
ISSN : 2355-9365 e-Proceeding of Engineering : Vol.12, No.6 Desember 2025 | Page 9362

Penerapan Continuous Integration Dalam

Pengembangan Aplikasi Manajemen Rumah

Kost Menggunakan Metode Rapid Application

Development (Studi Kasus: Rumah Kost

Rahmatika)

2nd Mochamad Nizar Palefi Ma'ady

Sistem Informasi

 3rd Purnama Anaking

Sistem Informasi

Telkom University

Surabaya, Indonesia

Telkom University

Surabaya, Indonesia
mnizarpm@telkomuniversity.ac.id purnama@telkomuniversity.ac.id

Abstrak — Tingginya angka urbanisasi di Surabaya

dan Sidoarjo menyebabkan peningkatan kebutuhan terhadap

hunian sementara seperti rumah kost. Salah satunya adalah

rumah kost Rahmatika yang tersebar di tiga lokasi berbeda,

yakni Gunung Anyar, Rungkut Menanggal, dan Berbek.

Pengelolaan manual yang dilakukan oleh pemilik kost

menghadapi berbagai kendala, seperti pencatatan pembayaran

secara konvensional, keterlambatan pembayaran sewa, serta

kesulitan dalam pemantauan langsung karena jarak antar

lokasi. Berdasarkan permasalahan tersebut, penelitian ini

bertujuan untuk membangun sistem informasi manajemen kost

berbasis website dengan menggunakan framework Laravel dan

pendekatan Rapid Application Development (RAD).

Pengembangan dilakukan secara iteratif dan melibatkan

pengguna pada setiap tahap perancangan sistem. Sistem ini

mendukung fitur utama seperti manajemen data penghuni,

pelaporan keluhan, dan pembayaran sewa menggunakan

midtrans. Pengujian sistem dilakukan melalui blackbox testing

serta User Acceptance Testing (UAT) dengan melibatkan 23

responden, yang menghasilkan nilai rata-rata kepuasan sebesar

89%, menunjukkan sistem telah sesuai dengan kebutuhan

pengguna. Selain itu, sistem juga diintegrasikan dengan

continuous integration (CI) menggunakan jenkins untuk

mempercepat otomatisasi pengujian dan pembaruan sistem.

Hasil pengujian menunjukkan bahwa CI dapat membantu

menjaga stabilitas dan kualitas integrasi fitur dalam sistem

secara berkelanjutan. Dengan demikian, sistem ini mampu

meningkatkan efisiensi pengelolaan kost secara digital dan

mendukung operasional pemilik kost tanpa harus melakukan

kunjungan langsung ke lokasi.

Kata kunci — Sistem Informasi Kost, Rapid Application

Development, User Acceptance Testing, Continuous Integration,

Web Application

I. PENDAHULUAN

Urbanisasi pesat di Kota Surabaya telah meningkatkan

permintaan hunian, terutama rumah kost, sebagai akibat dari

migrasi penduduk yang mencari peluang ekonomi dan

fasilitas lebih baik [1]. Surabaya, sebagai pusat pendidikan

dan perekonomian, menarik banyak mahasiswa dan pekerja

dari berbagai daerah. Berdasarkan data Badan Pusat Statistik

Provinsi Jawa Timur, terdapat sekitar 270 ribu mahasiswa

dan 1,5 juta pekerja di Surabaya, mendorong tingginya

kebutuhan akan hunian sementara yang terjangkau dan

strategis[2]. Selain itu, sekitar 35,37 persen rumah tangga di

Surabaya menempati bangunan bukan milik sendiri,

menunjukkan tingginya kebutuhan akan rumah kost [3].

Pertumbuhan pesat ini berbanding lurus dengan terbatasnya

lahan dan harga properti yang tinggi, membuat rumah kost

menjadi pilihan utama, khususnya bagi mahasiswa dan

pekerja perantauan. Rumah Kost Rahmatika, yang terdiri dari

tiga lokasi di Gunung Anyar, Rungkut Menanggal, dan

Berbek, menghadapi tantangan pengelolaan operasional,

terutama dengan meningkatnya jumlah penghuni dan

kompleksitas kebutuhan mereka.

Sistem manajemen kost yang masih menggunakan

metode manual saat ini memunculkan permasalahan seperti

kesalahan pencatatan, keterlambatan informasi, serta

kesulitan dalam pembayaran dan pengelolaan data penghuni.

Hal ini semakin sulit mengingat jarak antar lokasi rumah kost

yang berjauhan. Untuk mengatasi hal tersebut, diperlukan

digitalisasi sistem manajemen kost yang dapat

mempermudah pencatatan dan pengelolaan data secara

terpusat. Dalam pengembangannya, digunakan metode rapid

application development (RAD) dan Continuous Integration

(CI) untuk menciptakan sistem berbasis website yang

fleksibel dan dapat disesuaikan dengan kebutuhan pengguna

secara berkelanjutan. RAD memungkinkan pengembangan

sistem secara cepat dengan prototipe yang terus diuji dan

disesuaikan berdasarkan umpan balik pengguna, sementara

CI memfasilitasi pembaruan sistem secara otomatis, menjaga

kualitas kode, dan mempercepat pengembangan.

