Diversity Balancing pada Two-stage Collaborative Filtering untuk Mengatur Less Popular Item dalam Domain Film

Authors

  • Fajar Widhi Ardiyanto Telkom University
  • Dade Nurjanah Telkom University
  • Selly Meliana Telkom University

Abstract

Abstrak-Sistem pemberi rekomendasi film adalah sistem yang bertanggung jawab untuk memberikan rekomendasi kepada penonton film tentang judul film lain yang relevan, menarik, dan mungkin disukai oleh penonton. Salah satu metode yang paling sering digunakan pada system pemberi rekomendasi adalah Collaborative Filtering (CF). CF unggul dalam tingkat accuracy terhadap item yang direkomendasikan kepada pengguna meskipun dalam keadaan konten yang sulit dianalisis sekalipun. Kelemahannya, CF hanya merekomendasikan item yang populer saja. Maka karena itu, dibutuhkan system pemberi rekomendasi yang dapat memberikan rekomendasi item yang kurang popular dengan tingkat accuracy yang masih dapat diterima. Tugas akhir ini mengusulkan sistem pemberi rekomendasi film berbasis Two-stages CF dengan menggunakan metode Diversity Balancing. Sistem ini bekerja dengan memprediksi rating pengguna kemudian menghasilkan daftar kandidat untuk selanjutnya dilakukan Diversity Balancing. Diversity Balancing dilakukan dengan cara mengganti item yang populer dengan item yang kurang populer namun relevan. Hasil pengujian dengan metode precision, recall, personal diversity dan aggregate diversity menunjukkan nilai tertinggi masing-masing adalah 0.8000, 0.5366, 0.5301. 0.3709. Berdasarkan hasil tersebut didapatkan keseimbangan antara accuracy dan diversity di parameter k=7 dan threshold rating sebesar 3.0.

Kata kunci-sistem pemberi rekomendasi, collaborative filtering, diversity, less popular item

References

Asanov, D., (2011). Algorithms and methods in recommender systems. Berlin Institute of Technology, Berlin, Germany

Zhang, Liang et al. (2020) ‘Diversity Balancing for Two-stage Collaborative Filtering in Recommender Systems’, Applied Sciences, 10(4).

Sebastia, L. et al. (2009) 'E-Tourism: A tourist recommendation and planning application', International Journal of Artificial Intelligence Tools, 18, pp. 717–738.

Adomavicius, G. and Tuzhilin, A. (2005) 'Toward the next generation of recommender systems: a survey of the state-of-the-art and possible extensions', IEEE Transactions on Knowledge and Data Engineering, 17(6), pp. 734–749

Lika, B., Kolomvatsos, K. and Hadjiefthymiades, S. (2014) 'Facing the cold start problem in recommender systems', Expert Systems with Applications, 41(4, Part 2), pp. 2065–2073.

Hamedani, E. M. and Kaedi, M. (2019) 'Recommending the long tail items through personalized diversification', Knowledge-Based Systems, 164, pp. 348–357.

Park, yoon-joo (2013) 'The Adaptive Clustering Method for the Long Tail Problem of Recommender Systems', Knowledge and Data Engineering, IEEE Transactions on, 25, pp. 1904–1915. doi: 10.1109/TKDE.2012.119.

Abdollahpouri, H., Burke, R. and Mobasher, B. (2019) 'Managing Popularity Bias in Recommender Systems with Personalized Re-ranking', CoRR, abs/1901.07555.

Yin, H., Cui, B., Li, J., Yao, J. and Chen, C., 2012. Challenging the long tail recommendation. arXiv preprint arXiv:1205.6700.

Gogna, A. and Majumdar, A. (2017) 'Balancing Accuracy and Diversity in Recommendations Using Matrix Completion Framework', Know.-Based Syst., 125(C), pp. 83–95.

Breese, J. S., Heckerman, D. and Kadie, C. (1998) 'Empirical Analysis of Predictive Algorithms for Collaborative Filtering', in Proceedings of the Fourteenth Conference on Uncertainty in Artificial Intelligence. San Francisco, CA, USA: Morgan Kaufmann Publishers Inc. (UAI’98), pp. 43–52.

Mustafa, N. et al. (2017) 'Collaborative filtering: Techniques and applications', in2017 International Conference on Communication, Control, Computing and Electronics Engineering (ICCCCEE), pp. 1–6.

Singh, P., Dutta Pramanik, P. and Choudhury, P. (2020) 'Collaborative Filtering in Recommender Systems: Technicalities, Challenges, Applications, and Research Trends', in. doi: 10.1201/9781003007210-8.

Su, X. and Khoshgoftaar, T. (2009) 'A Survey of Collaborative Filtering Techniques', Adv. Artificial Intellegence, 2009. doi: 10.1155/2009/421425.

Jonathan L. Herlocker, Joseph A. Konstan, Loren G. Terveen, and John T. Riedl. 2004. Evaluating collaborative filtering recommender systems. ACM Trans. Inf. Syst. 22, 1 (January 2004), 5–53. https://doi.org/10.1145/963770.963772

Downloads

Published

2023-06-27

Issue

Section

Program Studi S1 Informatika