
ISSN : 2355-9365 e-Proceeding of Engineering : Vol.12, No.6 Desember 2025 | Page 8805

Perancangan dan Pengembangan Sistem Alat
Pemindai Sedimen dengan Implementasi Image

Stitching Berbasis Python-OpenCV, Flask,
Supabase, dan Protokol MQTT

1st Bayu Lesmana
School of Electrical Engineering

Telkom University
Bandung, Indonesia

bayuish@student.telkomuniversity.ac.i d

2nd Dini Fitria Arifah
School of Electrical Engineering

Telkom University
Bandung, Indonesia

dinifitri@student.telkomuniversity.ac.id

3rd Muhamad Auli’a Ardani
School of Electrical Engineering

Telkom University
Bandung, Indonesia

muhamadardani@student.telkomuniver
sty.ac.id

Abstrak — Dokumentasi visual sedimen merupakan bagian
penting dalam studi geologi dan pemetaan lingkungan. Metode
manual yang mengandalkan pengambilan gambar terpisah
sering menghadapi kendala inkonsistensi posisi, pencahayaan,
dan sudut pandang, yang berakibat pada penurunan kualitas
data. Selain itu, penggunaan perangkat konvensional seperti
pemindai laboratorium beresolusi tinggi tidak efisien karena
biaya dan pemeliharaan yang tinggi. Untuk mengatasi
permasalahan ini, dikembangkan sistem pemindai sedimen
berbasis image stitching yang memanfaatkan Python, OpenCV,
dan Flask untuk pengolahan citra secara otomatis. Protokol
MQTT digunakan untuk komunikasi data real-time antara
perangkat pemindai dan server, sedangkan Supabase
dimanfaatkan untuk penyimpanan dan pengelolaan data citra
secara terpusat di cloud. Pengujian dilakukan dengan 3 size
sedimen yakni 30 cm, 50 cm dan 100 cm menunjukkan
keberhasilan transmisi data mencapai 96,2% dengan latensi
rata-rata 1,12 detik. Proses image stitching menghasilkan citra
utuh dalam waktu kurang dari 10 detik untuk berbagai
lintasan. Sistem ini terbukti efektif dalam meningkatkan
konsistensi, efisiensi, dan keandalan dokumentasi visual
sedimen.

Kata kunci — Image stitching, Python, OpenCV, Flask, MQTT,
Supabase

I. PENDAHULUAN

Dokumentasi visual sedimen memegang peranan
penting dalam studi geologi, pemetaan lingkungan, dan
konservasi sumber daya alam [1]. Data visual yang presisi
sangat diperlukan untuk mengidentifikasi karakteristik fisik
sedimen dan mendukung analisis ilmiah lanjutan. Namun,
metode dokumentasi konvensional sering kali tidak konsisten
akibat variasi pencahayaan, sudut pengambilan gambar, dan
perbedaan resolusi. Di sisi lain, alat laboratorium seperti
Multi- Sensor Core Logger (MSCL-S) memang mampu
menghasilkan citra berkualitas tinggi, tetapi tidak efisien
untuk digunakan di lapangan karena harga yang tinggi dan
kebutuhan pemeliharaan yang kompleks [2]. Menghadapi
keterbatasan tersebut, dikembangkan sistem pemindai
sedimen berbasis image stitching untukmenghasilkan citra
utuh dari fragmen-fragmen gambar yang diambil secara
terpisah. Sistem ini memanfaatkan Python dengan pustaka
OpenCV sebagai inti proses penggabungan citra, sementara
Flask digunakan sebagai server untuk mengelola alur
pemrosesan. Data dikirimkan secara real- time menggunakan
protokol MQTT, memastikan komunikasi yang efisien dan
andal. Seluruh citra hasil penggabungan beserta metadata
disimpan di Supabase sebagai basis data cloud, yang
memungkinkan akses cepat, terdistribusi, dan aman.

Pengembangan sistem ini diharapkan mampu
meningkatkan efisiensi dan konsistensi dokumentasi visual

sedimen, mengurangi ketergantungan pada metode manual,
serta memberikan alternatif yang lebih ekonomis dan
fleksibel dibandingkan perangkat konvensional.