1st Ginza Maulana Putra

Sistem Informasi

Telkom University

Surabaya, Indonesia

ginzamaulanaputra@student.telkomuniversity.ac.id

mailto:mnizarpm@telkomuniversity.ac.id
mailto:purnama@telkomuniversity.ac.id
mailto:ginzamaulanaputra@student.telkomuniversity.ac.id

ISSN : 2355-9365 e-Proceeding of Engineering : Vol.12, No.6 Desember 2025 | Page 9363

II. KAJIAN TEORI

A. Continuous Integration (CI)

GAMBAR 1

(CONTINUOUS INTEGRATION (CI))

Continuous integration (CI) merupakan salah satu metode

dalam praktik DevOps (Development and Operations) yang

berfungsi untuk mengotomatisasi proses integrasi kode.

Metode ini memungkinkan anggota tim pengembang untuk

menggabungkan perubahan kode secara rutin ke dalam

repositori bersama. CI juga mendukung otomatisasi proses

build, testing, dan reporting selama pengembangan

perangkat lunak. Dengan adanya CI, proses integrasi kode

menjadi lebih terstruktur dan terkelola dengan baik. Secara

umum, CI bertujuan untuk menjaga kualitas perangkat lunak

melalui pengujian dan integrasi yang dilakukan secara

berkelanjutan [4].

GAMBAR 2

(ARSITEKTUR CONTINUOUS INTEGRATION (CI))

Gambar 2 merupakan alur arsitektur Continuous

Integration (CI). Pada tahap awal, pengembang akan

melakukan push kode ke dalam GitHub melalui repositori.

Selanjutnya, GitHub akan melakukan sinkronisasi dengan

Jenkins. Agar proses integrasi antara GitHub dan Jenkins

dapat berjalan, diperlukan pembuatan token autentikasi dari

GitHub. Setelah itu, dilakukan konfigurasi pada Jenkins

melalui project pipeline yang dikustomisasi sesuai dengan

kebutuhan proyek. Tahap akhir meliputi proses build dan

testing, di mana Jenkins akan melakukan build serta

pengujian kode. Apabila proses tersebut berhasil, Jenkins

akan mengirimkan notifikasi keberhasilan. Namun, jika

terjadi kegagalan, proses build dan testing akan diulang

hingga berhasil. Proses ini berjalan secara otomatis setiap kali

terjadi perubahan pada repositori, sehingga integrasi kode

menjadi lebih cepat dan efisien. Notifikasi keberhasilan

maupun error akan dikirimkan ke tim pengembang untuk

memastikan tindak lanjut dapat segera dilakukan. Dengan

mekanisme ini, potensi bug dapat terdeteksi lebih awal

sebelum masuk ke tahap produksi. Arsitektur Continuous

Integration seperti ini sangat membantu dalam menjaga

kualitas perangkat lunak secara konsisten selama siklus

pengembangan berlangsung.

B. Jenkins

Jenkins merupakan open source automation server yang

berfungsi untuk mengotomatisasi tugas-tugas dalam proses

continuous integration dan continuous delivery pada

pengembangan sistem [5]. Jenkins banyak digunakan oleh

para developer karena memiliki beragam fitur yang

mendukung dan kompatibel dengan berbagai repositori

populer, seperti GitHub, GitLab, Bitbucket, dan lainnya.

Selain itu, jenkins menyediakan banyak plugin yang dapat

disesuaikan dengan kebutuhan pengembangan sistem,

sehingga mempermudah proses otomatisasi. Penggunaan

jenkins juga memungkinkan pengembang untuk melakukan

integrasi dan pengujian kode secara berkala guna menjaga

kualitas perangkat lunak. Hal ini membuat jenkins menjadi

pilihan favorit bagi banyak pengembang karena dapat dengan

mudah diintegrasikan ke dalam alur kerja mereka tanpa

hambatan yang signifikan [6].

C. Rapid Application Development (RAD)

GAMBAR 3

(RAPID APPLICATION DEVELOPMENT (RAD))

Rapid Application Development (RAD) adalah metode

pengembangan perangkat lunak yang menekankan

percepatan siklus pengembangan melalui pembuatan

prototipe dan umpan balik berkelanjutan dari pengguna.

