrix4().makeRotationZ( 

↩→ currentRAAN); 
18 position_km.applyMatrix4(RO).applyMatrix4(Ri). 

↩→ applyMatrix4(Rw); 
19 
20 // ECI (km) -> scene units; axis map (x, y, z) 

↩→ -> (x, z, -y) 
21 const scale = sceneEarthRadius / EarthRadius; 
22 return { x: position_km.x * scale, 
23 y: position_km.z * scale, 
24 z: -position_km.y * scale }; 
25 } 

4) Secular 𝐽2-Averaged Propagation: We advance the mean 

11 
12 // Secular rates (match Eqs. (1)-(3) in text) 
13 const dRAAN = -J2fac * Math.cos(i); 
14 const dArgP = J2fac * (2.5 * Math.cos(i)*Math. 

↩→ cos(i) - 0.5); 
15 const dM = 0.5 * J2fac * Math.sqrt(1 - e*e) * 

↩→ (3 * Math.cos(i)*Math.cos(i) - 1); 
16 
17 // Advance elements 
18 sat.currentRAAN = sat.initialRAAN + dRAAN * t; 
19 sat.currentArgPerigee = sat.initialArgPerigee + 

↩→ dArgP * t; 
20 sat.currentMeanAnomaly = sat.initialMeanAnomaly 

↩→ + (n0 + dM) * t; 
21 
22 // Normalize to [0, 2*pi) 
23 const wrap = x => ((x % (2*Math.PI)) + 2*Math. 

↩→ PI) % (2*Math.PI); 
24 sat.currentRAAN = wrap(sat.currentRAAN); 
25 sat.currentArgPerigee = wrap(sat. 

↩→ currentArgPerigee); 
26 sat.currentMeanAnomaly = wrap(sat. 

↩→ currentMeanAnomaly); 
27 
28 // Keep params in sync for downstream visuals 
29 sat.params.argPerigeeRad = sat. 

↩→ currentArgPerigee; 
30 } 

5) Earth Rotation and Geodetic Readout: We maintain 
numerically stable Earth rotation using a small accumulation 
window and re-seed GMST to avoid floating-point drift. For 
geodetic readout (lat/lon), we rotate ECI to ECEF by the 
negative Earth rotation angle about the scene ݕ-axis, then 
compute: ߮ = arcsin

  ݕ  
 .(ݔ ,ݖ−)atan2 = ߣ ,

 

elements using the standard secular 𝐽2 rates: 

˙   3
   ܴ⊕

 2 

Ω = − 2 𝐽2  ݌  ݊ cos ݅ , (11) 

3 
 ܴ⊕

 2 
2 

  ߱˙ = 4 𝐽2  5 ݊  ݌ cos ݅ − 1 , (12) 

˙    3
   ܴ⊕

 2  √   
2
    

2 
݊ ≈ ܯ    + 4 𝐽2  1 ݊  ݌ − ݁   3 cos ݅ − 1 ,   (13) 

where (2݁ − 1) ܽ = ݌ is the semi-latus rectum and ݊ = 
 the 3ܽ/ߤ√

unperturbed mean motion. These model secular (long- period) 

1 class EarthRotationManager { 
2 constructor(){ 
3 this.baseEpochUTC = 0; this.baseGMST = 0; 
4 this.last = 0; this.rot = 0; this.max = 3600; 

↩→ // reset every hour 
5 } 
6 initialize(epochUTC){ 
7 this.baseEpochUTC = epochUTC; 
8 this.baseGMST = getGMST(new Date(epochUTC)); 
9 this.last = 0; this.rot = 0; 

10 } 
11 getRotationAngle(t){ 
12 if (t - this.last > this.max) this. 

