Artist Recommendation System Based on Number of Interactions Using Collaborative Filtering Method
Abstract
Sistem rekomendasi adalah suatu sistem penyaringan yang bertujuan untuk memprediksi preferensi yang diberikan oleh pengguna terhadap suatu elemen tertentu, pada penelitian ini terhadap sebuah artis. Penelitian ini memiliki tujuan untuk meningkatkan hasil performansi sistem rekomendasi artis menggunakan metode collaborative filtering. Metode collaborative filtering menggunakan informasi pengguna dan artis dalam membangun rekomendasi. Dataset yang digunakan mencakup jumlah pemutaran lagu oleh pengguna. Metode collaborative filtering diimplementasikan dengan melakukan perhitungan similarity antar pengguna dan antar artis. Perhitungan similarity yang digunakan, menggunakan cosine similarity. Setelah dilakukan perhitungan kesamaan, dilakukan perhitungan weighted sum dan menghasilkan prediksi. Evaluasi performansi dihitung menggunakan MAE (Mean Absolute Error), MSE (Mean Squared Error), dan RMSE (Root Mean Squared Error). Hasil evaluasi yang didapatkan pada penelitian ini adalah MAE 9,474, MSE 52.653,40 dan RMSE 229,208 pada perbandingan 70:30. Sedangkan pada perbandingan 75:25 menghasilkan MAE 9,902, MSE 45.914,85 dan RMSE 210,017. Pada perbandingan 80:20 hasil yang didapatkan adalah MAE 10,486, MSE 48.764,51 dan RMSE 217,416. Hasil tersebut menunjukkan bahwa, semakin besar rasio data train terhadap data test, nilai MAE, MSE dan RMSE cenderung meningkat.
Kata kunci: Sistem Rekomendasi, Collaborative filtering, Cosine similarity, MAE, MSE, RMSE.
References
Yoshua, I., & Bunyamin, H., "Pengimplementasian Sistem Rekomendasi Musik Dengan Metode Collaborative Filtering," Jurnal STRATEGI-Jurnal Maranatha, vol. 3.1, pp. 1-16, 2021.
D. J. Levitin, "This is your brain on music: The science of a human obsession," Penguin, 2006.
E. Bernhardsson, "Music recommendations at spotify," Online https://de. slideshare. net/erikbern/collaborative-filtering-at-spotify16182818, 2013.
P. B. Lamere, "I've got 10 million songs in my pocket: now what?," Proceedings of the sixth ACM conference on Recommender systems, no. https://doi.org/10.1145/2365952.2365994, p. Pages 207–208, 2012.
O. Celma, "Music recommendation." Music recommendation and discovery: The long tail, long fail, and long play in the digital music space," Berlin, Heidelberg: Springer Berlin Heidelberg, pp. 43-85, 2010.
Arwin Halim, Hernawati Gohzali, Dita Maria Panjaitan, Ilham Maulana, "Sistem Rekomendasi Film menggunakan Bisecting KMeans dan Collaborative Filtering," 2017.
Sarwar, B., Karypis, G., Konstan, J., & Riedl, J., "Item-based collaborative filtering recommendation algorithms.," In Proceedings of the 10th international conference on World Wide Web, no. https://doi.org/10.1145/371920.372071, pp. 285-295, 2001.
Chen, Shih-Han, Sok-Ian Sou, and Hsun-Ping Hsieh, "HPCF: hybrid music group recommendation system based on item popularity and collaborative filtering," 2020 International Computer Symposium (ICS), IEEE, no. doi: 10.1109/ICS51289.2020.00019., pp. 43-49, 2020.
Lesota, Oleg, et al, "Analyzing item popularity bias of music recommender systems: are different genders equally affected?," Proceedings of the 15th ACM Conference on Recommender Systems, no. https://doi.org/10.1145/3460231.3478843, pp. 601-606, 2021.
C. Ajaegbu, "An optimized item-based collaborative fltering algorithm," Journal of Ambient Intelligence and Humanized Computing, no. https://doi.org/10.1007/s12652- 020-02876-1, 2021.
