DESIGN OF LIFE CYCLE COST (LCC) ANALYSIS CSHARP BASED SOFTWARE TO INCREASE THE EFFECTIVENESS AND EFFICIENCY IN MACHINE MAINTENANCE

Indah Kurniawati¹, Judi Alhilman², Budi Laksono Putro³

^{1,2,3}Industrial Engineering Undergraduate Study Program, Industrial and System Engineering Faculty, Telkom University

indahk95@gmail.com¹, judi.alhilman@gmail.com², blputro@gmail.com³

Abstract

Globalisation era is era where technology becomes primary need for every sector in industry. Technology that usually used by manufacturer are robot, machine, information system/ technology, etc. Those technology can help the company to minimize defect and control the poduction time which is one of quality control system scope. One of quality control aspect is maintenance management which often become an issue in a company because it spend a lot of money. Thus, in this era most of company are challenged to find a method that make maintenance more efficient and effective, minimize cost and complexity. The method that suitable with this case is life cycle cost analysis. Unfortunately, most of company lack of industrial engineer in their maintenance department that cause life cycle cost can not be applied in those company, whereas life cycle cost analysis is method that can help the company to get the optimum lifespan of machine or equipment, and how many maintenance crew that needed in every maintenance activity for each machine which drive to the minimum overall cost that has to be paid during the lifespan of machine or equipment. The aim of this research is to build an application or software that can help the company and maintenance department to perform life cycle cost analysis. With this application, it is expected that many companies can push down their expenses and make the machine perform better.

Keywords: life cylce cost, LCC, csharp, C#, application, software, maintenance.

1. Introduction

Globalization era is era where competition among countries, industries, and companies are all open. Period development which more and more faster, drive the society to make the same pace with technology development. Nowadays, technology become very important thing in every sector of industry. Role of technology become primer needs or eventore is like culture for every entity.

In manufacturing industry, technology which can be applied are robot, machine, or information system or technology. Those kind of technology can help the company to minimize and to control the production time and defect product. This is very related with quality control system, where there are some aspect, and one of the aspects is maintenance management.

Maintenance usually become an issue in the company, because maintenance likely spend a lot of money and sometimes the schedule of maintenance activity collide with production schedule. So that in this era where maintenance develop as fast as the time passed by and it become challenge for company, also method or tool is needed in order to do maintenance which more effective and efficien, so it can push down the cost and complexity.

Based on the explanation, maintenance very identical with cost and lifespan of the machine, this is appropriate with one of the method in maintenance management which is Life Cycle Cost. In order to facilitate the employee or the worker while doing the calculation of life cycle cost analysis, also minimise the time and cost, the calculation of life cycle cost analysis can be done with the help of information technology/ system.

Based on those things, so in this research or final project will be made a software that can perform life cycle cost analysis. The software will be made in C# language. This language choosen as the needs of the code and software itself. On the day forward, this software or application can become an ultimate solution for the company which still lack of industrial engineer in their maintenance department just than have to recruit or lease a cosultant.

2. Method

2.1 Life Cycle Cost

Life Cycle Cost is a calculation of estimation cost from the beginning until the completion of equipment or project as defined by analysis and estimation of total expense along the lifespan study or simply end to end cost that has to be paid so that equipment can operate as its function.

In this reearch, life cycle cost analysis used to define the optimum lifespan, amount of maintennace crew that provided to repair the failure of the machine or object. According to Barringer (1996), LCC has a model, where the model is a representation from a problem that can represent the real problem. In this research, the problem turn in to model through LCC approachment, which illustrate as follows:

Sustaining Cost

Sustaining cost is cost that has to be paid because of ownership toward an equipment or machine during a certain period.

Operating Cost

Operating cost is cost that has to be paid because of operation of an equipment or machine in every period.

Maintenance Cost

Maintenance cost is cost that has to be paid because of maintenance activity toward that equipment or machine continously in every period during the operation cycle of the equipment.

Shortage Cost

Shortage cost is cost that has to be paid because of shortage of unit as a result of shortage of maintenance site crew to repair the equipment which broken.

Acquisition Cost

Acquisition cost is cost that has to be paid because initial purchasing of an equipment or system.

Purchasing Cost

Purchasing cost is overall cost that paid for purchasing an equipment or machine that needed in a system. For every different retirement age, it has different annual purchasing cost.