Metode ini dapat mempersingkat waktu pengembangan dari

rata-rata 180 hari menjadi hanya 30–90 hari [7][8]. RAD

cocok untuk proyek yang memerlukan kecepatan serta

fleksibilitas terhadap perubahan kebutuhan selama

pengembangan. Tahapan Rapid Application Development

(RAD) terdiri dari tiga fase utama. Fase Perencanaan

Kebutuhan (Requirement Planning) dilakukan untuk

mengidentifikasi dan menganalisis kebutuhan perangkat

lunak, termasuk menentukan peran aktor dan fitur yang

diperlukan. Selanjutnya, pada Fase Desain Workshop

(Workshop Design RAD), dilakukan kolaborasi dengan

pengguna untuk merancang sistem sesuai kebutuhan,

kemudian dilanjutkan dengan pembangunan sistem

berdasarkan desain yang telah disepakati. Terakhir, Fase

Implementasi (Implementation) mencakup pengembangan

sistem sesuai persetujuan pengguna, pengujian, serta evaluasi

hasil oleh pengguna.

D. Unified Model Language (UML)

Unified Modeling Language (UML) adalah alat

pemodelan visual yang berfungsi sebagai blueprint dalam

pengembangan perangkat lunak. UML memberikan

representasi grafis yang memudahkan pemahaman,

ISSN : 2355-9365 e-Proceeding of Engineering : Vol.12, No.6 Desember 2025 | Page 9364

perancangan sistem, serta komunikasi antar tim pengembang.

Penggunaan UML membantu mengurangi kesalahan desain

dan meningkatkan efisiensi pengembangan melalui panduan

yang jelas dan terstruktur [9].

E. Framework Laravel

GAMBAR 3

(ARSITEKTUR MODEL-VIEW-CONTROLLER LARAVEL)

Laravel adalah framework web open-source berbasis PHP

yang dikembangkan oleh Taylor Otwell dengan menerapkan

arsitektur Model-View-Controller (MVC). Dalam MVC,

model mengelola logika data, view menampilkan antarmuka

pengguna, dan controller menghubungkan keduanya untuk

mengatur alur data dan proses aplikasi [10]. Laravel

menyederhanakan proses pengembangan, menekan biaya

pemeliharaan, serta menyediakan sintaks rapi dan efisien

[11]. Dilengkapi fitur seperti routing, middleware,

autentikasi, serta dukungan integrasi layanan pihak ketiga,

Laravel mendukung pengembangan aplikasi berskala besar

secara terstruktur.

F. Blackbox Testing

Blackbox testing adalah metode pengujian perangkat

lunak yang mengevaluasi fungsionalitas sistem tanpa

memperhatikan kode program. Pengujian ini berfokus pada

hasil berdasarkan input yang diberikan untuk memastikan

perangkat lunak sesuai dengan spesifikasi dan kebutuhan

[12]. Teknik ini mencakup pengujian fungsionalitas, validasi

input, antarmuka pengguna, serta membantu

mengidentifikasi kesalahan logika bisnis, proses input-

output, dan integrasi sistem eksternal.

G. User Acceptance Testing (UAT)

User acceptance testing (UAT) merupakan salah satu

jenis pengujian perangkat lunak yang bertujuan untuk

memastikan bahwa sistem yang dikembangkan telah sesuai

dengan kebutuhan dan harapan pengguna akhir. Pengujian ini

dilakukan pada tahap akhir sebelum sistem resmi

diimplementasikan, guna memastikan bahwa seluruh fungsi

berjalan sebagaimana mestinya dalam konteks penggunaan

nyata. UAT berfokus pada tiga variabel utama dalam

mengevaluasi kelayakan sistem, yaitu: (1) fungsionalitas

sistem, (2) efisiensi sistem, dan (3) pengalaman dan tampilan

antarmuka pengguna [13].

III. METODE

GAMBAR 4

(SISTEMATIKA METODE PENYELESAIAN)

A. Requirement Planning

Tahap requirement planning merupakan langkah yang

digunakan untuk merencanakan seluruh kebutuhan yang

diperlukan oleh rumah kost Rahmatika di Surabaya dan

Sidoarjo. Proses ini dilakukan melalui hasil wawancara

dengan pemilik kost ibu Novelia Karlinda Tristiyanti, untuk

menganalisis proses yang ada kemudian menyiapkan solusi

dan tujuan sistem, serta kebutuhan informasi (fungsional dan

non-fungsional) yang dibutuhkan oleh rumah kost Rahmatika

di Surabaya dan Sidoarjo.

B. Design Workshop

Pada tahap ini, peneliti merancang desain sistem yang

mencakup use case diagram, activity diagram, dan

antarmuka menggunakan wireframe yang diperoleh melalui

proses kolaborasi dengan pemilik kost. Proses kolaborasi ini

bertujuan untuk memahami secara mendalam permasalahan

yang terdapat pada rumah kost Rahmatika di Surabaya dan

Sidoarjo. Selanjutnya, melakukan commit project sebagai

langkah awal dalam proses pengkodean sistem. Proses ini

dilanjutkan dengan kolaborasi dengan pengguna untuk

membangun sistem manajemen rumah kost berbasis website

dengan menggunakan framework laravel sebagai tools build,

kemudian jenkins sebagai tools continuous integration untuk

mengintegrasikan berbagai fitur pada website. Selain itu,

midtrans payment gateway dimanfaatkan sebagai solusi

sistem pembayaran. Kemudian dilakukan pengujian blackbox

testing untuk menunjukkan apakah sistem sesuai dengan

yang telah ditetapkan.

