Prediksi Return Saham menggunakan Bidirectional LSTM dengan Optimisasi Cuckoo Search

Authors

  • Sayid Ghufron Telkom University
  • Deni Saepudin Telkom University

Abstract

Abstrak-Membeli saham bisa dijadikan salah satu pertimbangan berinvestasi selain membeli emas, tanah, dan lainnya. Apalagi ketika terdapat saham yang memiliki risiko yang kecil namun memiliki return yang tinggi. Sudah banyak sekali penelitian mengenai saham menggunakan berbagai metode. Dimulai dari metode yang paling konvensional, hingga menggunakan Deep Learning. Deep Learning merupakan salah satu metode yang ramai dibicarakan, karena metode ini rata-rata menghasilkan model prediksi yang memiliki keakuratan tinggi. Oleh karena itu, dalam tugas akhir dilakukan prediksi return saham pada indeks IDX 30 dengan membangun model prediksi return saham menggunakan kombinasi metode Bidirectional LSTM dan Cuckoo Search Optimization. Terdapat total 20 data saham yang diuji pada tugas akhir ini. Pada pengujian pertama prediksi return saham didapatkan dari prediksi harga saham yang diproses menjadi prediksi return saham. Sedangkan pada pengujian kedua, prediksi return saham didapatkan dari data return saham. Pada pengujian pertama 15 dari 20 data saham memiliki nilai Root Mean Square Error dan Mean Average Error yang lebih kecil ketika hasil prediksi Bidirectional LSTM dikombinasikan dengan Cuckoo Search Optimization. Sedangkan pada pengujian kedua 8 dari 20 data saham memiliki nilai Root Mean Square Error dan Mean Average Error yang lebih kecil ketika hasil prediksi Bidirectional LSTM dioptimasi dengan Cuckoo Search Optimization.
Kata kunci - saham, deep learning, IDX 30, bidirectional LSTM, cuckoo search optimization

References

R. Astuti, “Pengaruh Faktor Makro Ekonomi terhadap Indeks Harga Saham Gabungan (IHSG) di Bursa Efek Indonesia (BEI) Periode 2006-2015,” Jurnal Berkala Ilmiah Efisiensi, 2016.

C. Kwofie and R. K. Ansah, "A Study of the Effect of Inflation and Exchange Rate on Stock Market Returns in Ghana," International Journal of Mathematics and Mathematical Sciences, vol. 2018, 2018.

S. M. Avdalovic and I. Milenkovic, "Impact of Company Performances on the Stock Price: An eEmpirical Analysis on Select Companies in Serbia," Economics of Agriculture, vol. 64, pp. 561-570, 2017.

A. Kempf, C. Merkle and A. Niessen-Ruenzi, "Low Risk and High Return-Affective Attitudes and Stock Market Expectations," European Financial Management, vol. 20, pp. 995-1030, 2014.

G. S. Atsalakis and K. P. Valavanis, "Surveying Stock Market Forecasting Techniques-Part I: Conventional Methods," Journal of Computational Optimization in Economics and Finance, vol. 2, pp. 45-92, 2010.

M. Usmani, S. H. Adil, K. Raza and S. S. A. Ali, "Stock Market Prediction using Machine Learning Techniques," in 2016 3rd International Conference on Computer and Information Sciences (ICCOINS), 2016.

W. Jujie, C. Yu, Q. Shiyao and C. Quan, "Cuckoo Search Optimized Integrated Framework Based on Feature Clustering and Deep Learning for Daily Stock Price Forcasting.," Economic Computation & Economic Cybernetics Studies & Research, vol. 55, 2021.

M. Schuster and K. Paliwal, "Networks Bidirectional Reccurent Neural," IEEE Trans Signal Proces, vol. 45, pp. 2673-2681, 1997.

X. S. Yang and S. Deb, "Cuckoo Search via Levy Flights," in 2009 World Congress on Nature & Biologically Inspired Computing (NaBIC), 2009.

M. A. I. Sunny, M. M. S. Maswood and A. G. Alharbi, "Deep Learning-Based Stock Price Prediction Using LSTM and Bi-Directional LSTM Model," in 2020 2nd Novel Intelligent and Leading Emerging Sciences Conference (NILES), 2020.

K. A. Althelaya, E. S. M. El Alfy and S. Mohammed, "Evaluation of Bidirectional LSTM for Short-and Long-term Stock Market Prediction," in 2018 9th International Conference on Information and Communication Systems (ICICS), 2018.

M. Jia, J. Huang, L. Pang and Q. Zhao, "Analysis and Research on Stock Price of LSTM and Bidirectional LSTM Neural Network," in Proceedings of the 3rd International Conference on Computer Engineering, Information Science & Application Technology (ICCIA 2019), 2019.

F. Wu, C. Cattani, W. Song and E. Zio, "Fractional ARIMA with an Improved Cuckoo Search Optimization for the Efficient Short-term Power Load Forecasting," Alexandria Engineering Journal, vol. 59, pp. 3111-3118, 2020.

X. Zhang, J. Wang and K. Zhang, "Short-term Electric Load Forecasting based on Singular Spectrum Analysis and Support Vector Machine Optimized by Cuckoo Search Algorithm," Electric Power Systems Research, vol. 2017, pp. 270-285, 2017.

X. Sun, W. Sun, J. Wang, Y. Zhang and Y. Gao, "Using a Grey-Markov Model Optimized by Cuckoo Search Algorithm to Forecast the Annual Goreign Tourist Arrivals to China," Tourism Management, vol. 52, pp. 369-379, 2016.

S. A. Alasadi and W. S. Bhaya, "Review of Data Preprocessing Techniques in Data Mining," Journal of Engineering and Applied Sciences, vol. 12, pp. 4102-4107, 2017.

Downloads

Published

2023-05-08

Issue

Section

Program Studi S1 Informatika