Population Cost

Population cost is cost that has to be paid in every period of ownership toward the equipment.

2.2 Distribution of Time to Repair and Failure

Distribution Identification have to know what kind of distribution that belongs to failure time and repair time of a machine or component as a purpose. The following distributions are statistics distribution that usually used as failure and repair distribution. [1]

- 1. Normal distribution or known as bell distribution because the curve looks like a bell. Normal distribution has two parameters which are μ and σ . Followed by value of MTTF and MTTR = μ
- 2. Exponential distribution tend to represent the constant failure rate and independent toward time. Exponential distribution only has one parameter which is μ or λ .

Followed by value of MTTF and MTTR = $\frac{1}{2} = \mu$

3. Weibull distribution has three parameters which are α , β , dan γ . β represent the lifespan stage of a machine or equipment. If $\beta < 1$ it means machine still in its early stage (phase 1) or new, if $\beta = 1$ it

means machine in its usefull stage (phase 2), or else $\beta > 1$ it means machine in its wear-out stage (phase 3) or old.

Followed by value of MTTF and MTTR = $\alpha \Gamma \left(1 + \frac{1}{\alpha}\right)$

2.3 Queue Theory

Queue system is association of customer, channel, an set of rule that settle customer arrival and processing of queue service problem where indicated by five components which are customer arrival pattern, service pattern, unit channel, system capacity to take the customer, and rule about how the customer served. Queuing type that usually used in maintenance activity are single channel single phase, and multi channel single phase.

3. Designing System

Application or software that will be made is application to calculate life cycle cost analysis. There are some diagrams that made to represent both the business process and also how the system work.

3.1 Use Case Diagram

Use case used to know what the function/ process that include in an application and who have the right to use those functions/ processes.

Based on Figure. 1 it shows that there are three use cases which are calculate MTTF and MTTR, manage cost data, and then system has to do life cycle cost analysis calculation. It also known that one and only external entity which can operating the system is user, in this final project user refers to maintenance crew.

3.2 Activity Diagram

Activity Diagram is used to shows the flow of process if it looked from two perspective, user perspective and system as well.

Figure 3.2 Activity Diagram

3.3 Data Flow Diagram

Data Flow Diagram (DFD) is diagram that used to illustrate the flow of the data, what the data that needed for each processes are, where the data and the result store is. Data Flow Diagram of this application/ software is in appendix.

Table 4.1 Input Data

4. Software Making and Testing

4.1 Input/Output Analysis

Input	tipe data	Proses	output	proses	Output
Nama Mesin	varchar				
nterval Waktu Analisis	integer				
ml Mesin	integer				
ml TK	integer	Perhitungan Operating Cost	Hasil Operating Cost		
Jaji TK	integer	$OC = ec + ((k^*12)^*tk)$	OC (Rupiah, Tabel)		
nflasi	double				
ml Shift	integer				
Energy Cost	integer	and the second second		and the second	
ml TK	integer				
nflasi	double				
Jaji MC	double				
nterval Waktu Analisis	integer	Perhitungan Maintenance Cost	Hasil Maintenance Cost		
Equipment Cost	double	MC = Cr + ((lc*12)*tk) + Cc + Ce	MC (Rupiah, Tabel)		
Consumable Cost	double				
nl Maint. Crew	integer				
ml Shift	integer				
aya Perbaikan	double			Proses Perhitungan LCC	Laporan LCC
otential Revenue	double			LCC = OC + MC + SC + AC	(Grafik, Tabel, Anali
ITTF/MTBF	combobox2				
Parameter 1	double		P		
Parameter 2	double		6		
1TTR	combobox1	Perhitungan Shortage Cost	Hasil Shortage Cost		
Parameter 1	double	SC = Cs * E(s)	SC (Rupiah, Tabel)		
Parameter 2	double				
nl TK	integer				
nflasi	double				
nterval Waktu Analisis	integer				
nl Mesin	integer				
nflasi	double				
uku Bunga	double	Perhitungan Acquisition Cost			
1		AC = Annual Equivalent			
nterval Waktu Analisis	integer	Population Cost + Total Annual	Hasil Acquisition Cost		
	_	Purchasing Cost	AC (Rupiah, Tabel)		
Iarga Beli	double			1	
Calculation Production Production Cost or	rocesses Annual E	quivalent Population (Cost		
— • • • • • • • • • • • • • • • • • • •	<u>A</u> AAA.				••••••
		1			•••••
: Annual Ec	quivalent P	opulation Cost			
: Annual Ec	quivalent C	Cost per unit			
201 · Equal Payr	- nent Series	Capital Recovery			
A	nont Sories	Singlying Fund			
🖌 🖉 🛛 Equal Payr	nem series	Singking rund			
: amount of	unit mach	ine			
: Book Valı	le				
: Purchasing	g Cost				
ok Value	-				
= � n ^p <u>- F</u>					••••••
: book value					

