Natural Disaster Monitoring Information System From Social Media Data Using Naïve Bayes Algorithm
Abstract
In Indonesia, there have been several natural
disasters, such as earthquakes, tsunamis, landslides, floods, and
others. Because Indonesia is situated where the Eurasian,
Pacific, and Indo-Australian plates converge, this potential
natural disaster is caused by this location. Social media
information is expanding quickly and becoming more useful.
Social media helps to alert people of the disaster's location
during a disaster like a flood. Twitter is used as a data search
engine in this work. Twitter has been utilized effectively to
update the public on current events during emergencies. In
order to learn more, we can conduct a search using pertinent
hashtags to determining for the incident's location. The test's
results will show a map of the Indonesian region, and the
disaster's epicenter will be determined using the geolocation
provided by the tweet data. The Naive Bayes approach will be
used for classification. The clustering process occurs in real time
across every region of Indonesia. In this investigation, the
accuracy value was 75% based on the k-fold cross-validation
test, utilizing a fold value of 3.
Keywords—Natural disasters, Twitter, Naïve Baiyes.
References
Hernandez-Suarez, A., Sanchez-Perez, G., Toscano-Medina, K., PerezMeana, H., Portillo-Portillo, J., Sanchez, V., & Garcia Villalba, L.
(2019). Using Twitter Data to Monitor Natural Disaster Social
Dynamics: A Recurrent Neural Network Approach with Word
Embeddings and Kernel Density Estimation. Sensors, 19(7), 1746.
-doi.org/10.3390/s19071746.
Wu, C. - H. (2016). SOCIAL SENSOR: AN ANALYSIS TOOL FOR
SOCIAL MEDIA. International Journal of Electronic Commerce
Studies, 7(1), 77 - 94. -doi.org/10.7903/ijecs.1411.
Luqyana, W. A., Cholissodin, I., & Perdana, R. S. (2018). Analisis
Sentimen Cyberbullying Pada Komentar Instagram dengan Metode
Klasifikasi Support Vector Machine. Jurnal Pengembangan Teknologi
Informasi Dan Ilmu Komputer (J-PTIIK) Universitas Brawijaya, 2(11),
-4713.
J. Li et al., "Social Media: New Perspectives to Improve Remote
Sensing for Emergency Response," in Proceedings of the IEEE, vol.
, no. 10, pp. 1900-1912, Oct. 2017, doi:
1109/JPROC.2017.2684460.
M. K. Delimayanti, R. Sari, M. Laya, and M. R. Faisal,
Metode Multiclass-SVM pada Model Klasifikasi Pesan Bencana Banjir
di Twitter,= p. 9, 2021.
J. Domala et al.,
Management using Machine Learning and Natural Language
Processing,= in 2020 International Conference on Electronics and
Sustainable Communication Systems (ICESC), Coimbatore, India, Jul.
, pp. 503-508. doi: 10.1109/ICESC48915.2020.9156031.
Ashktorab, Z., Brown, C., Nandi, M. and Culotta, A., May.
Mining twitter to inform disaster response=. In Proceedings of 11th
ISCRAM Conference, USA, 2014.
K. L.Sumathy and M. Chidambaram, "Text Mining: Concepts,
Applications, Tools and Issues An Overview", International Journal
of Computer Applications, vol. 80, no. 4, pp. 29-32, 2013.
Available:10.5120/13851-1685 [Accessed 23 August 2021]
S. Dang, "Text Mining : Techniques and its Application", IJETI
International Journal of Engineering & Technology Innovations, vol.
,p.222014.Available:-www.researchgate.net/publication/2730
_Text_Mining_Techniques_and_its_Application. [Accessed 23
August 2021]
Kurniawan, B., Fauzi, M., & Widodo, A. Klasifikasi Berita Twitter
Menggunakan Metode Improved Na _ Ove Bayes. Jurnal
Pengembangan Teknologi Informasi dan Ilmu Komputer, vol. 1, no.
, p. 1193-1200, juli 2017. ISSN 2548-964X. Tersedia pada: