Perancangan Atribut Program Good To Great Radio K-lite Di Bandung Berdasarkan Preferensi Pendengar Radio Menggunakan Conjoint Dan Cluster Analysis

Rizqi Nur Safitri, Yati Rohayati, Ima Normalia Kusmayanti

Abstract

Abstrak Radio K-Lite merupakan salah satu anak perusahaan Yayasan Pendidikan Telkom (YPT) yang bergerak di bidang penyiaran radio yang ditujukan bagi pendengar berusia 21-44 tahun. Salah satu program yang disiarkan saat prime time yaitu Good to Great. Selama kurun waktu tiga tahun terakhir dari tahun 2016 hingga tahun 2019, Radio K-Lite mengalami penurunan pendapatan. Salah satu faktor penyebab hal tersebut yaitu program yang kurang diminati sehingga menurunkan jumlah pemasang iklan on air yang ditandai dengan menurunnya pendapatan iklan on air. Berdasarkan respon pasar diketahui bahwa Good to Great tidak mendapatkan respon positif. Hasil tersebut menunjukkan bahwa Good to Great belum sesuai dengan keinginan pendengar dan masih memiliki kekurangan. Tujuan dari penelitian ini menggali preferensi pendengar secara mendetail untuk serangkaian atribut program radio. Diketahui bahwa Good to Great masih belum sesuai dengan keinginan pendengar, maka sangat penting bagi pihak Radio K-Lite untuk memahami preferensi pendengar. Kuesioner disebarkan secara online kepada orang yang berdomisili di Bandung dan pernah mendengarkan Good to Great. Terdapat 200 responden yang memenuhi kriteria. Dengan menggunakan metode conjoint analysis dan cluster analysis dapat diperoleh preferensi secara mendetail. Berdasarkan hasil yang didapatkan dari pengolahan data, atribut yang menjadi preferensi pendengar yaitu konten program dengan level atribut musik, talk dan news, karakter penyiar dengan level atribut interaktif, gaya siaran dengan level atribut santai, saluran komunikasi dengan level atribut social media dan akses penerimaan program dengan level atribut radio tape. Selanjutnya, rekomendasi didasarkan atas preferensi pendengar tersebut yang memuat atribut serta level atribut yang perlu diperhatikan dan diperbaiki agar dapat menarik lebih banyak pendengar.

Kata kunci : Conjoint Analysis, Cluster Analysis, Preferensi, Radio K-Lite.

Abstract K-Lite Radio is one of the subsidiaries of Telkom Education Foundation (YPT) which is engaged in radio broadcasting aimed at 21-44 years old listeners. One of the programs that aired during prime time is Good to Great. During the period of the last three years from 2016 to 2019, K-Lite Radio suffered a decline in revenues. One of the contributing factors is that the program is less desirable and lowers the number of on air advertisers that are characterized by declining on air ad revenue. Based on the market response it is known that Good to Great did not get a positive response. The results showed that Good to Great had not yet matched the listener's wishes and still had shortcomings. The purpose of this research explores the listener's preference in detail for a series of radio program attributes. It is known that Good to Great still does not meet the wishes of the listener, it is very important for Radio K-Lite to understand the preference of listeners. The questionnaire was disseminated online to people residing in Bandung and had listened to Good to Great. There are 200 respondents who meet the criteria. Using conjoint analysis and cluster analysis methods, detailed preferences can be obtained. Based on the results obtained from the data processing, the attributes that are the listener preference is the content of the program with the level of music attributes, talk and news, character broadcasters with the level of interactive attributes, broadcast style with a relaxed attribute level, communication channels with the attribute level social media and access programs with the level of radio tape attributes. Furthermore, recommendations are based on those listener preferences that contain attributes and attribute levels that need to be considered and improved to attract more listeners.

Keywords: Conjoint Analysis, Cluster Analysis, preferences, K-Lite Radio

Full Text:

PDF

Refbacks

  • There are currently no refbacks.
max_upload :0