II. KAJIAN TEORI
Kajian teori berfungsi untuk memberikan landasan

konseptual terhadap teknologi-teknologi yang digunakan
dalam penelitian ini. Pemahaman yang baik terhadap teori
dasar ini menjadi kunci dalam merancang sistem pemindai
sedimen berbasis image stitching yang efisien. Adapun
teknologi yang menjadi fokus kajian meliputi Python, Flask,
OpenCV, MQTT, dan Supabase

A. Image Stiching
Image stitching adalah teknik penggabungan beberapa

citra menjadi satu panorama utuh beresolusi tinggi [3]. Teknik
ini krusial untuk memperluas bidang pandang dokumentasi
sedimen tanpa kehilangan detail spasial, sehingga seluruh
sampel dapat terekam dalam satu citra menyeluruh.

Pada sistem SedimTrack, proses stitching dilakukan
otomatis menggunakan Python sebagai bahasa utama, Flask
sebagai pengatur alur backend, dan OpenCV sebagai pustaka
pemrosesan citra.
Alur kerja sistem sebagai berikut:

1. Mobile App mengambil serangkaian fragmen citra

sedimen secara berurutan sepanjang lintasan
pemindaian, lalu mengunggahnya ke Supabase.

2. PC Pemrosesan memantau status unggahan melalui
MQTT. Setelah menerima sinyal bahwa semua citra
telah terunggah, PC mengunduh seluruh fragmen dari
Supabase.

3. OpenCV melakukan proses stitching yang meliputi
aligning, cropping, dan rotasi korektif berdasarkan
urutan pengambilan. Pendekatan ini memanfaatkan
stabilitas posisi kamera sehingga tidak memerlukan
pencocokan fitur kompleks, membuat proses lebih
cepat dan efisien.

4. Hasil panorama diunggah kembali ke Supabase dan
tersedia untuk diakses melalui Mobile App pada
menu hasil.

Metode ini terbukti efisien karena proses dapat diselesaikan
dalam waktu kurang dari 10 detik per lintasan, dengan kualitas
hasil yang konsisten berkat kontrol posisi kamera yang presisi.

B. Pyhton

Python merupakan bahasa pemrograman tingkat tinggi
yang bersifat interpreted, open source, dan multi-platform [4].
Bahasa ini terkenal karena sintaksnya yang sederhana serta

ISSN : 2355-9365 e-Proceeding of Engineering : Vol.12, No.6 Desember 2025 | Page 8806

dukungan pustaka yang luas untuk berbagai kebutuhan
seperti komputasi ilmiah, pengolahan data, machine learning,
hingga pengolahan citra.
Keunggulan Python antara lain:

1. Sintaks sederhana yang memudahkan
pengembangan cepat (rapid development).

2. Ekosistem pustaka luas seperti NumPy, Pandas, dan
OpenCV yang mendukung pengolahan data dan
citra.

3. Portabilitas tinggi, dapat berjalan di berbagai sistem
operasi tanpa banyak penyesuaian kode.

Dalam penelitian ini, Python digunakan sebagai bahasa
utama pada sisi server untuk mengelola proses pemrosesan
citra sedimen. Proses image stitching memanfaatkan pustaka
OpenCV yang terintegrasi dalam ekosistem Python, sehingga
memberikan fleksibilitas dan efisiensi dalam pengembangan.

C. Flask
Flask adalah microframework web berbasis Python yang

fleksibel dan ringan [5]. Dalam sistem SedimTrack, Flask
berfungsi sebagai pengelola alur backend antara pengguna,
proses pengolahan citra, dan modul komunikasi berbasis
MQTT. Peran Flask dalam sistem ini anatara lain :

1. Menerima notifikasi dari MQTT bahwa seluruh

gambar hasil pemindaian telah diunggah ke
Supabase.

2. Mengunduh seluruh gambar dari Supabase
sesuai urutan pemindaian.

3. Menjalankan proses image stitching otomatis
menggunakan OpenCV (stitching, cropping,
rotasi).

4. Mengunggah hasil stitching kembali ke
Supabase pada direktori /Image/Results.

5. Menyediakan API bagi aplikasi mobile untuk
mengakses dan menampilkan hasil stitching pada
menu Hasil.

Flask juga memungkinkan pengendalian stitching

secara interaktif melalui antarmuka web atau API yang
dapat dipicu oleh sistem otomatis berdasarkan status
pemindaian.

D. MQTT sebagai Protokol Komunikasi Antar

Perangkat. Message Queuing Telemetry
Transport (MQTT)

merupakan protokol komunikasi ringan (lightweight) yang
menggunakan arsitektur publish-subscribe [6]. MQTT
dirancang untuk aplikasi Internet of Things (IoT) dan
machine-to-machine (M2M) yang membutuhkan efisiensi
pada jaringan dengan bandwidth terbatas, latensi rendah,
dan reliabilitas tinggi. MQTT beroperasi pada lapisan
aplikasi model TCP/IP. Umumnya, koneksi dilakukan
melalui:

 Port TCP 1883 untuk koneksi non-terenkripsi.
 Port TCP 8883 untuk koneksi terenkripsi dengan

Transport Layer Security (TLS).