P : first cost of a unit

n : retirement age of units n > 1

F : e L : e	estimated salvage value of a unit estimated life of the unit
Salva	ge Value
F = P P : f i : i	(4) First cost of a unit Inflation
Annu	al Purchasing Cost
Annu D	al Purchasing Cost = 🏵 🐨 🖓 *N
P C	an : Equal Payment Series Capital Recovery
N	: amount of unit machine
Annu Annu	al Population Cost or Acquisition Cost al population cost = annual purchasing cost + annual equivalent population cost
Oper	ating Cost
\$\$ =	• • • • • • • • • • • • • • • • • • •
OC	: Operating Cost
TK N	: amount of operator
Sh	: amount of shift per day
Gaji	: operator monthly salary
Multi	plied by 12 moth for annual cost
Main	itenance Cost
?? =	$= \widehat{\phi}\widehat{\phi} + \widehat{\phi}\widehat{\phi} + (\widehat{\phi}\widehat{\phi} + \widehat{\phi}\widehat{\phi} + 12)(7)$
MC Cr	: Maintenance Cost
Cc	: Consumable Cost
Ce	: Equipment Cost
M	: Maintenance Crew
Sn GM	: maintenance crew monthly salary
Multi	plied by 12 moth for annual cost
Show	togo Cost
SIIOT =	Cs [E(S)] (8)
SC	: Shortage Cost
Cs	: Shortage Cost per unit
	$= \nabla \hat{\mathbf{x}} + \mathbf{A} $ (0)
	$= \sum_{\boldsymbol{x} = 0} \pi \boldsymbol{x} \cdot \boldsymbol{x} \dots (9)$
N	: amount of unit machine
n Pn	: Probability of machine broken
Pn = 1	P0 x Cn
	(10)
	$\frac{\Psi(\overline{\varphi})}{(\varphi)} $ (11)
P0	: Probability 0 machine broken
Ν	: amount of unit machine

- : amount of unit machine broken n
- М : Maintenance Crew
- λ
- : MTTR (Mean Time to Repair) : MTBF (Mean Time between Failures) μ