C. Implementation

Setelah melakukan design workshop, selanjutnya

melakukan implementation berupa pengenalan sistem baru

kepada pemilik kost yang sudah siap untuk di

implementasikan. Pengujian user acceptance testing (UAT)

ISSN : 2355-9365 e-Proceeding of Engineering : Vol.12, No.6 Desember 2025 | Page 9365

dilakukan untuk memvalidasi apakah sistem telah sesuai

dengan tujuan dan kebutuhan yang telah ditetapkan. Selain

itu, dokumentasi sistem akan disediakan

IV. HASIL DAN PEMBAHASAN

A. Requirement Planning

1. Kebutuhan Pengguna

Kebutuhan pengguna digunakan untuk mendefinisikan

preferensi dan ekspektasi yang diinginkan oleh pengguna,

sehingga sistem yang dikembangkan dapat sesuai dengan

persyaratan dan ketentuan yang telah ditetapkan. Kebutuhan

pengguna ini diperoleh melalui wawancara mendalam

dengan pemilik rumah kost sebagai informan utama, serta

didukung oleh masukan dari beberapa penghuni kost.

Gambaran kebutuhan pengguna disajikan dalam bentuk tabel

4.1 sebagai berikut:

TABEL 1

 (KEBUTUHAN PENGGUNA)

ID Aktor Deskripsi Kebutuhan

U1

Penghuni

Ingin dapat melakukan registrasi untuk

mendapatkan akun sistem.

U2 Ingin dapat melakukan login ke dalam sistem
untuk mengakses sistem.

U3 Ingin melihat tampilan dashboard berisi informasi

terkait kost.

U4 Ingin dapat melakukan pembayaran sewa kost
secara online.

U5 Ingin melihat riwayat pembayaran kost

sebelumnya.

U6 Ingin dapat mengirimkan laporan keluhan.

A1

Admin

Ingin melihat tampilan dashboard yang berisi
ringkasan data penghuni dan transaksi.

A2 Ingin mengakses data penghuni kost secara

lengkap.

A3 Ingin melihat daftar laporan keluhan yang

dikirimkan oleh penghuni kost.

A4 Ingin melihat riwayat transaksi pembayaran dari

masing-masing penghuni.

2. Kebutuhan Fungsional

 Kebutuhan fungsional pada sistem ini dibagi menjadi dua

bagian, user dan admin. kebutuhan fungsional merupakan

fitur-fitur atau fungsi utama yang harus dimiliki sistem agar

dapat berjalan sesuai tujuan yang telah ditetapkan. Tabel 2

merupakan kebutuhan fungsional Penghuni dan Tabel 3

kebutuhan fungsinal Admin.

TABEL 1

(KEBUTUHAN FUNGSIONAL "PENGHUNI")

ID Aktor Kebutuhan fungsional

U1

Penghuni

Sistem harus menyediakan fitur registrasi akun,

agar pengguna baru dapat melakukan pendaftaran

untuk mendapatkan akses ke dalam sistem.

U2 Sistem harus menyediakan fitur login yang

memungkinkan pengguna untuk masuk ke dalam

sistem menggunakan kredensial yang valid.

U3 Sistem harus dapat menampilkan dashboard user,

yang memuat informasi status sewa, tagihan dan

pembayaran, serta daftar laporan yang telah dibuat
oleh user.

U4 Sistem harus dapat melakukan pembayaran online

yang terintegrasi dengan pihak ketiga, yaitu

midtrans, untuk memfasilitasi proses pembayaran
sewa kost.

U5 Sistem harus menyediakan informasi riwayat

pembayaran, yang mencakup kode transaksi,
tanggal pembayaran, total pembayaran, dan status

pembayaran.

U6 Sistem harus menyediakan fitur pengiriman

laporan keluhan, sehingga pengguna dapat

menyampaikan permasalahan terkait fasilitas atau

layanan kost kepada pemilik.

TABEL 2

(KEBUTUHAN FUNGSIONAL "ADMIN")

ID Aktor Kebutuhan fungsional

A1

Admin

Sistem harus mampu menampilkan dashboard khusus
admin yang menyajikan ringkasan informasi jumlah

penghuni kost dan data pendapatan, yang

divisualisasikan dalam bentuk grafik.

A2

Sistem harus mampu menampilkan data penghuni
kost dalam bentuk tabel, serta menyediakan fitur

untuk melakukan operasi CRUD (Create, Read,

Update, Delete) terhadap data penghuni.

A3

Sistem harus mampu menampilkan daftar laporan

keluhan dari pengguna, serta menyediakan fitur bagi

admin untuk menambahkan laporan baru, menghapus
laporan yang tidak valid, dan mengubah status

laporan menjadi “Selesai” setelah ditindaklanjuti.

