Robust Watermarking for Medical Images in the Discrete Wavelet Transform Domain Using Matrix Decomposition with Particle Swarm Optimization

Authors

  • Refsi Resandy Telkom University
  • Rita Purnamasari Telkom University
  • Ratri Dwi Atmaja Telkom University

Abstract

Teknik yang digunakan untuk melindungi hak cipta multimedia yaitu watermarking adalah proses penambahan informasi tambahan pada citra, video, atau audio untuk menjaga keamanan informasi. Citra medis dapat dikategorikan sebagai hak kekayaan intelektual, oleh karena itu perlu adanya perlindungan terhadap hak cipta dengan menggunakan watermark, yang dikenal sebagai copyright watermark. Metode robust watermarking dapat diaplikasikan untuk keperluan copyright karena memiliki sifat yang kokoh terhadap berbagai serangan. Artinya, watermark masih dapat dikenali dan diekstraksi meskipun citra ber-watermark mengalami serangan. Skema robust watermarking harus memiliki imperseptibilitas dan ketahanan yang baik, namun sering terjadi trade-off antara keduanya. Artinya semakin tinggi imperseptibilitas, semakin rendah ketahanan atau sebaliknya. Pada penelitian ini diusulkan metode watermarking citra pada domain transformasi Discrete Wavelet Transform dan dekomposisi matriks Hessenberg dan Singular Value Decomposition pada sub-band LL (low-low) dengan optimasi Particle Swarm Optimization. Hasil analisis skema watermarking untuk citra medis menunjukkan kualitas imperseptibilitas yang baik dengan nilai PSNR tertinggi 49,8469 dB dan SSIM lebih tinggi dari 0.98. Evaluasi menggunakan parameter NC menunjukan ketahanan skema terhadap serangan noise, kompresi, filter, sharpening dan beberapa serangan geometri seperti rotasi dan rescale.

Kata kunci: Watermarking, Robust Watermarking, DWT, SVD, HD, PSO.

References

I. Cox et al., "Digital Watermarking and Steganography," 2008.

R. Munir, "Sekilas Image Watermarking untuk Memproteksi Citra Digital dan Aplikasinya pada Citra Medis," 2006.

G. Chawla, R. Saini, and R. Yadav, "Classification of Watermarking Based upon Various Parameters," 2012. [Online]. Available: www.ijcait.com

M. Begum and M. S. Uddin, "Digital image watermarking techniques: A review," Information (Switzerland), vol. 11, no. 2. MDPI AG, Feb. 01, 2020. doi: 10.3390/info11020110.

P. Kadian, S. M. Arora, and N. Arora, "Robust Digital Watermarking Techniques for Copyright Protection of Digital Data: A Survey," Wireless Personal Communications, vol. 118, no. 4. Springer, pp. 3225–3249, Jun. 01, 2021. doi: 10.1007/s11277- 021-08177-w.

P. Garg and R. R. Kishore, "Performance comparison of various watermarking techniques," Multimed Tools Appl, vol. 79, no. 35–36, pp. 25921–25967, Sep. 2020, doi: 10.1007/s11042-020-09262-1.

F. Ernawan and D. Ariatmanto, "A recent survey on image watermarking using scaling factor techniques for copyright protection," Multimed Tools Appl, 2023, doi: 10.1007/s11042-023-14447-5.

C. C. Lai and C. C. Tsai, "Digital image watermarking using discrete wavelet transform and singular value decomposition," in IEEE Transactions on Instrumentation and Measurement, Nov. 2010, pp. 3060–3063. doi: 10.1109/TIM.2010.2066770.

N. Muhammad and N. Bibi, "Digital image watermarking using partial pivoting lower and upper triangular decomposition into the wavelet domain," IET Image Process, vol. 9, no. 9, pp. 795–803, Sep. 2015, doi: 10.1049/iet-ipr.2014.0395.

A. Alzahrani and N. A. Memon, "Blind and Robust Watermarking Scheme in Hybrid Domain for Copyright Protection of Medical Images," IEEE Access, vol. 9, pp. 113714–113734, 2021, doi: 10.1109/ACCESS.2021.3104985.

S. E. Naffouti, A. Kricha, and A. Sakly, "A sophisticated and provably grayscale image watermarking system using DWT-SVD domain," Visual Computer, 2022, doi: 10.1007/s00371-022- 02587-y.

_. Y. Altay and G. Uluta`, "Self-adaptive step firefly algorithm based robust watermarking method in DWT-SVD domain," Multimed Tools Appl, vol. 80, no. 15, pp. 23457–23484, Jun. 2021, doi: 10.1007/s11042-020-10251-7.

J. Liu et al., "An Optimized Image Watermarking Method Based on HD and SVD in DWT Domain," IEEE Access, vol. 7, pp. 80849–80860, 2019, doi: 10.1109/ACCESS.2019.2915596.

A. M. Abduldaim, J. Waleed, and A. N. Mazher, "An Efficient Scheme of Digital Image Watermarking Based on Hessenberg Factorization and DWT," in 2020 International Conference on Computer Science and Software Engineering (CSASE), IEEE, Apr. 2020, pp. 180–185. doi: 10.1109/CSASE48920.2020.9142096.

H. Seddik, M. Sayadi, and F. Fnaiech, "IMAGE WATERMARKING BASED ON THE HESSENBERG TRANSFORM," 2009. [Online]. Available: www.worldscientific.com

F. Li, L. Gao, J. Wang, and R. Yan, "Strong Robustness Watermarking Algorithm Based on Lifting Wavelet Transform and Hessenberg Decomposition," International Journal of Web Services Research, vol. 19, no. 1, pp. 1–19, Dec. 2022, doi: 10.4018/ijwsr.314948.

Y. Shi and R. Eberhart, "A Modified Particle Swarm Optimizer," 1998. doi: https://doi.org/10.1109/ICEC.1998.699146.

J. McCaffrey, "Artificial Intelligence - Particle Swarm Optimization | Microsoft Learn," MSDN Magazine Issues. Accessed: Feb. 06, 2024. [Online]. Available: https://learn.microsoft.com/enus/archive/msdn-magazine/2011/august/artificialintelligence-particle-swarm-optimization

Published

2024-10-21

Issue

Section

Program Studi S1 Teknik Telekomunikasi