Identification of Children's Personalities as Recommendations for Guidance for Teachers and Parents Using Machine Learning
Abstract
— Kepribadian seseorang mencerminkan identitas individu mereka, yang tidak selalu terlihat secara fisik. Kepribadian dapat dipengaruhi oleh lingkungan, keluarga, dan sifat bawaan sejak lahir. Kepribadian anak yang terbentuk melalui gaya pengasuhan di rumah secara signifikan berdampak pada lingkungan sekolahnya, sehingga penting bagi orang tua dan guru untuk memahami kepribadian anak agar dapat memberikan dukungan yang tepat. Namun, tes psikologi yang ada saat ini yang digunakan untuk menilai kepribadian anak tidak efektif karena durasinya yang panjang. Sehingga diperlukan sistem berbasis machine learning yang mampu mengidentifikasi kepribadian anak melalui analisis garis telapak tangan. Hasil pengujian menunjukkan bahwa sistem dapat mengidentifikasi kepribadian anak dengan akurasi yang tinggi. Algoritma pendeteksi garis telapak tangan mencapai akurasi 100%, dengan mAP50 sebesar 99,5% dan mAP50-95 sebesar 97,4%.Algoritma klasifikasi menunjukkan akurasi 92,3% pada data latih dan 92,2% pada data uji untuk model pertama, dan akurasi 100% pada data latih dan 93,3% pada data uji untuk model kedua. Pengujian sistem deteksi pada aplikasi menunjukkan akurasi 100%.
Kata kunci— kepribadian anak, pembelajaran mesin, analisis garis telapak tangan
References
I. Ali, "Personality traits, individual innovativeness and satisfaction with life," Journal of Innovation & Knowledge, vol. 4, no. 1, pp. 38-46, 2019.
I. Imroatun, F. Widat, M. Fauziddin, S. Farida, S. Maryam dan Zulaiha, "Youtube as a Media For Strengthining Character Education in Early Childhood," 2nd Bukittinggi International Conference on Education (BICED), vol. 1779, no. 1, pp. 1-6, 2021.
C. Barbaranelli, G. V. Caprara, A. Rabasca dan C. Pastorelli, "A questionnaire for measuring the Big Five in late childhood," Personality and Individual Differences, vol. 34, no. 4, pp. 645-664, 2003.
F. B. Evans dan S. E. Finn, "Training and Consultation in Psychological Assessment With Professional Psychologists: Suggestions for Enhancing the Profession and Individual Practices," Journal of Personality Assessment, vol. 99, no. 2, pp. 175-185, 2016.
N. Abood, "Big Five Traits: A Critical Review," Gadjah Mada International Journal of Business, vol. 21, no. 2, pp. 159-186, 2019.
B. T. Yates dan J. Taub, "Assessing the Costs, Benefits, Cost-Effectiveness, and Cost-Benefit of Psychological Assessment: We Should, We Can, and Here’s How," Psychological Assessment, vol. 15, no. 4, pp. 478-495, 2003.
E. A. Kastama, Variasi perilaku manusia menurut sidik jarinya, Jakarta: Lembaga Penerbit Fakultas Ekonomi Universitas Indonesia, 2000.
H. H. K. Tin, "An Effective Method of a Person’s Character or Future using the Palm Print Images," 3rd International Conference on Multidisciplinary Research & Practice, vol. IV, no. I, pp. 9-12, 2016.
Z. Haniffah, B. Dirgantoro dan C. Setianingsih, "Detection of Children's Personality with Fingerprint Using K-Nearest Neighbor (Knn) and Decision Tree Methods," 2019 International Conference on Advanced Mechatronics, Intelligent Manufacture and Industrial Automation (ICAMIMIA), vol. doi: 10.1109/ICAMIMIA47173.2019.9223387., pp. 25- 30, 2019.
F. Imanda, C. Setianingsih dan M. W. Paryasto, "Child Personality Detection by Fingerprint Using Support Vector Machine Method," 2022 6th International Conference on Informatics and Computational Sciences (ICICoS), vol. doi: 10.1109/ICICoS56336.2022.9930575., pp. 163-168, 2022.
J. Preciozzi, G. Garella, V. Camacho, F. Franzoni, L. D. Martino, G. Carbajal dan A. Fernandez, "Fingerprint Biometrics From Newborn to Adult: A Study From a National," IEEE Transactions on Biometrics, Behavior, and Identity Science, vol. 2, no. 1, pp. 68-79, 2020.
S. Prasad dan T. Chai, "Palmprint for Individual’s Personality Behavior Analysis," The British Computer Society 2020, vol. 65, no. 2, p. 355–370, 2020.
J. Arianda, B. Dirgantoro dan C. Setianingsih, "Detection of Children with Personality Through Fingerprint Random Forest And Maximum Entropy Method," 2019 International Conference on Advanced Mechatronics, Intelligent Manufacture and Industrial Automation (ICAMIMIA), vol. doi: 10.1109/ICAMIMIA47173.2019.9223383., pp. 7- 12, 2019.
Harijanto, Kitab Palmistry Rahasia Telapak Tangan, Malang: Media Nusa Creative, 2020.
F. A. Bamidele dan M. E. Osehobo, "Kaggle - Human Palm Images," Kaggle, 2023. [Online]. Available: https://www.kaggle.com/datasets/feyiamujo/humanpalm-images. [Diakses 22 Mei 2024].
Y.-C. Chen, M. Syamsudin dan S. S. Berutu, "Pretrained Configuration of Power-Quality Grayscale-Image Dataset for Sensor Improvement in Smart-Grid Transmission," Electronics 2022, vol. 11, no. 19, pp. 1-16, 2022.
D. Hindarto, "Exploring YOLOv8 Pretrain for RealTime Detection of Indonesian Native Fish Species," Sinkron : Jurnal Dan Penelitian Teknik Informatika, vol. 8, no. 4, pp. 2776-2785, 2023.
J. Terven, D.-M. Cordova-Esparza dan J.-A. Romero-González, "A Comprehensive Review of YOLO Architectures in Computer Vision: From YOLOv1 to YOLOv8 and YOLO-NAS," Deep Learning in Image Analysis and Pattern Recognition, vol. 5, no. 4, pp. 1680-1716, 2023.
G. Wang, Y. Chen, P. An, H. Hong, J. Hu dan T. Huang, "UAV-YOLOv8: A Small-Object-Detection Model Based on Improved YOLOv8 for UAV Aerial Photography Scenarios," Sensors 2023, vol. 23, no. 16, pp. 1-27, 2023.
D. P. Kingma dan J. Ba, "Adam: A Method for Stochastic Optimization," 3rd International Conference for Learning Representations, vol. 3rd International Conference for Learning Representations, pp. 1-15, 2015.
E. Dago, O. Afolabi dan B. Twala, "On the Relative Impact of Optimizers on Convolutional Neural Networks with Varying Depth and Width for Image Classification," Applied Sciences, vol. 12, no. 23, pp. 1-36, 2022.
J. Duchi, E. Hazan dan Y. Singer, "Adaptive Subgradient Methods for Online Learning and Stochastic Optimization," Journal of Machine Learning Research, vol. 12, pp. 2121-2159, 2011.



