Clustering Pada Data Sentimen Transportasi Online Menggunakan Algoritma Dbscan

Firdi Setiawan, Fairuz azmi, Casi Setianingsih

Abstract

Penelitian ini dilakukan pengelompokan sentimen pada masing –masing data sentimen positif negatif, dan netral menggunakan algoritma DBSCAN (Density-Based Spatial Clustering of Applications With Noise), Tujuan utama dari clustering ini untuk mengelompokkan opini masyarakat yang berdasar pada kesamaan karakteristik atau makna dalam penulisan di antara opini-opini tersebut untuk menentukan positif, negatif, dan netral berdasarkan komentar pada media sosial instagram. Dengan melakukan tahapan preprocessing seperti tokenize, stopword, dan stemming, kemudian dilakukan pembobotan kata dengan menggunakan TF- IDF untuk dapat melakukan pengelompokan opini. Dari hasil Clustering didapatkan hasil dari pengujian dataset positif, negatif, dan netral masing masing diuji coba dengan range nilai min sampel dari 10-50 dan nilai epsilon dari 0,1-1,0 dengan menghasilkan nilai silhouette coefficientnya berbeda beda. Namun untuk nilai terbaik dari ketiga dataset didapatkan pada nilai inputan eps=1,0 dan inputan nilai min sampel = 10, untuk hasil dataset positif nilai silhouette coefficient-nya adalah 0.7800973549904059, untuk hasil dataset netral nilai silhouette coefficient-nya adalah 0.7526159947007542, untuk hasil dataset negatif nilai silhouette coefficient-nya adalah 0.8047251594403672. Kemudian visualisasi data hasil clustering topik tersebut akan ditunjukkan pada perangkat lunak berbasis web yang juga dirancang pada penelitian ini. Kata kunci : Clustering, Preprocessing, Silhouette Coefficient

Full Text:

PDF

Refbacks

  • There are currently no refbacks.
max_upload :0