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Abstrak — Pengelolaan trafik pada area dengan 

kepadatan pengguna tinggi menjadi salah satu tantangan 

dalam jaringan 5G. Salah satu pendekatan yang digunakan 

untuk mengatasi hal ini adalah penerapan Virtual Small Cell 

(VSC), yang memungkinkan pembentukan cell virtual secara 

dinamis tanpa infrastruktur fisik tambahan. Dalam 

penelitian ini, VSC dikombinasikan dengan teknik 

beamforming untuk mengarahkan sinyal ke area-area 

potensial (hotspot) secara lebih efisien. Kanal adaptif 

diterapkan guna menyesuaikan parameter transmisi 

terhadap kondisi kanal yang berubah secara real-time. Untuk 

memaksimalkan efektivitas strategi ini digunakan metode 

prediksi pergerakan pengguna berdasarkan data heatmap 

jaringan. Convolutional Neural Network (CNN) dipilih karena 

kemampuannya dalam mengekstraksi pola spasial dan 

temporal dari data trafik, sehingga mampu memetakan dan 

memprediksi distribusi pengguna secara akurat. Hasil 

eksperimen menunjukkan bahwa model CNN-GRU yang 

dilatih hingga 500 epoch mampu menghasilkan prediksi 

SINR, RSSI, dan efisiensi bandwidth dengan deviasi kecil 

terhadap data aktual. Rata-rata selisih masing-masing 

parameter adalah 3,6 dB untuk SINR, 0,16 dBm untuk RSSI, 

dan 1,08 bps/Hz untuk efisiensi bandwidth. Temuan ini 

menunjukkan bahwa CNN dapat digunakan secara efektif 

dalam sistem prediksi kanal untuk mendukung penerapan 

beamforming adaptif pada VSC. 

Kata kunci— Virtual Small Cell, Hotspot Prediction, 5G, 

Beamforming, Convolutional Neural Network (CNN) 

 

I. PENDAHULUAN 

Perkembangan jaringan 5G meningkatkan kecepatan 

transfer data dan kapasitas jaringan untuk memenuhi 

kebutuhan pengguna yang tinggi, namun juga 

menghadirkan tantangan kompleks, terutama dalam 

manajemen lalu lintas di area padat atau hotspot. Virtual 

Small Cell (VSC) menjadi solusi dengan membentuk cell 

virtual adaptif sehingga kapasitas dapat dialokasikan 

dinamis sesuai kebutuhan[1]. 

Beamforming mendukung efisiensi VSC dengan 

mengarahkan sinyal presisi ke perangkat di hotspot, 

meningkatkan kualitas sinyal, dan mengurangi 

interferensi[2]. Pengelompokan kanal berdasarkan 

karakteristiknya memungkinkan beam diarahkan lebih 

tepat, sehingga efisiensi spektrum meningkat dan konsumsi 

energi berkurang[3]. 

Kanal adaptif memberikan fleksibilitas penyesuaian 

frekuensi dan daya secara otomatis untuk merespons 

perubahan kondisi lingkungan, mengurangi interferensi, 

dan meningkatkan kualitas sinyal. Prediksi karakteristik 

kanal menjadi penting, dan Convolutional Neural Network 

(CNN) efektif untuk tugas ini karena kemampuannya 

mengidentifikasi pola spasial dan temporal pada data 

kanal[3]. 

Penelitian ini mengembangkan model VSC dengan 

beamforming, clustering kanal, dan prediksi UE berbasis 

CNN untuk meningkatkan throughput, menurunkan latensi, 

pada jaringan 5G di area hotspot. 

II. KAJIAN TEORI 

A. Kajian Pustaka 

Berbagai studi terkait menunjukkan potensi metode 

pembelajaran mesin untuk mendukung efisiensi VSC pada 

jaringan 5G. Penelitian pertama menggunakan LSTM 

untuk prediksi hotspot guna mendukung beamforming 

adaptif, namun belum mengeksplorasi keunggulan CNN 

dalam ekstraksi fitur spasial[1]. Studi kedua menerapkan 

Graph Convolution Network (GCN) untuk pengolahan data 

spasial, tetapi tidak mengintegrasikan CNN dalam prediksi 

atau clustering kanal hotspot[4]. Penelitian ketiga 

mengusulkan Reinforcement Convolutional Transfer 

Learning (RC-TL) untuk prediksi lintasan pengguna, 

namun belum diarahkan pada prediksi kanal hotspot VSC 

berskala spasial-temporal kecil[5]. Studi keempat 

membuktikan kemampuan CNN memodelkan data spasial-

temporal pada data iklim, namun belum diaplikasikan di 

jaringan VSC[6]. Selain itu, pendekatan hibrid CNN 

terbukti meningkatkan akurasi klasifikasi data 

hiperspektral, tetapi belum dioptimalkan untuk prediksi 

hotspot VSC dengan teknik clustering[7]. 

