Pengelompokan Data Siswa Di Indonesia Menggunakan K-means Clustering

Rizky Maulana, Fairuz Azmi, Purba Daru Kusuma

Abstract

Tingginya angka siswa putus sekolah di Indonesia menjadi kasus yang tidak pernah lepas dari perhatian pemerintah. Akibat kurangnya pembangunan mutu pendidikan, faktor ekonomi, dan susahnya akses ke sekolah, secara kuantitas muncul jumlah angka anak putus sekolah yang dominan pada provinsi tertentu. Dari permasalahan di atas, dapat dianalisis jumlah siswa putus sekolah di Indonesia dengan pengelompokan jumlah siswa putus sekolah di setiap provinsi serta jumlah sekolah dan jumlah siswa di setiap provinsi di Indonesia. Pada tugas akhir ini dirancang program aplikasi berbasis web untuk mengelompokan data siswa di Indonesia. Metode yang digunakan untuk mengelompokkan data tersebut adalah K-Means Clustering. Keluaran dari tugas akhir ini adalah analisis hasil dari pengelompokan data siswa pada setiap provinsi di Indonesia dan pengujian stabilitas dari K-Means Clustering. Dari hasil pengujian stabilitas clustering, didapatkan standar deviasi terendah yaitu 0 dan yang tertinggi yaitu 4.85 Hasil penelitian ini dapat membantu Dinas Pendidikan dalam mengatasi masalah siswa putus sekolah di Indonesia pada setiap provinsi di Indonesia. Kata Kunci: Pendidikan, data, K-Means Clustering, Standar Deviasi

Full Text:

PDF

Refbacks

  • There are currently no refbacks.
max_upload :0