↩→ resetAccumulation(t); 
13 const d = t - this.last; 
14 this.rot = (this.rot + d * 

↩→ EARTH_ANGULAR_VELOCITY_RAD_PER_SEC) % 
↩→ (2*Math.PI); 

15 this.last = t; 
16 const total = this.baseGMST + this.rot; 
17 return ((total % (2*Math.PI)) + 2*Math.PI) % 

↩→ (2*Math.PI); 
18 } 
19 resetAccumulation(t){ 
20 const newEpoch = this.baseEpochUTC + t*1000; 
21 this.baseGMST = getGMST(new Date(newEpoch)); 
22 this.baseEpochUTC = newEpoch; this.last = 0; 

↩→ this.rot = 0; 
23 } 

1 function updateOrbitalElements(sat, t) { 
2 // sat.params = { semiMajorAxis, eccentricity, 

↩→ inclinationRad, argPerigeeRad } 
3 // t = elapsed time [s] since epoch 
4 const a = sat.params.semiMajorAxis * ( 

↩→ EarthRadius / SCENE_EARTH_RADIUS); 
5 const e = sat.params.eccentricity; 
6 const i = sat.params.inclinationRad; 
7 
8 const n0 = Math.sqrt(MU_EARTH / Math.pow(a, 3)) 

↩→ ; // [rad/s] 
9 const p = a * (1 - e*e); 

10 const J2fac = 1.5 * J2 * Math.pow(EarthRadius /  
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2 

6) Coverage Footprint and Link Geometry: Given satellite 
distance ݀ = P  (scene units) and beam half-angle 1 = ߚ BW, 
the visible rim is horizon-limited at ߶hor = arccos(ܴ/݀). For ߚ ≥ ߶hor, coverage spans the visible Earth; otherwise, ߶ = arcsin

 
min(1, (݀/ܴ) sin ߚ) − ߚ, (if ߶ > 0). 

We extrude a translucent cone to visualize the footprint and 
check link feasibility by (i) cone test (angle to nadir) and (ii) 
central angle to horizon. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

K. Validation Methodology 
Three-tier testing: 
• Numerical Accuracy: 1 h propagation comparisons; con- 

stellation placement verification; coverage at multiple 
altitudes; link budget parameter checks. 

• Comparative Analysis with GMAT: identical initial 
conditions (epoch, elements); position comparisons every 

10 min; ground-track correlation; RMSE and max devia- 
tion. 

• UI/UX: cross-browser (Chrome/Firefox/Edge); task com- 
pletion rate; response times; mobile responsiveness. 

IV. REsULTs AnD DIsCUssIOn 
A. Orbit Propagation Accuracy 

Comparison between analytical (𝐽2-averaged) and GMAT 
RK4 for a 1,000 km circular equatorial case over 60 min is 
shown in Table I. The error oscillates within 24.4–40.2 km 
with RMSE 31.8 km, driven by short-period terms present in 
RK4 but averaged in the analytical model. 

 
TABLE I 

PROPAgATIOn COMPARIsOn (1,000 KM CIRCULAR, EQUATORIAL ORBIT) 
 

Time (min) Analytical (◦) GMAT RK4 (◦) Error (km) 
0 -111.622 -109.324 40.2 

10 -79.799 -83.527 33.9 
20 -47.976 -57.717 27.8 
30 -16.152 -31.885 24.4 
40 15.671 -6.028 26.2 
50 47.494 19.853 31.5 
60 79.317 45.750 37.9 

Note: Initial states are matched in mean elements; instantaneous positions 
can differ due to short-period terms captured by RK4 but averaged in the 

analytical solution. 
 

The equatorial, circular setup (݅ ≈ 0◦, ݁ ≈ 0) keeps cross-track 
differences negligible; discrepancies are primarily along-track. 
The oscillatory envelope reflects short-period 𝐽2 terms retained 
by RK4 and removed by averaging. Both the worst-case error 
(40.2 km) and RMSE (31.8 km) satisfy the preliminary-design 
objective (< 50 km, worst-case limit < 60 km), making the 
approach appropriate for rapid early trades. 
B. Constellation Placement Validation 

Both Train and Walker–Delta configurations achieved exact 
placement. 

