Network Topology Optimization To Increase Network Resilience And Mitigate Congestion On PT Xyz Network
Abstract
Peningkatan penggunaan internet dan aplikasi data secara global dalam dunia digital telah menyebabkan kemacetan jaringan data informasi yang signifikan, menyoroti kebutuhan mendesak akan layanan internet berkecepatan tinggi. Dalam mengatasi masalah ini, teknologi 5G diidentifikasi sebagai solusi yang mampu mengurangi kemacetan proses transmisi dan meningkatkan Kualitas Layanan (QoS) dalam pengadopsian layanan digital, termasuk mobile banking dan aplikasi lainnya. Untuk menghindari kemacetan transmisi data dengan mengelak titik-titik kegagalan kritis, diperlukan desain yang efektif, di mana Algoritma Bellman-Ford terbukti berhasil dalam menganalisa komunikasi data dengan menghindari lalu lintas dan node, sehingga meningkatkan aspek QoS seperti output, tingkat pengiriman paket, dan meminimalkan kehilangan data dari ujung ke ujung. PT. XYZ, perusahaan yang beroperasi dalam bidang digital dengan jaringan komunikasinya, juga menghadapi masalah serupa dan menemukan bahwa pemanfaatan Algoritma Bellman-Ford menyediakan solusi yang cukup akurat untuk mengatasi masalah yang dihadapi. Penambahan link baru sebagai strategi optimasi topologi secara signifikan meningkatkan efisiensi dan QoS jaringan PT XYZ. Evaluasi hasil simulasi menunjukkan bahwa penggunaan Algoritma Bellman-Ford dan Graph Metric Average Betweenness Centrality, yang menyarankan penambahan link baru di titik kemacetan, dapat meningkatkan kinerja jaringan dengan indikasi penurunan kehilangan paket sebesar 54,5% hingga 61%, tergantung pada skenario jumlah link baru yang ditambahkan, dan juga meningkatkan ketahanan jaringan.
Kata kunci — Algoritma Bellman-Ford , Kualitas Layanan (QoS) , Kemacetan Jaringan, Optimalisasi Topolog
References
K. Bhangale, R. Mapari, S. Randive, and K. Mapari, "Cross technology communication between LTE-U and WiFi to improve overall qos of 5G system," 2022 2nd Asian Conference on Innovation in Technology (ASIANCON), Aug. 2022. doi:10.1109/asiancon55314.2022.9909230
A. Andure, "5G network simulation in Smart Cities using neural network algorithm," International Journal for Research in Applied Science and Engineering Technology, vol. 10, no. 11, pp. 1433–1435, Nov. 2022. doi:10.22214/ijraset.2022.47608
K. Lavanya, R. Indira, A. K. Velmurugan, and M. Janani, "Mobility-based optimized multipath routing protocol on Optimal Link State Routing in manet," 2023 International Conference on Applied Intelligence and Sustainable Computing (ICAISC), Jun. 2023. doi:10.1109/icaisc58445.2023.10199484
A. A. Chertkov, Y. N. Kask, and L. B. Ochina, "Streaming network routing based on Bellman-Ford algorithm modification," Vestnik Gosudarstvennogo universiteta morskogo i rechnogo flota imeni admirala S. O. Makarova, vol. 14, no. 4, pp. 615–627, Sep. 2022. doi:10.21821/2309-5180-2022-14-4-615-627
D. Yiltas-Kaplan, "Traffic optimization with softwaredefined network controller on a new user interface," JUCS - Journal of Universal Computer Science, vol. 28, no. 6, pp. 648–669, Jun. 2022. doi:10.3897/jucs.80625
S. Salman and S. Alaswad, "Mitigating the impact of congestion minimization on vehicles’ emissions in a transportation road network," International Journal of Industrial Engineering and Management, vol. 11, no. 1, pp. 40–49, Mar. 2020. doi:10.24867/ijiem-2020-1-251
S. M. Kostić, M. I. Simić, and M. V. Kostić, "Social network analysis and churn prediction in telecommunications using graph theory," Entropy, vol. 22, no. 7, p. 753, Jul. 2020. doi:10.3390/e22070753
A. Backiel, B. Baesens, and G. Claeskens, "Predicting time-to-churn of prepaid mobile telephone customers using social network analysis," Journal of the Operational Research Society, vol. 67, no. 9, pp. 1135–1145, Sep. 2016. doi:10.1057/jors.2016.8
M. J. Bannister and D. Eppstein, "Randomized speedup of the bellman–Ford algorithm," 2012 Proceedings of the Ninth Workshop on Analytic Algorithmics and
Combinatorics (ANALCO), Jan. 2012. doi:10.1137/1.9781611973020.6
R. J. Sixtus J and T. Muthu, "An energy-efficient routing in cellular network to improve data transmission efficiency in edge users," 2022 Second International Conference on Advanced Technologies in Intelligent Control, Environment, Computing & Communication Engineering (ICATIECE), Dec. 2022. doi:10.1109/icatiece56365.2022.10047032
S. Yogalakshmi, A. Veeramuthu, V. Kalist, A. A. Frank Joe, and L. Megalan Leo, "Intensive path loss analysis and improve energy efficiency over wireless mobile sensor network using hybrid routing model," 2022 International Conference on Electronics and Renewable Systems (ICEARS), Mar. 2022. doi:10.1109/icears53579.2022.9752001
G. T. Kim, J. Lee, L. Kant, and A. Poylisher, "Utilitydriven traffic engineering via joint routing and rate control for 802.11 manets," 2021 International Conference on COMmunication Systems & NETworkS (COMSNETS), Jan. 2021. doi:10.1109/comsnets51098.2021.9352893
H. Saki, N. Khan, M. G. Martini, and M. M. Nasralla, "Machine learning based frame classification for videos transmitted over Mobile Networks," 2019 IEEE 24th International Workshop on Computer Aided Modeling and Design of Communication Links and Networks (CAMAD), Sep. 2019. doi:10.1109/camad.2019.8858448
Z. Li et al., "Network topology optimization via deep reinforcement learning," IEEE Transactions on Communications, vol. 71, no. 5, pp. 2847–2859, May 2023. doi:10.1109/tcomm.2023.3244239
T. Nemes, A. David, and Z. Sule,
European Telecommunications Standards Institute, 'Telecommunications and Internet Protocol Harmonization Over Networks (TIPHON); General aspects of Quality of Service (QoS),' ETSI TR 101 329 V2.1.1, 1999.