 

B. Virtual Small Cell 

Virtual Small Cell (VSC) pada jaringan 5G 

memungkinkan pembentukan cell virtual secara dinamis di 

area dengan permintaan tinggi atau hotspot tanpa 

infrastruktur fisik tambahan, sehingga kapasitas jaringan 

dapat difokuskan pada area dengan kebutuhan data besar 

untuk mengoptimalkan pengalaman pengguna dan 

mengurangi biaya operasional. Dengan memanfaatkan 

perangkat pengguna sebagai node tambahan untuk 

mendistribusikan sinyal, VSC mengurangi kebutuhan 
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infrastruktur, meningkatkan efisiensi operasional, dan 

memungkinkan penyesuaian kapasitas jaringan secara 

fleksibel sesuai kebutuhan tanpa perubahan signifikan pada 

konfigurasi jaringan[1]. 

 𝑆𝐼ܴܰ(ௗ஻)= ௉௜.௝∙ ீ௜,௝ே0+∑ ௞≠௜௉௞,௝∙ீ௞௝   (1) 

 

 
GAMBAR 1 

 ARSITEKTUR VIRTUAL SMALL CELL [1] 

Gambar 1 menunjukkan arsitektur Virtual Small Cell 

(VSC) pada jaringan seluler yang memanfaatkan Massive 

MIMO serta spektrum berlisensi dan tidak berlisensi. 

Macro Base Station (MBS) dengan antena Massive MIMO 

melayani berbagai perangkat pengguna (UE), sementara 

VSC dibentuk secara virtual melalui kelompok UE yang 

dikoordinasikan oleh satu perangkat sebagai Cell Head 

(merah) untuk mengelola komunikasi lokal dan menjadi 

perantara dengan MBS. Terdapat pula Cell Head 

Candidate (biru) sebagai calon pengganti jika diperlukan, 

sedangkan anggota UE lainnya ditandai dengan warna 

hitam. 

 

C. Beamforming 

Beamforming adalah teknik pemrosesan sinyal dalam 

komunikasi nirkabel yang mengarahkan gelombang radio 

ke penerima tertentu untuk memperkuat sinyal dan 

mengurangi interferensi, dengan memfokuskan pancaran 

(“beam”) sesuai lokasi perangkat penerima[2]. Pada 
jaringan 5G, terutama di frekuensi gelombang milimeter, 

beamforming meningkatkan kualitas sinyal, jangkauan, dan 

kapasitas jaringan dengan mengatur fase dan amplitudo 

sinyal dari setiap elemen antena array sehingga terjadi 

interferensi konstruktif di arah target dan destruktif di arah 

lain, sesuai persamaan dasar beamforming[9]. (ݐ)ݕ = ∑ ߱݊ே௡= 1 ⋅  (2)  (ݐ)݊ݔ

D. K-Means Clustering 

K-Means Clustering adalah salah satu algoritma 

unsupervised learning paling populer dalam ilmu data dan 

pembelajaran mesin yang digunakan untuk membagi 

sekumpulan data ke dalam sejumlah kelompok (klaster) 

berdasarkan kemiripan antar data. Konsep dasar dari K-

Means adalah mencari titik-titik pusat klaster (centroid) 

sedemikian rupa sehingga jarak rata-rata antar anggota 

klaster ke pusatnya diminimalkan[14]. ܬ =  ∑ ∑ ݆ݔ|| − ௝∈஼௜௄௜=1||݅ߤ    (3) 

ujuan optimasi adalah mencari pembagian klaster dan 

posisi centroid ݅ߤ sedemikian rupa sehingga nilai fungsi ݆ݔ 

minimum. 

E. Deep learning 

Deep learning merupakan cabang dari machine 

learning yang berfokus pada penggunaan jaringan neural 

yang mendalam (deep neural networks) untuk mengekstrak 

pola kompleks dari data melalui lapisan-lapisan 

pemrosesan yang hierarkis. Metode ini telah membuktikan 

efektivitasnya dalam berbagai aplikasi, seperti pengenalan 

gambar, pengenalan suara, pemrosesan bahasa alami, dan 

lain-lain, karena kemampuannya untuk menghasilkan 

model dengan akurasi yang tinggi pada data yang beragam 

dan kompleks[15]. 

F. Convolutional Neural Network (CNN) 

Convolutional Neural Network (CNN) adalah jenis 

deep neural network yang dirancang untuk memproses data 

visual dan spasial dengan memanfaatkan lapisan konvolusi 

untuk menangkap fitur lokal seperti tepi, tekstur, dan 

objek[18]. Arsitekturnya umumnya terdiri dari lapisan 

konvolusi untuk ekstraksi fitur, pooling untuk reduksi 

dimensi dan beban komputasi, serta fully connected di 

bagian akhir untuk menghasilkan klasifikasi atau 

prediksi[19]. 

 
GAMBAR 2 

 ARSITEKTUR CONVOLUTIONAL NEURAL NETWORK [19] 

Gambar tersebut menunjukkan arsitektur dasar dari 

jaringan saraf konvolusional atau Convolutional Neural 

Network (CNN) yang digunakan untuk pengenalan pola 

pada data gambar. Proses dimulai dari sebuah citra input 

berukuran 10×10 piksel, yang kemudian diproses melalui 

lapisan konvolusi. Pada lapisan ini, diterapkan tiga buah 

filter berukuran 3×3 untuk mengekstraksi fitur lokal dari 

gambar, menghasilkan tiga citra fitur (feature maps) 

berukuran 8×8. Setelah itu, hasilnya diproses oleh lapisan 

max-pooling dengan ukuran 2×2, yang berfungsi untuk 

mereduksi dimensi spasial dengan tetap mempertahankan 

fitur yang paling menonjol. Output dari pooling layer ini 

berupa tiga gambar berukuran 4×4 piksel [19]. 

G. Gated Recurrent Unit 

Gated Recurrent Unit (GRU) adalah varian RNN yang 

mengatasi masalah vanishing gradient pada data sekuensial 

dengan struktur lebih sederhana dari LSTM namun tetap 

mampu mempertahankan informasi jangka panjang. Model 

hybrid CNN-GRU menggabungkan keunggulan CNN 

dalam ekstraksi fitur spasial dan GRU dalam menangkap 

hubungan temporal, di mana CNN bertindak sebagai 

ekstraktor fitur awal dan GRU memproses urutan fitur 

untuk memodelkan dinamika temporal secara efektif [22].  

 
GAMBAR 3  

ARSITEKTUR HYBRID CNN-GRU [22] 

Gambar tersebut memperlihatkan arsitektur hybrid 

CNN–GRU untuk memproses data spasial sekaligus 
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menangkap hubungan temporal. Input berupa citra 

grayscale 32×32 diproses oleh lapisan konvolusi pertama 

(C1, 6 filter) menghasilkan enam feature map 28×28, 

kemudian diperkecil oleh pooling pertama (S2) menjadi 

14×14. Lapisan konvolusi kedua (C3, 12 filter) 

menghasilkan feature map 10×10 yang kembali diperkecil 

oleh pooling kedua (S4) menjadi 5×5. Setiap peta fitur ini 

kemudian diubah menjadi rangkaian fitur dan diumpankan 

ke GRU untuk memproses informasi sekuensial secara 

efisien dengan mempertahankan informasi relevan dan 

mengabaikan yang tidak penting. 

H. Probability Density Function 

Probability Density Function (PDF) adalah fungsi 

matematika yang menggambarkan kemungkinan relatif 

dari suatu variabel acak kontinu mengambil nilai tertentu 

dalam suatu rentang. Tidak seperti variabel diskrit yang 

menggunakan Probability Mass Function (PMF), PDF 

digunakan untuk variabel kontinu di mana probabilitas 

untuk satu nilai spesifik adalah nol, dan probabilitas 

didefinisikan sebagai area di bawah kurva PDF dalam 

rentang tertentu [24]. ݂ݔ(௫) =  1√2గఙ2 exp (− (௫−ఓ)22ఙ2 ) (4) 

I. Cumulative Distribution Function 

Cumulative Distribution Function (CDF), atau dalam 

bahasa Indonesia disebut Fungsi Distribusi Kumulatif, 

adalah suatu fungsi matematika yang menggambarkan 

probabilitas kumulatif dari sebuah variabel acak. Artinya, 

CDF memberikan nilai probabilitas bahwa suatu variabel 

acak XX akan memiliki nilai yang kurang dari atau sama 

dengan suatu angka tertentu x. Secara matematis, CDF 

didefinisikan sebagai [25]: (ݔ)ݔܨ − ܲ( ≤  (5)  (ݔ

ungsi ini berlaku baik untuk variabel acak kontinu 

maupun diskrit, meskipun bentuk dan sifat matematisnya 

berbeda tergantung jenis variabelnya. CDF 

merepresentasikan akumulasi probabilitas dari kiri ke 

kanan sepanjang garis bilangan real. Jika kita mengamati 

grafik CDF, maka pada nilai xx yang sangat kecil 

(mendekati minus tak hingga), nilainya akan mendekati nol 

karena hampir tidak ada kemungkinan bahwa XX lebih 

kecil dari nilai tersebut[25]. 

J. Signal Interference Noise Ratio 

Signal-to-Interference-plus-Noise Ratio (SINR) adalah 

metrik yang digunakan dalam sistem komunikasi nirkabel 

untuk mengukur kualitas sinyal yang diterima. SINR 

menunjukkan perbandingan antara kekuatan sinyal yang 

diinginkan dengan jumlah gangguan (interference) dari 

sinyal lain serta derau (noise) dari lingkungan atau 

perangkat keras [26]. 𝑆𝐼ܴܰ =  ௣ೄ∑ ௉೔+ ே0೔ಿ=1   (6) 

Fungsi ini digunakan untuk mengukur kualitas 

penerimaan sinyal dalam suatu sistem komunikasi nirkabel, 

di mana semakin tinggi nilai SINR, semakin baik kualitas 

sinyal yang diterima, dan semakin kecil kemungkinan 

terjadinya kesalahan transmisi data. 

K. Received Signal Strength Indicator 

Received Signal Strength Indicator (RSSI) adalah 

ukuran kekuatan sinyal radio yang diterima oleh suatu 

perangkat penerima, biasanya dinyatakan dalam satuan 

desibel-milliwatts (dBm). RSSI tidak mengukur kualitas 

sinyal secara keseluruhan, tetapi hanya mengukur kuantitas 

energi sinyal yang diterima, sehingga sering digunakan 

sebagai indikator kekuatan konektivitas dalam sistem 

komunikasi nirkabel seperti Wi-Fi, ZigBee, Bluetooth, atau 

jaringan seluler [27]. ܴ𝑆𝑆𝐼(݀) = ݐܲ + ݐܩ + ݎܩ − (݀)10݃݋10݈݊ −  (7) ܮ

Persamaan ini menggambarkan bahwa semakin jauh 

jarak penerima dari pemancar, maka RSSI akan semakin 

kecil (lebih negatif). 

L. Bandwidth Efficiency 

Bandwidth Efficiency atau spectral efficiency adalah 

ukuran efisiensi penggunaan spektrum frekuensi dalam 

sistem komunikasi digital. Bandwidth efficiency 

menunjukkan jumlah data (bit) yang bisa dikirim per detik 

dalam satu satuan bandwidth (Hz), umumnya dinyatakan 

dalam satuan bps/Hz (bits per second per Hertz). Semakin 

tinggi efisiensi bandwidth, maka semakin banyak data yang 

dapat dikirim melalui kanal komunikasi dengan lebar pita 

tertentu, tanpa memperbesar alokasi spektrum frekuensi 

[28]. ݊ =  ோ஻್    (8) 

Secara konsep, nilai n menggambarkan kemampuan 

suatu sistem komunikasi memanfaatkan lebar pita yang 

tersedia. 