 
TABLE 2 

WALKER–DELTA PLACEMEnT ACCURACY (6:4:1 COnfIgURATIOn) 
 

Plane Sat Expected RAAN Actual RAAN Error 
1 1 0◦ 0◦ 0.00◦ 

2 1 60◦ 60◦ 0.00◦ 

3 1 120◦ 120◦ 0.00◦ 

6 4 300◦ 300◦ 0.00◦ 

 
The 6:4:1 Walker–Δ requires 60◦ RAAN spacing, 90◦ in- 

plane spacing, and a 15◦ inter-plane phase. Exact agreement 
at sampled positions (and throughout the full set in testing) 
shows the implementation applies plane spacing and phasing 
without rounding drift, meeting the ≤ 0.05◦ per-satellite target. 
C. Coverage and Link Budget 

Coverage at 2,000 km altitude with 60◦ beamwidth: 
• Theoretical radius: 1,227.95 km 
• Calculated radius: 1,228.00 km 
• Error: 0.05 km (0.004%) 

const central = Math.acos(clamp( 
gsPos.clone().normalize().dot(satPos.clone(). 

→ normalize()), -1, 1)); 
return coneOK && (central <= horizonAngle); 37 

38 } 

const coneAngle = Math.acos(clamp(nadir.dot( 
→ satToGs), -1, 1)); 

const coneOK = coneAngle <= halfBeam; 33 
34 
35 
36 

25 } 
26 

function linkVisible(gsPos, satPos, halfBeam, 
 horizonAngle){ 

const clamp = (v,min,max) => Math.max(min, Math 
→ .min(max, v)); 

const satToGs = gsPos.clone().sub(satPos). 
 normalize(); 

const nadir = satPos.clone().negate().normalize 
 (); 

31 
32 

const h = d - R*Math.cos(phi); const r = R*Math.sin(phi); 
if (h <= 0 || r <= 0) return; 
// ... build translucent cone aligned to nadir 

 ... 

if (phi <= 0) return; 
sat.coverageAngleRad = phi; 

16 
17 
18 
19 
20 
21 
22 
23 
24 

const beta = THREE.MathUtils.degToRad(beamDeg 
 /2); 

const phiHor = Math.acos(R/d); 
let phi = (beta >= phiHor) 
? phiHor 
: Math.asin(Math.min(1,(d/R)*Math.sin(beta))) 

→ - beta; 

11 
12 
13 
14 
15 

const R = SCENE_EARTH_RADIUS; 
const P = sat.mesh.position.clone(); 
const d = P.length(); 
if (d <= R) return; 

const beamDeg = sat.params.beamwidth; 
if (beamDeg <= 0 || beamDeg > 180) return; 

2 
3 
4 
5 
6 
7 
8 
9 

10 

1 function updateCoverageCone(sat) { 
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Link budget validation: 
• Uplink C/N: 46.87 dB (margin: 31.87 dB) 
• Downlink C/N: 33.76 dB (margin: 18.76 dB) 
• Shannon capacity: ≈1.12 Gbps at 100 MHz 
The footprint radius discrepancy is two orders of magnitude 

tighter than the 10 km acceptance threshold, confirming the 
spherical-geometry coverage module. Link margins on both 
directions comfortably exceed the 15 dB requirement, and 
the ∼1.12 Gbps Shannon limit shows the 100 Mbps target is 
conservative. RF calculations (EIRP, path loss, ܰ0, C/N, and 
capacity) match manual analysis within the stated tolerances. 
D. Performance Comparison 

 
TABLE 3 

GMAT Vs. WEB APPLICATIOn 
 

Aspect NASA GMAT Web App 
Propagation Method RK4 Numerical Analytical 𝐽2 (averaged) 
Short-Period Effects Captured Averaged 
Per-Step Cost Multiple force evals Closed-form updates 
Computation Speed Slower Real-time in browser 
Setup Complexity High Low 
Accessibility Desktop install Browser-based 
Typical Accuracy < 1 km < 50 km 
Best Use Case Ops/Final design Early design/Education 

 
GMAT’s RK4 integrates instantaneous forces at each step, 

retaining short-period dynamics and enabling sub-kilometer 
fidelity when higher-order perturbations are modeled, but 
with higher computational cost and workflow complexity. The 
analytical 𝐽2 method averages short-period terms, trading fine- 
grained fidelity for real-time, browser-native performance that 
is well-suited to education and early trade studies; final designs 
can then be validated in GMAT. 
E. User Interface Performance 

Across 1,050 iterations (350 per browser: Chrome, Firefox, 
Edge): 