Implementasi TLS menjadi sangat penting pada
infrastruktur publik untuk menjamin keamanan,
integritas, dan kerahasiaan data yang dikirimkan melalui
jaringan [7]. Dalam sistem SedimTrack, MQTT
digunakan sebagai mekanisme sinkronisasi status antar
perangkat yang terhubung, yaitu aplikasi pengendali,
perangkat pemindai, dan komputer pemroses stitching.

1. Arsitektur Publish-Subscribe dalam SedimTrack
- Publisher (Aplikasi Mobile)
Aplikasi mobile mempublikasikan pesan ke broker
MQTT pada topik tertentu, misalnya scanner/status,
dengan payload berupa flag (contohnya nilai boolean
true) yang menandakan bahwa seluruh gambar telah
berhasil diunggah ke Supabase.
- Broker MQTT
Broker bertindak sebagai perantara yang
mendistribusikan pesan dari publisher ke subscriber
sesuai topik yang sama.
- Subscriber (Komputer Pemroses)
Komputer pemroses yang berlangganan (subscribe)
pada topik scanner/status akan menerima pesan dan
secara otomatis memulai proses image stitching
menggunakan Python, Flask, dan OpenCV.

2. Quality of Service (QoS) dan Retained Message

Untuk menjaga keandalan pengiriman pesan, sistem
menggunakan QoS Level 1 yang menjamin pesan terkirim
setidaknya satu kali. Meskipun terdapat kemungkinan
duplikasi pesan, QoS 1 memberikan keseimbangan antara
keandalan transmisi dan efisiensi bandwidth. Selain itu,
digunakan fitur Retained Message. Dengan retained
message, broker menyimpan salinan pesan terakhir pada
topik yang bersangkutan, sehingga subscriber baru yang
berlangganan akan langsung menerima pesan terbaru tanpa
harus menunggu publisher mengirimkan ulang.

3. Keunggulan MQTT pada Sistem SedimTrack

 Ringan dan efisien, cocok untuk komunikasi status
real-time.

 Andal, dengan QoS 1 yang menjamin pengiriman
pesan penting minimal satu kali.

 Reaktif, dengan arsitektur event-driven yang
memungkinkan sinkronisasi otomatis antar perangkat.

Dengan kombinasi arsitektur publish-subscribe, QoS 1, dan

retained message, MQTT terbukti andal untuk mengatur alur
kerja real-time antara proses akuisisi gambar, pemrosesan
stitching, dan penyimpanan hasil pada Supabase.

E. Open CV

OpenCV (Open Source Computer Vision Library)
merupakan pustaka fundamental dalam bidang computer
vision dan pemrosesan citra digital [8]. Dalam sistem
SedimTrack, OpenCV menjadi inti proses image stitching,
yang menggabungkan beberapa citra hasil pemindaian menjadi
citra panorama. OpenCV dipilih karena:

 Efisiensi komputasi: mendukung manipulasi citra

(resize, cropping, masking, rotasi, transformasi
geometris) langsung di Python.

 Fleksibilitas metode: mampu mengakomodasi baik
stitching berbasis pencocokan fitur maupun metode
deterministik.

Pada sistem SedimTrack, digunakan pendekatan

deterministik yang memanfaatkan kestabilan posisi kamera
yang dikontrol oleh sistem motorik presisi. Pendekatan ini
berbeda dari metode berbasis deteksi fitur seperti SIFT atau
ORB, karena:

 Lebih ringan secara komputasi.

ISSN : 2355-9365 e-Proceeding of Engineering : Vol.12, No.6 Desember 2025 | Page 8807

 Lebih cepat diproses karena posisi citra sudah
terkalibrasi.

Tahapan utama stitching meliputi:

1. Penggabungan citra horizontal dengan penyesuaian

offset vertikal berdasarkan urutan pengambilan.
2. Pemotongan bagian atas citra menggunakan metode

trapezoidal masking untuk menghilangkan distorsi
tepi.

3. Rotasi korektif dengan transformasi affine untuk
menyelaraskan orientasi horizontal.

Seluruh proses ini berjalan otomatis segera setelah

proses pemindaian selesai dan data gambar tersedia di
cloud storage.