A4

Sistem harus mampu menampilkan riwayat transaksi

pembayaran dari seluruh penghuni kost, yang
mencakup informasi berupa ID transaksi, kode

transaksi, nama penyewa, lokasi kost, nomor kamar,
jumlah pembayaran (dalam rupiah), status

pembayaran, tanggal masuk, dan tanggal keluar.

3. Kebutuhan Non-Fungsional

Kebutuhan non-fungsional merupakan kebutuhan

pendukung yang tidak secara langsung memengaruhi

jalannya fungsi utama sistem, namun berperan penting dalam

meningkatkan kualitas, kinerja, dan kenyamanan penggunaan

sistem secara keseluruhan. Adapun kebutuhan non-

fungsional dari sistem ini ditunjukkan pada tabel 4 sebagai

berikut:
TABEL 4

 (KEBUTUHAN NON-FUNGSIONAL)

No

Kebutuhan

non-

fungsional

Penjelasan

1
Ketersediaan

sistem

Sistem harus tersedia dan dapat diakses oleh

pengguna selama 24 jam sehari.

2 Kinerja sistem
Sistem harus dapat memproses permintaan
dengan cepat.

3
Responsivitas

tampilan

Tampilan sistem harus menyesuaikan secara
otomatis dengan ukuran layar pengguna

(responsive).

B. Design Workshop

1. Diagram UML

GAMBAR 5

(USECASE DIAGRAM)

Pada Gambar 5 merupakan use case diagram keseluruhan

dari sistem manajemen rumah kost Rahmatika. Diagram ini

ISSN : 2355-9365 e-Proceeding of Engineering : Vol.12, No.6 Desember 2025 | Page 9366

menggambarkan dua aktor utama yang terlibat dalam sistem,

yaitu penghuni dan admin. Aktor pengguna merupakan

generalisasi dari kedua aktor tersebut, yang

merepresentasikan entitas yang berinteraksi langsung dengan

sistem, baik sebagai penghuni maupun sebagai admin.

2. Rancangan Antarmuka

Tahap ini dilakukan untuk merancang desain sederhana

yang memberikan gambaran umum mengenai sistem yang

akan dikembangkan. desain antarmuka ini disusun

berdasarkan hasil identifikasi kebutuhan sistem yang telah

ditetapkan sebelumnya. Desain tersebut diwujudkan dalam

bentuk wireframe berbentuk low fidelity yang berfungsi

sebagai representasi awal dari struktur dan alur sistem.

Wireframe ini digunakan sebagai acuan awal dalam proses

pengembangan lebih lanjut serta memudahkan komunikasi

antara pengembang dan pihak terkait.

GAMBAR 6

(DESAIN LOW-FIDELITY SYSTEM)

3. Pembangunan Sistem

1) Register

GAMBAR 7

 (HALAMAN WEBSITE “REGISTER”)

Gambar 7 menunjukkan halaman website “Register” yang
digunakan pengguna untuk mendaftar ke dalam sistem.

2) Login

GAMBAR 8

 (HALAMAN WEBSITE "LOGIN")

Gambar 8 menunjukkan halaman website “Login” yang
digunakan oleh pengguna maupun admin untuk mengakses

sistem dengan mengisi email dan kata sandi.

3) Melihat Status Penghuni

GAMBAR 9

(HALAMAN WEBSITE "MELIHAT STATUS PENGHUNI")

Gambar 9 menunjukkan halaman website “Melihat Status
Penghuni” yang menampilkan ringkasan informasi terkait
rumah kost yang ditempati.

4) Melihat Informasi Kost Admin

GAMBAR 10

(HALAMAN WEBSITE "MELIHAT INFORMASI KOST ADMIN")

Gambar 10 menunjukkan halaman website “Melihat
Informasi Kost Admin” yang menyajikan data dalam bentuk
card dan tiga diagram. Card pertama menampilkan jumlah

penghuni aktif, card kedua memuat total pendapatan kost,

dan card ketiga menunjukkan total laporan yang masuk.

Diagram di bawahnya menyajikan rincian lebih lanjut dari

data yang ditampilkan pada card-card tersebut.

5) Melaporkan Masalah Kost

GAMBAR 11

(HALAMAN WEBSITE "MELAPORKAN MASALAH KOST")

Gambar 4.7 menunjukkan halaman website “Melaporkan
Masalah Kost” yang digunakan penghuni untuk melaporkan

masalah terkait rumah kost melalui sistem.

ISSN : 2355-9365 e-Proceeding of Engineering : Vol.12, No.6 Desember 2025 | Page 9367

6) Pembayaran

GAMBAR 12

(HALAMAN WEBSITE "PEMBAYARAN")

Gambar 12 menunjukkan halaman website

“Pembayaran” yang digunakan penghuni untuk membayar
tagihan kamar kost.

