Implementation of Data Mining for Predicting Graduation of Industrial Engineering Students at Telkom University Using Naïve Bayes
Abstract
In higher education, students play a central role, and their academic progress is essential for Telkom University's evaluation. To improve graduation prediction accuracy, the Head of the Study Program is implementing the Naïve Bayes method through a dashboard. This method considers attributes like gender, semester grades (IPS1 to IPS6), and graduation status, achieving an 83.11% accuracy rate. The designed dashboard not only streamlines monitoring but also allows for intervention and improvement strategies, leading to enhanced learning outcomes and better overall academic management effectiveness. Keyword— Data Mining, Naïve Bayes Classifier, Student GraduationIn higher education, students play a central role, and their academic progress is essential for Telkom University's evaluation. To improve graduation prediction accuracy, the Head of the Study Program is implementing the Naïve Bayes method through a dashboard. This method considers attributes like gender, semester grades (IPS1 to IPS6), and graduation status, achieving an 83.11% accuracy rate. The designed dashboard not only streamlines monitoring but also allows for intervention and improvement strategies, leading to enhanced learning outcomes and better overall academic management effectiveness.
Keyword: Data Mining, Naïve Bayes Classifier, Student Graduation
References
Dwi Cahya, P., & Durbin Hutagalung, D. (2023). Penerapan Data Mining Menggunakan Algoritma Apriori Pada Penjualan Produk Sembako Berbasis Web (Studi Kasus: Warung Abah Murdika). Jurnal Ilmu Komputer Dan Pendidikan, 1(6), 1465–1469.
Dwiramadhan, F., Wahyuddin, M. I., & Hidayatullah, D. (2022). Sistem Pakar Diagnosa Penyakit Kulit Kucing Menggunakan Metode Naive Bayes Berbasis Web. Jurnal JTIK (Jurnal Teknologi Informasi Dan Komunikasi), 6(3), 429–437.
Nasrullah, A. H. (2021). Implementasi Algoritma Decision Tree Untuk Klasifikasi Data Peserta Didik. Jurnal Pilar Nusa Mandiri, 7(2), 217.
Jumeilah, F. S. (2017). Penerapan Support Vector Machine (SVM) untuk Pengkategorian Penelitian. Jurnal RESTI (Rekayasa Sistem Dan Teknologi Informasi), 1(1), 19–25.
Singh, Y., & Chauhan, A. S. (2009). Neural Networks in Data Mining. Journal of Theoretical and Applied Information Technology, 5(1), 37–42.
Guntara, R. G. (2023). Visualisasi Data Laporan Penjualan Toko Online Melalui Pendekatan Data Science Menggunakan Google Colab. Jurnal Ilmiah Multidisiplin, 2(6), 2091–2100.
Syahrudin, A. N., & Kurniawan, T. (2018). Input dan Output pada Bahasa Pemrograman Python. Jurnal Dasar Pemrograman Python STMIK, June 2018, 1–7.
Sutabri, T. (2012). Analisis Sistem Informasi.
Malik, S. (2005). Enterprise Dashboard.