III. METODE 

Penelitian ini menggunakan pendekatan kuantitatif 

dengan metode eksperimental untuk memprediksi dan 

melakukan clustering kanal hotspot dalam jaringan virtual 

small cell menggunakan Convolutional Neural Network 

(CNN). Pendekatan ini bertujuan untuk mengidentifikasi 

area hotspot pada kanal jaringan berdasarkan pola 

penggunaan spektrum dan perilaku pengguna, sehingga 

dapat meningkatkan efisiensi alokasi kanal pada area padat 

pengguna. 
A. Alat Yang Digunakan 

Penelitian ini menggunakan perangkat keras (hardware) 
dan perangkat lunak (software) yang mendukung 
pengolahan data dan implementasi Convolutional Neural 
Network (CNN) untuk melakukan clustering pada kanal 
hotspot di Virtual Small Cell (VSC). 

TABEL 1 
PERANGKAT KERAS YANG DIGUNAKAN UNTUK 

MELAKUKAN PENELITIAN 

Perangkat Lenovo Ideapad 330-14AST 

Processor AMD A4-9125 RADEON R3, 4 

COMPUTE CORES 2C+2G      2.30 

GHz 

RAM 8 GB 

OS Windows 10 Home Single Language 

System Type 64-bit operating system, x64-based 

processor 

Model simulasi yang dirancang dan diimplementasikan 
dalam penelitian ini menggunakan program Python untuk 
membuat arsitektur CNN-nya dan software MATLAB 
R2023b. Digunakan untuk mensimulasikan hasil penelitian 
serta uji coba data penelitian. Adapun Python untuk 
pengolahan dataset dan pengembangan model yang akan 
digunakan dalam penelitian. 

B. Alur Penelitian 
Penelitian ini mencakup berbagai langkah-langkah 

yang perlu dilakukan untuk mencapai hasil yang 
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diharapkan. Berikut adalah tahapan yang dilakukan, 
disertai dengan flowchart berikut berikut. 

 

GAMBAR 4  

(FLOWCHART ALUR PENELITIAN) 

Flowchart pada Gambar 4 menggambarkan alur 

penelitian yang dimulai dari persiapan data dan perangkat 

penelitian, pengambilan serta pemuatan dataset 

penggunaan kanal komunikasi small cell, dilanjutkan 

dengan pembersihan data dan normalisasi fitur. 

Selanjutnya dilakukan ekstraksi fitur spasial dan temporal 

untuk analisis hotspot, lalu dibangun dan dilatih model 

CNN guna mengenali pola penggunaan kanal. Hasil 

ekstraksi CNN digunakan untuk proses clustering hotspot 

virtual dengan metode seperti K-means, dan tahap akhir 

adalah evaluasi hasil clustering untuk mengukur akurasi 

dan kesesuaian dengan tujuan penelitian. 

C. Arsitektur Model 

Berikut adalah diagram model untuk algoritma prediksi 

hotspot menggunakan CNN-GRU. 

 

GAMBAR 5  

(DIAGRAM MODEL CNN-GRU) 

Diagram menunjukkan arsitektur CNN untuk 

memprediksi gambar heatmap berikutnya dari urutan 

heatmap grayscale sebelumnya. Model terdiri dari encoder 

dengan lapisan konvolusi, BatchNorm, ReLU, dan dua max 

pooling untuk mengekstraksi fitur spasial penting sambil 

mengurangi dimensi, serta decoder yang menggunakan 

konvolusi dan upsampling untuk mengembalikan ukuran 

gambar. Fungsi aktivasi sigmoid di akhir menghasilkan 

satu heatmap dengan nilai piksel 0–1 sebagai prediksi 

frame selanjutnya, yang dapat diulang secara autoregresif 

untuk memproyeksikan beberapa frame ke depan. 

D. Simulasi Beamforming 

Dalam rangka mengevaluasi dampak prediksi distribusi 

pengguna terhadap efektivitas pengelolaan jaringan, 

penelitian ini melakukan simulasi beamforming sebagai 

tahap lanjutan setelah proses prediksi hotspot 

menggunakan model CNN-GRU, berikut topologi 

beamforming pada penelitian ini. 
TABEL 2 

PARAMETER INPUT 

Tipe Antena Planar Array 16x16 

Koordinat Base Station (BS) 1175, 1175 (Di tengah) 