7) Riwayat Pembayaran

GAMBAR 13

(HALAMAN WEBSITE "RIWAYAT PEMBAYARAN")

Gambar 13 menunjukkan halaman website “Riwayat
Pembayaran” yang memudahkan penghuni dalam memantau
transaksi yang telah dilakukan.

8) Manajemen Data Penghuni

GAMBAR 14

(HALAMAN WEBSITE "MANAJEMEN DATA PENGHUNI")

Gambar 14 menunjukkan halaman website “Manajemen
Data Penghuni”. Pada halaman ini admin dapat

memanajemen penghuni rumah kost. Dari mengubah,

menambah, sampai menghapus data penghuni rumah kost.

9) Manajemen Data Laporan Keluhan

GAMBAR 15

 (HALAMAN WEBSITE "MANAJEMEN DATA LAPORAN

KELUHAN")

Gambar 15 menunjukkan halaman website “Manajemen
Data Laporan Keluhan” yang digunakan admin untuk

mengelola laporan penghuni.

10) Melihat Data Seluruh Transaksi

GAMBAR 16

(HALAMAN WEBSITE "MELIHAT DATA SELURUH TRANSAKSI")

Gambar 16 menunjukkan halaman website “Melihat Data
Seluruh Transaksi” yang digunakan admin untuk memantau

seluruh riwayat pembayaran dari penyewa kost.

4. Hasil CI

GAMBAR 17

(HASIL CONTINUOUS INTEGRATION)

Gambar 17 menunjukkan hasil Jenkins build yang terdiri

dari tujuh tahapan, yaitu: (1) Checkout SCM, (2) Install

Dependencies, (3) Copy .env, (4) Generate App Key, (5)

Migrate Test DB, (6) Run Tests, dan (7) Post Actions. Seluruh

tahapan berhasil dijalankan, mulai dari proses checkout

repository, instalasi dependencies, penyalinan file .env,

pembuatan application key, migrasi test database, hingga

menjalankan automated tests dan pengiriman success

ISSN : 2355-9365 e-Proceeding of Engineering : Vol.12, No.6 Desember 2025 | Page 9368

notification, sehingga pipeline CI berjalan dengan baik dan

berhasil.

5. Blackbox Testing

Berikut hasil dari pengujian blackbox yang telah dilakukan:

TABEL 3

(HASIL PENGUJIAN BLACKBOX TESTING 1)

No Fitur Test Case
Hasil yang

Diharapkan
Kesimpulan

1

Melaporkan

Masalah
Kost

Mengisi Judul

Laporan,

Deskripsi
Laporan dan

Gambar

Sistem dapat

menyimpan
data Laporan

Valid

2 Pembayaran

Klik “Bayar
Sekarang” dan
snap token

midtrans

muncul.

Pembayaran

berhasil, dan

data
tersimpan

Valid

3
Riwayat

Pembayaran

Akses fitur

Riwayat
Pembayaran

Data

Riwayat

Pembayaran
akan

ditampilkan

Valid

TABEL 4
(HASIL PENGUJIAN BLACKBOX TESTING 2)

N

o
Fitur Test Case

Hasil yang

Diharapkan

Kesimpula

n

1

Manajeme

n Data
Penghuni

Isi form
dengan data

penghuni

baru dan klik

tombol

"Simpan"

Data penghuni baru

berhasil
ditambahkan dan

disimpan dalam

sistem

Valid

Pilih

penghuni
yang sudah

ada, ubah

data
penghuni,

dan klik

tombol
"Simpan"

Data penghuni
berhasil diubah dan

disimpan dengan

benar

Valid

Klik tombol

"Detail" pada
salah satu

penghuni dan

lihat

informasi

lengkap yang

ditampilkan

Menampilkan

informasi lengkap

penghuni seperti
Nama, Email, No.

telepon, Lokasi

Kost, Status, dan
Gambar.

Valid

Pilih

penghuni

yang ingin
dinonaktifka

n, klik

tombol
"Hapus", dan

periksa status

penghuni
tersebut.

Status penghuni

berubah dari

"Aktif" menjadi
"Nonaktif".

Valid

2
Manajeme
n Laporan

Keluhan

Isi form

dengan data

laporan baru

(judul,

deskripsi,

gambar,
nomor

kamar) dan

klik tombol
"Simpan".

Laporan baru

berhasil
ditambahkan dan

disimpan dalam

sistem.

Valid

Pilih laporan

yang ingin

dihapus dan

klik tombol
"Hapus".

Laporan berhasil

dihapus dan tidak
ada lagi di daftar

laporan.

Valid

Klik tombol

"Detail" pada

salah satu
laporan dan

periksa

apakah
informasi

lengkap

(gambar,
judul,

deskripsi,

nomor
kamar,

status)

ditampilkan.

Menampilkan

informasi lengkap
laporan sesuai yang

diminta.

Valid

Pilih laporan

yang belum

selesai, klik
tombol

"Tandai

Selesai".

Laporan berhasil
diubah statusnya

menjadi "Selesai"

dan informasi
diperbarui.

Valid

3

Melihat

Seluruh
Data

Transaksi

Klik fitur

“Data
Seluruh

Transaksi”

Menampilkan

keseluruhan data

pembayaran yang
telah dilakukan

pengguna/pengghu

ni.

Valid

6. User Acceptance Testing (UAT)

Sebelumnya telah dilakukan pengujian black-box, namun

untuk melanjutkan proses evaluasi kelayakan sistem,

dilakukan pengujian menggunakan user acceptance testing

(UAT). Pengujian ini melibatkan 24 responden yang

diperoleh, di mana masing-masing responden diminta

menjawab pertanyaan yang tercantum pada Tabel V.4 dengan

memberikan penilaian berdasarkan skala Likert 1–5.

TABEL 5

BOBOT PENILAIAN SKALA LIKERT

Bobot Keterangan

1 Tidak Setuju (ST)

2 Kurang Setuju (KS)

3 Cukup Setuju (CS)

4 Setuju (S)

5 Sangat Setuju (SS)

Pertanyaan-pertanyaan pada evaluasi kuesioner disusun

berdasarkan tiga variabel pengujian, yaitu: (1) Fungsionalitas

sistem, (2) Efisiensi sistem, dan (3) Evaluasi antarmuka

pengguna (User Interface/UI).

TABEL 6

(DAFTAR PERTANYAAN KUESIONER)

ID Variabel Pertanyaan

A1

Evaluasi
fungsionalitas

sistem

Apakah sistem ini memungkinkan penghuni
untuk melakukan pembayaran dengan mudah

dan aman melalui Midtrans?

A2
Apakah penghuni dapat melaporkan masalah
atau keluhan dengan mudah menggunakan

fitur laporan keluhan pada sistem?

A3

Apakah sistem ini dapat menampilkan

riwayat pembayaran penghuni dengan akurat
dan mudah diakses?

B1
Evaluasi

efisiensi sistem

Apakah sistem ini membantu mengurangi

waktu yang dibutuhkan untuk menyelesaikan
tugas-tugas penghuni, seperti melakukan

pembayaran dan melaporkan keluhan?

ISSN : 2355-9365 e-Proceeding of Engineering : Vol.12, No.6 Desember 2025 | Page 9369

B2

Apakah sistem ini dapat mengurangi beban

pekerjaan manual dalam mengelola data

penghuni dan pembayaran?

B3

Apakah penggunaan sistem ini mengurangi

kesalahan atau masalah yang sering terjadi
dalam proses pengelolaan rumah kost?

C1

Evaluasi
antarmuka (UI)

Apakah tampilan sistem pembayaran terlihat

jelas dan mudah digunakan oleh penghuni
untuk menyelesaikan transaksi dengan

Midtrans?

C2

Apakah tampilan antarmuka laporan keluhan

memudahkan penghuni untuk mengisi dan
mengirimkan keluhan secara praktis?

C3

Apakah antarmuka manajemen penghuni

pada sistem mudah dinavigasi oleh admin
untuk mengelola data penghuni, pembayaran,

dan laporan keluhan?

C4

Apakah tata letak dan desain tombol pada

sistem intuitif, membantu pengguna dalam
mengakses berbagai fitur seperti pembayaran,

laporan keluhan, dan manajemen penghuni?

Setelah dilakukan perhitungan hasil kuesioner UAT yang

telah dilakukan, berikut ringkasan dari penilaian tersebut

yang disajikan pada tabel .

TABEL 7

(HASIL RINGKASAN AKHIR PERHITUNGAN UAT)
No Variabel Nilai bobot % Keterangan

1 Fungsionalitas sistem 89% Sangat baik

2 Efisiensi sistem 89% Sangat baik

3 Antarmuka (UI) 89% Sangat baik

Tabel 9 menyajikan hasil akhir berupa rata-rata dari

masing-masing variabel evaluasi. Berdasarkan perhitungan,

dapat disimpulkan bahwa hasil evaluasi kuesioner terhadap

website manajemen rumah kost rahmatika tergolong dalam

kategori sangat baik.

V. KESIMPULAN

Berdasarkan hasil penelitian “Penerapan Continuous

Integration Dalam Pengembangan Aplikasi Manajemen

Rumah Kost Menggunakan Metode Rapid Application

Development (Studi Kasus: Rumah Kost Rahmatika)”, dapat

disimpulkan bahwa:

1. Website manajemen rumah kost Rahmatika berhasil

dibangun menggunakan Laravel dengan pendekatan

Rapid Application Development (RAD) serta Continuous

Integration (CI) melalui Jenkins. Sistem menerapkan

arsitektur Model-View-Controller (MVC) yang

memudahkan implementasi dan pemeliharaan, serta

terintegrasi dengan Midtrans untuk mendukung

pembayaran digital. Jenkins berperan dalam

mengotomatisasi proses build dan testing, sehingga

mendukung pengembangan berkelanjutan.