III. METODE

Bab ini menjelaskan metodologi yang digunakan
dalam penelitian pengembangan sistem SedimTrack, yang
dirancang untuk melakukan pemindaian sedimen secara
otomatis dengan dukungan Flask, OpenCV, MQTT, dan
Supabase.

Metode penelitian ini berfokus pada perancangan

arsitektur sistem, implementasi proses integrasi antar
komponen, serta pengujian performa sistem dalam
skenario kerja nyata. Tahapan penelitian dibagi menjadi
tiga bagian utama sebagai berikut

A. Tahap Perancangan System
Tahapan perencanaan sistem bertujuan untuk merancang
arsitektur perangkat lunak serta alur kerja proses stitching
hingga penyimpanan hasil panorama.

GAMBAR 1
Gambar Alur Sistem

Gambar 3.8 berfungsi sebagai ilustrasi alur sistem
SedimTrack-IoT, yang menunjukkan interaksi antar
komponen mulai dari proses pemindaian sedimen,
pengiriman data ke cloud, pemrosesan stitching di PC,
hingga pengunggahan kembali hasil panorama ke
Supabase untuk ditampilkan pada aplikasi mobile.

Berdasarkan alur tersebut, perencanaan sistem
perangkat lunak mencakup tiga bagian utama:

1. Perancangan Front End PC Stitching dengan
Flask dan HTML

Antarmuka berbasis web dirancang menggunakan Flask
sebagai backend dan HTML sebagai frontend. Antarmuka
ini berfungsi sebagai pusat kontrol dan monitoring proses
stitching, serta menampilkan hasil panorama yang telah
diproses.

2. Perancangan Code Stitching
Proses stitching dirancang menggunakan Python dengan
pustaka OpenCV. Algoritma meliputi aligning citra, cropping
bagian tepi, serta rotasi korektif untuk menghasilkan
panorama yang konsisten dan presisi.

3. Perancangan Supabase Storage
Supabase digunakan sebagai penyimpanan cloud terpusat.
Struktur direktori disusun untuk memisahkan data mentah
hasil pemindaian (raw images) dan hasil panorama (stitched
images). Pengaturan akses dirancang agar PC stitching dapat
mengunduh data mentah dan mengunggah kembali hasil
panorama secara terstruktur dan efisien.

B. Tahap Implementasi

Tahap implementasi berfokus pada pengintegrasian seluruh
komponen sistem agar dapat beroperasi secara otomatis dan
sinkron, dengan memanfaatkan MQTT sebagai mekanisme
komunikasi utama.

Pada tahap ini, PC stitching dihubungkan ke broker MQTT

dan berlangganan (subscribe) pada topik
iot/sedim/device_stat/condi. Topik ini berfungsi sebagai
penanda status bahwa proses pemindaian telah selesai. Selama
proses pemindaian berlangsung, PC berada dalam mode siaga
sambil memantau perubahan nilai pada topik tersebut.

Ketika nilai pada topik condi berubah menjadi True, hal ini

menandakan bahwa semua citra hasil pemindaian telah
berhasil diunggah oleh aplikasi mobile ke Supabase Storage
pada direktori /Image/Image_Upload. Setelah sinyal diterima,
PC stitching secara otomatis memulai serangkaian proses
berikut:

1. Mengunduh gambar mentah dari Supabase Storage.
2. Menjalankan proses stitching menggunakan Python

dan OpenCV, dengan metode sequential cropping
berbasis offset untuk menggabungkan citra menjadi
panorama utuh.

3. Mengunggah hasil panorama ke Supabase pada
direktori /Image/Results agar dapat diakses kembali
oleh aplikasi mobile.

Integrasi ini memastikan seluruh alur kerja pemrosesan

berlangsung otomatis tanpa intervensi manual, meminimalkan
keterlambatan, dan menjaga konsistensi proses pengolahan
data

IV. HASIL DAN PEMBAHASAN

Pengujian dilakukan untuk mengevaluasi kemampuan
sistem dalam menggabungkan citra hasil pemindaian menjadi
panorama utuh secara otomatis. Proses image stitching
berjalan setelah seluruh citra berhasil diunggah ke Supabase
oleh aplikasi mobile. PC stitching kemudian memproses citra
menggunakan Python dan OpenCV, dengan parameter
evaluasi meliputi keberhasilan stitching, waktu pemrosesan,
dan kesesuaian hasil terhadap citra asli.

Uji coba dilakukan pada tiga skenario panjang

lintasan: 30 cm, 50 cm, dan 100 cm. Pada lintasan 30 cm dan
50 cm, hasil stitching menunjukkan sambungan antar citra
yang mulus, distribusi pencahayaan merata, dan keselarasan
posisi yang konsisten. Pada lintasan 100 cm, stitching tetap
berhasil secara geometris, namun muncul garis tipis pada
beberapa titik sambungan akibat perbedaan pencahayaan

ISSN : 2355-9365 e-Proceeding of Engineering : Vol.12, No.6 Desember 2025 | Page 8808

antar segmen, bukan karena kesalahan algoritma.

Waktu pemrosesan rata-rata kurang dari 10 detik
untuk seluruh skenario pada PC dengan spesifikasi
standar. Pipeline otomatis dari download–stitching–
upload berjalan stabil tanpa intervensi manual.

TABEL 1
Performa Sistem

Size

(cm)

Download

Time (s)

Download

Size (KB)

Upload

Time (s)

Upload

Size

(KB)

Total

Time

(s)

30 4.40 10012 3.08 1561 3.36

50 6.55 16810 3.53 3150 4.00

100 14.46 34739 6.59 6748 7.54

Hasil pengujian membuktikan bahwa sistem mampu

melakukan stitching otomatis secara konsisten pada
berbagai ukuran lintasan. Perbedaan pencahayaan pada
lintasan panjang dapat diatasi dengan penyesuaian
konfigurasi pencahayaan, sementara dari sisi algoritma,
pipeline sudah stabil dan dapat diimplementasikan untuk
pemantauan sedimen berbasis IoT secara real-time.

V. KESIMPULAN

Berdasarkan hasil perancangan, implementasi, dan

pengujian sistem dokumentasi sedimen berbasis otomasi
image stitching pada proyek SedimTrack, diperoleh
kesimpulan sebagai berikut:

1. Sistem SedimTrack berhasil mengintegrasikan

PC stitching berbasis Python–Flask–OpenCV
dengan Supabase Storage dan MQTT,
menghasilkan proses otomatis mulai dari
pengambilan gambar, pengunggahan ke cloud,
hingga stitching panorama secara penuh.

2. Protokol MQTT dengan QoS 1 dan TLS
berfungsi optimal dalam sinkronisasi status antar
perangkat. PC stitching dapat memulai proses
secara otomatis ketika topik status condi berubah
menjadi True, menunjukkan bahwa semua
gambar telah tersedia di cloud.

3. Proses stitching pada lintasan 30 cm, 50 cm, dan
100 cm berhasil dilakukan dengan tingkat
keberhasilan 100%, waktu pemrosesan di bawah
10 detik, dan hasil panorama yang konsisten
secara geometris. Variasi pencahayaan pada
lintasan panjang (100 cm) menjadi faktor visual
minor yang dapat diperbaiki dengan penyesuaian
pencahayaan.

4. Performa transfer data menunjukkan waktu
unduh dan unggah yang proporsional terhadap
jumlah citra, dengan rata-rata total waktu
pemrosesan end- to-end tetap efisien.

5. Sistem telah memenuhi tujuan penelitian, yaitu
menghasilkan pipeline dokumentasi sedimen
yang otomatis, terintegrasi, dan andal, meskipun
ruang pengembangan lebih lanjut masih
terbuka untuk
analisis lanjutan seperti segmentasi citra atau
integrasi kecerdasan buatan.

REFERENSI

[1] W. K. Chen, Linear Networks and Systems. Belmont,
CA: Wadsworth, 1993, pp. 123–135.
[2] A. H. G. Chan dan D. S. T. Lam, “Application of IoT for
environmental monitoring: A review,” Environmental
Monitoring and Assessment, vol. 192, no. 10, pp. 1–20, Oct.
2020.
[3] R. Szeliski, Image Alignment and Stitching: A Tutorial.
San Rafael, CA: Morgan & Claypool Publishers, 2006.
[4] G. van Rossum dan F. L. Drake, Python 3 Reference
Manual. Scotts Valley, CA: CreateSpace, 2009.
[5] M. Grinberg, Flask Web Development: Developing Web
Applications with Python. Sebastopol, CA: O’Reilly Media,
2018.
[6] A. Banks dan R. Gupta, MQTT Essentials: A
Lightweight IoT Protocol. Birmingham, UK: Packt
Publishing, 2016.
[7] HiveMQ, “MQTT Essentials Part 6: Quality of Service
0, 1 & 2,” Internet: https://www.hivemq.com/mqtt-
essentials, Jan. 2021 [Diakses: 2 Agu. 2025].
[8] G. Bradski dan A. Kaehler, Learning OpenCV 4:
Computer Vision with Python. Sebastopol, CA: O’Reilly
Media, 2020.