Tinggi BS (heightBS) 35 Meter 

Radius Maksimal Cluster 300 Meter 

Tinggi UE (hUE) 1,5 meter 

Frekuensi Carrier 3,6 GHz 

Noise Figure 7 dB 

TABEL 3  

PARAMETER INPUT 

SINR(dB) Rasio sinyal terhadap 

interferensi dan noise 

RSSI(dBm) Kuat sinyal yang diterima oleh 

UE 

BANDWIDTH 

EFFECIENCY(bps/Hz) 

Efisiensi spektrum yang 

didapat tiap UE 
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IV. HASIL DAN PEMBAHASAN 

Penelitian ini dilakukan dengan mensimulasikan sistem 

jaringan seluler yang mengimplementasikan Virtual Small 

Cell (VSC) dalam area perkotaan padat. Trafik pengguna 

pada area ini sangat dinamis dan menunjukkan pola spasial 

tertentu tergantung waktu. Dataset yang digunakan berupa 

peta distribusi trafik (traffic heatmap) yang menunjukkan 

tingkat kepadatan pengguna (User Equipment/UE) di area 

2D berukuran 100x100 satuan, dibagi menjadi 10x10 grid. 

Setiap grid menyimpan informasi jumlah UE aktif pada 

satu waktu tertentu. CNN digunakan untuk mempelajari 

pola distribusi trafik pada data historis dan memprediksi 

kondisi trafik di masa mendatang. Prediksi ini menjadi 

dasar pengambilan keputusan sistem jaringan untuk 

menyalakan atau mematikan VSC secara otomatis di 

lokasi-lokasi yang diprediksi sebagai hotspot. Proses 

simulasi dan evaluasi dilakukan untuk membandingkan 

performa prediksi dengan kondisi aktual, serta mengukur 

efektivitas penerapan CNN dalam mendukung manajemen 

jaringan berbasis VSC. 

A. Hasil Percobaan  

Pada bagian ini dibahas hasil dari serangkaian 

percobaan yang dilakukan untuk mengevaluasi performa 

model prediksi hotspot berbasis arsitektur CNN-GRU. 

Model dilatih menggunakan dataset heatmap distribusi 

pengguna jaringan dalam grid berukuran 10×10 yang 

disiapkan dalam bentuk sekuens time-series. Tujuan utama 

dari eksperimen ini adalah untuk melihat kemampuan 

model dalam memprediksi pola sebaran pengguna di masa 

depan, yang menjadi dasar dalam pengambilan keputusan 

penempatan Virtual Small Cell (VSC) secara dinamis. 

B. Hasil dan Analisis SINR 
Dalam pengukuran ini, nilai SINR dianalisis per jam 

dengan menghitung rata-rata nilai SINR dari seluruh titik 
pengguna yang tercover oleh arah beam. Selisih antara nilai 
rata-rata SINR hasil prediksi dan ground truth digunakan 
sebagai indikator. 

TABEL 4  
TABEL NILAI MEAN SINR PREDIKSI DAN GROUND TRUTH 

Jam Mean SINR 

Prediksi (dB) 

MeanSINR 

Ground Truth 

(dB) 

Selisih 

(dB) 

1 18.14 20.13 1.99 

2 17.59 20.26 2.67 

3 17.97 20.61 2.64 

4 17.37 21.45 4.08 

5 17.18 21.26 4.08 

6 17.77 20.98 3.21 

7 17.55 20.80 3.25 

8 16.23 20.72 4.49 

9 17.57 21.34 3.77 

10 17.44 20.96 3.52 

11 16.81 21.48 4.67 

12 16.63 21.46 4.83 

13 16.56 21.12 4.56 

14 16.09 19.58 3.49 

15 17.91 20.39 2.48 

16 16.70 19.96 3.26 

17 16.47 20.36 3.89 

18 16.55 20.71 4.16 

19 16.86 20.90 4.04 

20 18.24 21.13 2.89 

21 17.32 20.93 3.61 

22 17.52 21.64 4.12 

23 17.23 20.57 3.34 

24 16.90 20.25 3.35 

Selisih Minimum terjadi pada Jam ke-1, 20.13 - 18.14 
= 1.99 dB dan Selisih Maksimum terjadi pada Jam ke-12, 
21.46 - 16.63 = 4.83 dB. 