2. Pengujian dilakukan menggunakan blackbox testing dan

user acceptance testing (UAT). Hasil blackbox testing

menunjukkan seluruh fitur berfungsi sesuai skenario,

sedangkan UAT yang melibatkan 23 responden

menghasilkan tingkat kepuasan pengguna sebesar 89%,

menandakan sistem telah memenuhi ekspektasi

pengguna.

REFERENSI

[1] F. Asha Sabitha, “Analisis Pengaruh Tingkat
Urbanisasi Terhadap Ketersediaan Lahan

Permukiman Perumahan Di Kota Surabaya,” Jurnal

Lembaga Ketahanan Nasional Republik Indonesia,

vol. 10, no. 1, p. 19, Mar. 2022.
[2] Badan Pusat Statistik, “Jumlah Mahasiswa (Negeri

dan Swasta) di Bawah Kementerian Pendidikan dan

Kebudayaan Menurut Kabupaten/Kota, 2021 dan

2022.” Accessed: Jan. 13, 2025. [Online]. Available:
https://jatim.bps.go.id/id/statistics-

table/1/MjkzOCMx/jumlah-mahasiswa-negeri-dan-

swasta-di-bawah-kementerian-pendidikan-dan-

kebudayaan-menurut-kabupaten-kota-2021-dan-

2022.html

[3] Badan Pusat Statisik Kota Surabaya, “Keadaan
Ketenagakerjaan Kota Surabaya Agustus 2024,”
Nov. 2024.

[4] M. Pratama and K. Dana, “Implementasi Continuous
Integration dan Continuous Delivery (CI/CD) Pada

Automatic Performance Testing,” Dec. 2020.
[5] P. Restu, S. Hudan, and A. Rizky, “Implementasi

Continuous Integration dan Continuous Delivery

Pada Aplikasi myITS Single Sign On,” TEKNIK ITS,

vol. 11, no. 3, 2022.

[6] A. Farid and I. Gita Anugrah, “Implementasi CI/CD
Pipeline Pada Framework Androbase Menggunakan

Jenkins (Studi Kasus: PT. Andromedia),” Jurnal

Nasional Komputasi dan Teknologi Informasi, vol. 4,

no. 6, 2021.

[7] M. Ardhiansyah, “Penerapan Model Rapid
Application Development pada Aplikasi Helpdesk

Trouble Ticket PT. Satkomindo Mediyasa,” Jurnal

Teknologi Sistem Informasi dan Aplikasi, vol. 2, no.

2, pp. 2654–4229, Apr. 2019, [Online]. Available:

http://openjournal.unpam.ac.id/index.php/JTSI43

[8] E. Sutinah, I. Alfarobi, and A. Setiawan, “Metode
Rapid Application Development dalam Pembuatan

Sistem Informasi Pemenuhan SDM pada Perusahaan

Outsourcing,” InfoTekJar : Jurnal Nasional
Informatika dan Teknologi Jaringan, vol. 5, no. 2,

2020, doi: 10.30743/infotekjar.v5i2.3528.

[9] A. Voutama and E. Novalia, “Perancangan Sistem
Informasi Plakat Wisuda Berbasis Web

Menggunakan UML dan Model Waterfall,” Syntax:

Jurnal Informatika, vol. 11, no. 01, 2022.

[10] L. Rahmawati and S. Sumarsono, “Desain
Pengembangan Website dengan Arsitektur Model

View Controller pada Framework Laravel,” Jurnal

Teknologi Dan Sistem Informasi Bisnis, vol. 6, no. 4,

pp. 785–790, Oct. 2024, doi:

10.47233/jteksis.v6i4.1497.

[11] R. Yuniarti, I. H. Santi, and W. D. Puspitasari,

“Perancangan Aplikasi Point of Sale untuk
Manajemen Pemesanan Bahan Pangan Berbasis

Framework Laravel,” Jati (Jurnal Mahasiswa Teknik

Informatika), vol. 6, no. 1, Feb. 2022.

[12] S. Endah, S. Effendy, M. Dani, and B. Aji,

“Pengujian Menggunakan Black Box Testing dengan
Teknik State Transition Testing Pada Perpustakaan

Yayasan Pendidikan Islam Pakualam Berbasis Web,”

ISSN : 2355-9365 e-Proceeding of Engineering : Vol.12, No.6 Desember 2025 | Page 9370

JATIMIKA (Jurnal Kreativitas Mahasiswa

Informatika), vol. 2, no. 1, Jan. 2022.

[13] Aliyah, Nahrun Hartono, and Asrul Azhari Muin,

“Penggunaan User Acceptance Testing (UAT) Pada
Pengujian Sistem Informasi Pengelolaan Keuangan

Dan Inventaris Barang,” Switch : Jurnal Sains dan
Teknologi Informasi, vol. 3, no. 1, pp. 84–100, Dec.

2024, doi: 10.62951/switch.v3i1.330.

.

