Face recognition Using the Haar Cascade Classifier and Local Binary Patterns Histogram Algorithms to Detect and Identify Faces for Attendance

Authors

  • Ni Kadek Ayu Purnaningsih Telkom University
  • Meta Kallista Telkom University
  • Faisal Candrasyah Hasibuan Telkom University

Abstract

In the era of globalization, especially in the field
of education, student attendance tracking holds significant value
for monitoring and managing participation within the teaching
and learning process. Face detection and identification play a
pivotal role in various modern technological applications, such
as facial recognition and facial expression analysis. In the
development of this system, a biometric approach using face
recognition is employed, leveraging the Haar Cascade Classifier
method for face detection in images, alongside the Local Binary
Pattern Histogram (LBPH) method for facial identification
through texture patterns. The system's implementation is
conducted using the Python programming language and the
OpenCV library. Testing is performed to recognize faces under
diverse conditions, including variations in distance, light
intensity, facial orientation, background, and accessories. Face
detection and identification time range from 0.04 - 0.08 seconds,
and a distance range of 30 cm - 150 cm.

Keyword — Face Recognition, Haar Cascade Classifier,Local Binary Pattern Histogram (LBPH), OpenCV

References

Munawir, L. Fitria, and M. Hermansyah,

Kehadiran Mahasiswa Menggunakan Metode Haar

Cascade Classifier,= JURNAL NASIONAL

INFORMATIKA DAN TEKNOLOGI JARINGAN,

vol. 4, no. 2, Mar. 2020.

Paul Viola and Michaels J. Jones. (2001). Rapid

Jones, Rapid Object Detection using Detection using

boosted Cascade of Simple Features. IEEE Features.

IEEE CVPR.

A.J. Zenita, S. Budi, B. Agus. (2021).

Suhu Tubuh Otomatis Berbasis Identifikasi Objek

Menggunakan Metode Haar Cascade Clasifier=.

[Online]. Available: -jurnal.polban.ac.id/ojs3.1.2/proceeding/article/view/4172.

Angga Wahyu Wibowo, Aisyatul Karima, Wiktasari,

Amran Yobioktabera, dan Sirli Fahriah. (2021).

"Pendeteksian dan Pengenalan Wajah Pada Foto

Secara Real Time Dengan Haar Cascade dan Local

Binary Pattern Histogram". [Online]. Available:

-digilib.unila.ac.id/26828/4/skripsi_tanpa_bab_

pembahasan.pdf, 2021.

L. R. Febrin, Haryatmi. Emy, "Penggunaan Metode

Haar Cascade Classifier dan LBPH Untuk

Pengenalan Wajah Secara Realtime". [Online].

Available:

-jurnal.uisu.ac.id/index.php/infotekjar/article/

view/4714/pdf.

Raspberrypi.com. (2019). Raspberry Pi 4 Tech

Specs. Diakses pada 31 Januari 2023, dari

-www.raspberrypi.com/products/raspberry-pi4-model-b/specifications/.

A. W. wibowol, A. Karima, W. A. Yobioktabera and

S. Fahriah, "Pendeteksian dan Pengenalan Wajah

pada Foto Secara Real Time dengan Haar Cascade

dan Local Binary Pattern Histogram," vol. 9, no. 1,

R. S. Pressman, Rekayasa Perangkat Lunak

Pendekatan Praktis, Yogyakarta: Andi, 2012.

R. (n.d.). Menentukan Thresholding. Retrieved from

-rubik.web.id

Purnamawati S., R. F. Rahmat., dan Santana M.,

, Aplikasi Pendeteksi Wajah Manusia Untuk

Menghitung Jumlah Manusia, Lentera, Volume 15,

juli 2015.

Zein A., 2018, Pendeteksi Kantuk Secara Real Time

Menggunakan Pustaka OpenCV dan Dlib Python,

Sainstech, Volume 28 Nomor 2, Juli 2018, ISSN:

- 7104

Downloads

Published

2024-06-01

Issue

Section

Program Studi S1 Teknik Komputer