Abdalla, Hassan I., et al, "Boosting the itembased collaborative filtering model with novel similarity measures," International Journal of Computational Intelligence Systems 16.1, no. https://doi.org/10.1007/s44196-023-00299-2, 2023.
Linden, Greg, Brent Smith, and Jeremy York, "Amazon. com recommendations: Item-to-item collaborative filtering," IEEE Internet computing 7.1, no. doi: 10.1109/MIC.2003.1167344., pp. 76-80, 2003.
Miller, Bradley N., et al, "Movielens unplugged: experiences with an occasionally connected recommender system," Proceedings of the 8th international conference on Intelligent user interfaces, no. https://doi.org/10.1007/978-1- 4471-3754-2_16, pp. 263-266, 2003.
Billsus, Daniel, et al, "Adaptive interfaces for ubiquitous web access," Communications of the ACM 45.5, pp. 34-38, 2002.
Peddy, Clayton C., and Derek Armentrout, "Building solutions with microsoft commerce server 2002," Microsoft Press, no. https://doi.org/10.1109/TKDE.2005.99, 2003.
Melville, Prem, and Vikas Sindhwani, "Recommender System," IBM TJ, Watson Research centre, Yorktown Heights, NY 10598, pp. 1-18, 2010.
Zhao, Qian, et al., "Explicit or implicit feedback? Engagement or satisfaction? A field experiment on machine-learning-based recommender systems," Proceedings of the 33rd Annual ACM Symposium on Applied Computing, no. https://doi.org/10.1145/3167132.3167275, pp. 1331-1340, 2018.
Aggarwal, Charu C., and Charu C. Aggarwal, "An introduction to recommender systems." Recommender systems: The textbook," pp. 1- 28, 2016.
Sunitha, M., T. Adilakshmi, and Mir Zahed Ali, "Enhancing Item-Based Collaborative Filtering for Music Recommendation System," Smart Computing Techniques and Applications: Proceedings of the Fourth International Conference on Smart Computing and Informatics, vol. 2, no. https://doi.org/10.1007/978-981-16-1502-3_28, pp. 269-283, 2021.
R. Banik, " Hands-on recommendation systems with Python: start building powerful and personalized, recommendation engines with Python," Packt Publishing Ltd, 2018.
Kelly, D., & Teevan, J, "Implicit feedback for inferring user preference: a bibliography," In Acm Sigir Forum, vol. 37, no. https://doi.org/10.1145/959258.959260, pp. 18- 23, 2003.
Sunitha, M., and T. Adilakshmi, "Music recommendation system with user-based and item-based collaborative filtering technique.," Networking Communication and Data Knowledge Engineering, vol. 1, no. https://doi.org/10.1007/978-981-10-4585-1_22, pp. 267-278, 2018.
Musu, Wilem, Abdul Ibrahim, and Heriadi Heriadi, "Pengaruh Komposisi Data Training dan Testing terhadap Akurasi Algoritma C4. 5.," SISITI: Seminar Ilmiah Sistem Informasi dan Teknologi Informasi, vol. 10, pp. 186-195, 2021.
Adomavicius, Gediminas, and Alexander Tuzhilin, "Toward the next generation of recommender systems: A survey of the state-ofthe-art and possible extensions," IEEE transactions on knowledge and data engineering 17.6, vol. 17, no. doi: 10.1109/TKDE.2005.99., pp. 734-749, 2005.
Bertin-Mahieux, Thierry, et al, "The million song dataset," WWW '12 Companion: Proceedings of the 21st International Conference on World Wide Web, no. https://doi.org/10.1145/2187980.2188222, pp. 591-596, 2011.
Celma, Òscar, and Pedro Cano, "From hits to niches? or how popular artists can bias music recommendation and discovery," Proceedings of the 2nd KDD Workshop on Large-Scale Recommender Systems and the Netflix Prize Competition, no. https://doi.org/10.1145/1722149.1722154, pp. 1-8, 2008.