Multi Channel Single Phase Queuing System

Hapus Figure 4.2 Input Form of the application

	M=1		M=2		M=3	3	M=4	c	M=S	6	M=6	5
Tahun 1	Rp	17350. n & 426	Rp	17.432.713.719	Rp	17.524.930.792	Rp	17.619.6523 n	Rp	17.715.369.438	Rp	17.B11.582.625
Tahun2	Rp	10.133.186.521	Rp	10216.IIJ1.449	Rp	10.312.305.326	Rp	10.411.767214	Rp	10.512.515339	Rp	10.613.904.104
Tahun3	Rp	7.B13.342.659	Rp	7.896.166.076	Rp	1.9962 n .1.2S	Rp	8.100.575.388	Rp	8206.535.730	Rp	8313.323.573
Tahun4	Rp	6.719.97&.848	Rp	6801.315.018	Rp	6.905.085.284	Rp	7.014.271.485	Rp	7.125.605.767	Rp	7238.009.038
Tahun5	Rp	6.120.173.922	Rp	6198.101.027	Rp	6.305.158.002	Rp	6.419.222.004	Rp	6536.062.683	Rp	6.654.284.487
Tahun6	Rp	5. n o.97&.233	Rp	5.842.908.840	Rp	5.952.688.171	Rp	6.071.535.633	Rp	6.193.973.004	Rp	6318.195.029
Tahun7	Rp	5569.729.732	Rp	5.632.201.067	Rp	5.743.B84.833	Rp	5.867.307.790	Rp	5995.373.054	Rp	6.125.744.761
Tahun8	Rp	5.466.732.189	Rp	5.515.130.002	Rp	5.627566.100	Rp	5.755.204.610	Rp	5.B88.847.688	Rp	6.025.472.066
Tahun9	Rp	5.436.267.286	Rp	5.464.461.715	Rp	5.576.058.946	Rp	5.707.350.727	Rp	5.B46.411.249	Rp	5.989.326.120
Tahun 10	Rp	5.465.145.308	Rp	5.465.009.790	Rp	5.573.600.185	Rp	5.707.715.603	Rp	5.BS1.885.029	Rp	6.001.038.563
Tahun11	Rp	5547.681312	Rp	5.508.455.732	Rp	5.611.115.359	Rp	5.746871.951	Rp	5.B95.644.157	Rp	6.050.862.863
Tahun12	Rp	5.683. 408.753	Rp	5.590.854.528	Rp	5.683.668.806	Rp	5.819.420.188	RID	5.972.027.045	Rp	6.132.974.004
Tahun13	Rp	5.B76.132 921	Rp.	5.711.409.373	Rp	5.789.165.976	Rp	5.922.656.870	Bp	6.077.984 304	Rp	6244.104.709
Tahun 14	Rp	6.133. 752 047	Rp	5.871.918.289	Rp	5.927.704.768	Rp	6.055.881.838	Rp	6.212 360 464	Rp	6382.810.671
Tahun1S	Rp	6.468.613.950	Rp	6.076.625.956	Rp	6.101 301 838	Rp	6.220.066.752	Rp	6.375.529.381	Rp	6549.IIJ4.523

Figure 4.3 One of output form within Ms. Excel

5. Conclusion and Suggestion

Conclusion

According to the result from software testing, it can be concluded that:

- 1. MTTR and MTTF calculation already precise and equal to the manual calculation, the differences occurs because of number rounding off.
- 2. Life Cycle Cost (LCC) Analysis calculation already precise and equal to the manual calculation, the differences occurs because of number rounding off.
- 3. Output analysis can be easily understood with the help of output per process and bar chart per output pr process.

Suggestion

- 1. Other module and software/ application added in.
- 2. For the next research, it can be integrated with another maintenance management method such as Overall Equipment Effectiveness (OEE), Risk Based Maintenance (RBM), and Monte Carlo Simulation.
- 3. Design can be made more attractive and dinamyc.

Form Output

Bibliography:

- [1] Soesetyo, I., & Bendatu, L. Y. (2014). Penjadwalan Predictive Maintenance dan Biaya Perawatan Mesin Pellet di PT Charoen Pokphand Indonesia Sepanjang. 2-4.
- [2] Sinisuka, N. I., & Nugraha, H. (2013). Life Cycle Cost Analysis on The Operation of Power Generation.
- [3] Ebeling, C. (1997). Reliability and Maintability Engineering. London: McGraw-Hill International Edition.
- [4] Anggriawan, A. (2015). Optimalisasi Umur BTS, Jumlah Maintenance Crew dan Penentuan Biaya Maintenance dengan Menggunakan Metode Life Cycle Cost (Studi Kasus: PT Telkomsel Indonesia). jurnal.

I Data Shortage Cos 5 Ferhitung an LCC Shortage Cost MTTE persen Hasil SC Laporan LCC Shortage Cost MTTR Hasil SC MTTF 1.5 Perhtiungan SC MTTR Perhitungan LCC nterval Waktu jml Maint. crew Analisis Inflasi jml Mesin persen Hasil OC Hasil AC Data Operating Cost Nama Mesin 1 jml Shift iml Mesin Hasil OC Interval Waktu Apalisis Nama Mesin 1.1 Hasil MC Energy Cost Interval Waktu Analisis jml TK Perhitungan OC Gaji TK jm IMesin Inflasi User Energy Cost jml Shift jml TK Laporan LCC Equipment Cost jm IMesin Gaji TK jml Shift Interval Waktu Analisis 1.2 Consumable Cost Biaya Perbaikan Equipment Cost Perhitungan MC jml Maint. crew Hasil MC jml Maint, crew iml Inflasi Data Maintenance 2 Cost Consumable Cost Harga Beli Biaya Perbaikan Inflasi Perhitungan AC Suku Bunga lasil AC Harga Beli Data Acquisition Cost 3 Inflasi

DFD Level 1

