Natural Disaster Monitoring Information System From Social Media Data Using Naïve Bayes Algorithm


  • Brilliant Friezka Aina Telkom University
  • Meta Kallista Telkom University
  • Ig. Prasetya Dwi Wibawa Telkom University


In Indonesia, there have been several natural
disasters, such as earthquakes, tsunamis, landslides, floods, and
others. Because Indonesia is situated where the Eurasian,
Pacific, and Indo-Australian plates converge, this potential
natural disaster is caused by this location. Social media
information is expanding quickly and becoming more useful.
Social media helps to alert people of the disaster's location
during a disaster like a flood. Twitter is used as a data search
engine in this work. Twitter has been utilized effectively to
update the public on current events during emergencies. In
order to learn more, we can conduct a search using pertinent
hashtags to determining for the incident's location. The test's
results will show a map of the Indonesian region, and the
disaster's epicenter will be determined using the geolocation
provided by the tweet data. The Naive Bayes approach will be
used for classification. The clustering process occurs in real time
across every region of Indonesia. In this investigation, the
accuracy value was 75% based on the k-fold cross-validation
test, utilizing a fold value of 3.

Keywords—Natural disasters, Twitter, Naïve Baiyes.


Hernandez-Suarez, A., Sanchez-Perez, G., Toscano-Medina, K., PerezMeana, H., Portillo-Portillo, J., Sanchez, V., & Garcia Villalba, L.

(2019). Using Twitter Data to Monitor Natural Disaster Social

Dynamics: A Recurrent Neural Network Approach with Word

Embeddings and Kernel Density Estimation. Sensors, 19(7), 1746.


SOCIAL MEDIA. International Journal of Electronic Commerce

Studies, 7(1), 77 - 94.

Luqyana, W. A., Cholissodin, I., & Perdana, R. S. (2018). Analisis

Sentimen Cyberbullying Pada Komentar Instagram dengan Metode

Klasifikasi Support Vector Machine. Jurnal Pengembangan Teknologi

Informasi Dan Ilmu Komputer (J-PTIIK) Universitas Brawijaya, 2(11),


J. Li et al., "Social Media: New Perspectives to Improve Remote

Sensing for Emergency Response," in Proceedings of the IEEE, vol.

, no. 10, pp. 1900-1912, Oct. 2017, doi:


M. K. Delimayanti, R. Sari, M. Laya, and M. R. Faisal,

Metode Multiclass-SVM pada Model Klasifikasi Pesan Bencana Banjir

di Twitter,= p. 9, 2021.

J. Domala et al.,

Management using Machine Learning and Natural Language

Processing,= in 2020 International Conference on Electronics and

Sustainable Communication Systems (ICESC), Coimbatore, India, Jul.

, pp. 503-508. doi: 10.1109/ICESC48915.2020.9156031.

Ashktorab, Z., Brown, C., Nandi, M. and Culotta, A., May.

Mining twitter to inform disaster response=. In Proceedings of 11th

ISCRAM Conference, USA, 2014.

K. L.Sumathy and M. Chidambaram, "Text Mining: Concepts,

Applications, Tools and Issues An Overview", International Journal

of Computer Applications, vol. 80, no. 4, pp. 29-32, 2013.

Available:10.5120/13851-1685 [Accessed 23 August 2021]

S. Dang, "Text Mining : Techniques and its Application", IJETI

International Journal of Engineering & Technology Innovations, vol.


_Text_Mining_Techniques_and_its_Application. [Accessed 23

August 2021]

Kurniawan, B., Fauzi, M., & Widodo, A. Klasifikasi Berita Twitter

Menggunakan Metode Improved Na _ Ove Bayes. Jurnal

Pengembangan Teknologi Informasi dan Ilmu Komputer, vol. 1, no.

, p. 1193-1200, juli 2017. ISSN 2548-964X. Tersedia pada:






Program Studi S1 Teknik Komputer