 
GAMBAR 5  

GRAFIK CDF SINR 24 JAM 

Grafik CDF menunjukkan kurva prediksi dengan 

kemiringan lebih rendah dibanding ground truth, 

mengindikasikan kecenderungan model menghasilkan 

SINR lebih rendah. Hal ini sejalan dengan rata-rata prediksi 

17,19 dB yang lebih kecil dari ground truth 20,79 dB. 

 
GAMBAR 6  

GRAFIK PDF SINR 24 JAM 

Grafik PDF memperlihatkan distribusi probabilitas 

SINR, di mana prediksi memiliki puncak lebih lebar dan 

condong ke kiri dibanding ground truth, menandakan 

prediksi lebih menyebar dan kurang optimal. Meski bentuk 

distribusinya serupa, terdapat selisih rata-rata 3,6 dB (GT: 

20,79 dB; Prediksi: 17,19 dB) yang menunjukkan gap 

performa cukup signifikan. 
C. Hasil dan Analisis RSSI 

Dalam pengukuran ini, nilai RSSI dianalisis per jam 
dengan menghitung rata-rata nilai RSSI dari seluruh titik 
pengguna yang tercover oleh arah beam. Selisih antara nilai 
rata-rata RSSI hasil prediksi dan ground truth digunakan 
sebagai indikator. 
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TABEL 5  

TABEL NILAI MEAN RSSI PREDIKSI DAN GROUND TRUTH 

Jam Mean RSSI 

Prediksi 

(dBm) 

Mean RSSI 

Ground Truth 

(dBm) 

Selisih 

(dBm) 

1 -77.20 -77.05 0.15 

2 -77.31 -77.33 0.02 

3 -77.27 -77.55 0.28 

4 -76.93 -76.99 0.06 

5 -77.54 -76.74 0.80 

6 -77.02 -77.50 0.48 

7 -76.99 -76.90 0.09 

8 -77.21 -77.35 0.14 

9 -77.41 -77.18 0.23 

10 -77.44 -77.03 0.41 

11 -77.13 -77.10 0.03 

12 -77.64 -76.68 0.96 

13 -77.41 -76.80 0.61 

14 -77.63 -76.98 0.65 

15 -77.33 -77.08 0.25 

16 -77.46 -77.66 0.20 

17 -77.33 -77.27 0.06 

18 -77.24 -77.53 0.29 

19 -77.19 -77.31 0.12 

20 -77.13 -77.22 0.09 

21 -77.49 -77.08 0.41 

22 -77.40 -76.68 0.72 

23 -77.13 -77.12 0.01 

24 -77.49 -77.16 0.33 

Selisih Minimum: 0.01 dBm (Jam ke-23) dan Selisih 
Maksimum: 0.96 dBm (Jam ke-12), Secara keseluruhan, 
perbedaan nilai RSSI antara prediksi dan ground truth 
bersifat kecil, menunjukkan bahwa model cukup handal 
dalam memetakan kekuatan sinyal. 

 
GAMBAR 7  

GRAFIK CDF RSSI 24 JAM 

Grafik CDF RSSI menunjukkan kurva prediksi dan 
ground truth yang hampir seluruhnya tumpang tindih, 
dengan rata-rata masing-masing −77,30 dBm dan −77,14 
dBm (selisih 0,16 dBm), menandakan tingkat ketepatan 
prediksi yang sangat tinggi tanpa pergeseran signifikan 
pada distribusi. 

 
GAMBAR 8  

GRAFIK PDF RSSI 24 JAM 

Grafik PDF RSSI menunjukkan distribusi prediksi dan 
ground truth yang hampir identik berbentuk normal 
simetris dengan puncak sekitar −77 dBm. Prediksi sedikit 
lebih lebar namun perbedaannya minim, menandakan 
model mampu merepresentasikan penyebaran nilai RSSI 
secara akurat tanpa bias signifikan. 