• Task success rate: 100% 
• Average response time: < 100 ms for core operations 
• No blocking errors or crashes 
• Full cross-browser compatibility 
Measurements were taken in fresh sessions with caches 

and cookies cleared; timings came from the browser per- 
formance timeline (navigation plus interaction handlers). All 
flows remained responsive during animation and data updates, 
with consistent behavior across engines. The 100% pass rate 
exceeds the 99% UI/UX reliability objective. 
F. Synthesis 

Analytical 𝐽2-averaged propagation is a practical alternative 
to numerical integration for preliminary design. The 31.8 km 
RMSE over 1 h is acceptable for early trade studies where 
rapid iteration outweighs sub-kilometer fidelity. RK4 captures 
short-period oscillations and higher-order effects (e.g., tesseral 
harmonics, third-body, drag when modeled) at higher compu- 
tational cost and complexity. The chosen approach prioritizes 

real-time interaction, browser-native deployment, and instant 
constellation generation (e.g., 225 satellites in < 1 s) while 
maintaining exact constellation phasing and link-budget agree- 
ment with manual calculations. 
G. Limitations and Future Work 

Current limitations: 
• No atmospheric drag, SRP, or third-body perturbations 
• Geometric visibility only (no Doppler/ionosphere/tropo- 

sphere modeling) 
• No SGP4/SDP4 for TLE ingestion 

Future work: 
• Hybrid propagation (analytical/numerical) based on re- 

quired fidelity 
• SGP4/SDP4 integration for catalog compatibility 
• Multi-fidelity modes across design phases 
• Optional cloud API for high-fidelity propagation 

V. COnCLUsIOn 
A browser-based LEO satellite orbit design application 

was presented that balances accessibility and accuracy for 
education and preliminary mission design. Using analyti- 
cal 𝐽2-averaged propagation, the system achieves real-time 
performance with validated accuracy: 24.4–40.2 km instan- 
taneous error range (RMSE 31.8 km) over 1 h relative to 
GMAT, zero-error constellation placement, coverage accu- 
racy within 0.05 km, exact link-budget agreement, and to-the- 
second ground-station access counts. The platform’s 100% 
UI/UX task success and cross-browser compatibility demon- 
strate readiness for instructional and early-phase design use. 
High-fidelity numerical tools remain recommended for final 
verification and operations. 

Across dynamics, geometry, RF, and UI, the results meet 
or surpass every stated objective: propagation error < 50 km 
(worst-case < 60 km), constellation placement ≤ 0.05◦, cover- 
age radius < 10 km, link-budget agreement within 0.2 dB (C/N 
and margin) and 0.5 dB (received power), access timing within 
15 s, and UI/UX reliability ≥ 99% (achieved 100%). This 
balance of speed and fidelity enables rapid iteration early, with 
a clear upgrade path to high-fidelity validation when needed. 

REfEREnCEs 
[1] C. Han et al., “LEO satellite-terrestrial integrated net- 

works for low-latency and high-reliability communica- 
tions,” IEEE Wireless Communications, vol. 29, no. 6, 
pp. 68–75, 2022. 

[2] E. Lagunas, S. Chatzinotas, K. An, and B. F. Bei- 
das, Non-geostationary Satellite Communications Systems. 
IET, 2023. 

[3] AGI, “STK Level 1 and Level 2 Training Manual,” Oct. 
2024. 

[4] NASA Goddard, “General Mission Analysis Tool 
(GMAT) User’s Guide,” Jul. 2007. 

[5] D. A. Vallado, Fundamentals of Astrodynamics and Ap- 
plications, 4th ed. Microcosm Press, 2013. 



ISSN : 2355-9365 e-Proceeding of Engineering : Vol.12, No.6 Desember 2025 | Page 8639

[6] O. Montenbruck and E. Gill, Satellite Orbits: Models, 
Methods and Applications. Springer, 2000. 

[7] H. D. Curtis, Orbital Mechanics for Engineering Students, 
3rd ed. Butterworth–Heinemann, 2010. 

[8] F. R. Hoots and R. L. Roehrich, “Spacetrack Report No. 3: 
Models for Propagation of NORAD Element Sets,” 1980. 

[9] ISO, “Space systems – Mitigation of space debris,” Stan- 
dard 24113, 2019. 

[10]  ITU-R, “Recommendation ITU-R S.435-7: Basic param- 
eters for satellite systems,” 2015. 