 
D. Hasil dan Analisis Bandwidth Efficiency 

Dalam pengukuran ini, nilai Bandwidth Efficiency 

dianalisis per jam dengan menghitung rata-rata nilai 

Bandwidth Efficiency dari seluruh titik pengguna yang 

tercover oleh arah beam. Selisih antara nilai rata-rata 

Bandwidth Efficiency hasil prediksi dan ground truth 

digunakan sebagai indikator. 
TABEL 6  

TABEL NILAI MEAN BANDWIDTH EFFICIENCY PREDIKSI DAN 
GROUND TRUTH 

Jam Mean 

Bandwidth 

Efficiency 

Prediksi 

(bps/Hz) 

Mean 

Bandwidth 

Efficiency 

Ground Truth 

(bps/Hz) 

Selisih 

(bps/Hz) 

1 6.12 6.78 0.66 

2 5.94 6.80 0.86 

3 6.07 6.94 0.87 

4 5.87 7.18 1.31 

5 5.81 7.13 1.32 

6 6.00 7.04 1.04 

7 5.93 6.99 1.06 

8 5.52 6.95 1.43 

9 5.94 7.16 1.22 

10 5.89 7.03 1.14 

11 5.71 7.20 1.49 

12 5.63 7.19 1.56 

13 5.62 7.08 1.46 

14 5.46 6.61 1.15 

15 6.05 6.85 0.80 

16 5.65 6.71 1.06 

17 5.59 6.83 1.24 

18 5.61 6.95 1.34 

19 5.72 7.00 1.28 

20 6.14 7.08 0.94 

21 5.85 7.02 1.17 

22 5.92 7.24 1.32 

23 5.83 6.94 1.11 
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24 5.72 6.80 1.08 

Selisih Minimum: 0.66 bps/Hz (Jam ke-1) dan Selisih 

Maksimum: 1.56 bps/Hz (Jam ke-12). 

 

GAMBAR 9 

 GRAFIK CDF BANDWIDTH EFFICIENCY 24 JAM 

Grafik CDF menunjukkan kurva prediksi berada di kiri 

kurva ground truth, menandakan kecenderungan model 

memprediksi efisiensi bandwidth lebih rendah. Rata-rata 

prediksi 6,12 bps/Hz lebih kecil 0,66 bps/Hz dari ground 

truth 6,78 bps/Hz, dan median prediksi juga tercatat lebih 

rendah. 

 
GAMBAR 10  

GRAFIK PDF BANDWIDTH EFFICIENCY 24 JAM 

Grafik PDF menunjukkan distribusi prediksi lebih 

sempit dan tinggi dengan puncak sekitar 6,2 bps/Hz, 

sedangkan ground truth lebih lebar dengan puncak 6,8 

bps/Hz. Hal ini menandakan model mengunderestimate 

efisiensi bandwidth dan kurang merepresentasikan variasi 

kondisi jaringan meski tren umum distribusi tetap 

tertangkap. 

V. KESIMPULAN 

Penelitian ini mengusulkan dan mengevaluasi sistem 
prediksi pola sebaran hotspot pengguna dalam jaringan 
seluler menggunakan pendekatan deep learning berbasis 
CNN-GRU, dengan tujuan mendukung alokasi 
beamforming adaptif pada skenario Virtual Small Cell 
(VSC). Dataset berupa data spasial pengguna yang 
dipetakan ke dalam grid 10×10 digunakan sebagai input 
untuk memodelkan distribusi trafik dalam horizon waktu 
ke depan. 

Evaluasi beamforming dilakukan dengan cara 
membandingkan hasil SINR, RSSI, dan efisiensi 
bandwidth (Bandwidth Efficiency) dari arah beam hasil 
prediksi terhadap arah beam dari ground truth. Hasil 
analisis CDF dan PDF menunjukkan bahwa model prediksi 
mampu mempertahankan pola distribusi sinyal yang 
menyerupai data aktual, terutama dalam aspek spasial. 
Namun, terdapat kecenderungan sistematis model untuk 
melakukan underestimation terhadap nilai SINR dan 
efisiensi spektrum, dengan selisih rata-rata SINR sekitar 
3.6 dB dan efisiensi bandwidht sekitar 1.16 bps/Hz dari 
ground truth. 

Distribusi RSSI menunjukkan hasil yang lebih stabil, 
dengan selisih rata-rata hanya 0.16 dBm selama 24 jam. Ini 
menunjukkan bahwa prediksi arah beam tetap menjangkau 
area dominan dengan intensitas sinyal yang cukup baik. 
Secara keseluruhan, sistem prediksi berbasis CNN-GRU 
menunjukkan performa yang menjanjikan dalam 
mendukung beamforming adaptif, dengan akurasi spasial 
tinggi dan toleransi nilai sinyal yang masih dalam batas 
wajar. 
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