Prediksi Perkembangan Kondisi Pasien Terapi HIV dengan Menggunakan Representasi ALE-index sebagai Invariant Nucleotida sequence dan Support Vector Machine

Authors

  • Al Azhar Al Azhar Telkom University
  • Jondri Jondri Telkom University
  • Untari Novia Wisesty Telkom University

Abstract

Human Immunodeficiency Virus atau disingkat HIV merupakan salah satu jenis virus yang sangat berbahaya.  HIV  menyerang  system immune  yang  menyebabkan pasien  HIV  mengalami kegagalan sistem kekebalan tubuh. Dalam beberapa tahun terakhir, inveksi HIV sudah ditangani dengan berbagai terapi. Salah satu terapi paling efektif adalah dengan mengkonsumsi obat antiretroviral yang akan menekan virus HIV agar tidak menduplikasikan diri, ataupun menginfeksi sel darah putih. Namun, virus biasanya akan bermutasi terhadap obat obatan yang diberikan dalam penanganan, sehingga virus kebal terhadap obat yang biasa diberikan di terapi. Untuk itu  dibutuhkan suatu  sistem  prediksi  untuk  memprediksi kondisi  pasien  terapi  yang  akan  membaik,  agar mempermudah dalam pengambilan keputusan penangan dini pada pasien. Dengan menggunakan 4 parameter yaitu jumlah CD4, Viral Load, PR sequence dan RT sequence, penulis berusaha membangun sistem prediksi perkembangan kondisi pasien terapi HIV. Sistem prediksi ini dibangun dengan salah satu metode klasifikasi machine learning yaitu metode Support Vector Machine (SVM) dan representasi numerik dari urutan nukleotida yaitu ALE-index. Metode ALE-index pada sistem berfungsi untuk mentranslasi parameter RT sequence dan PR sequence yang masih dalam bentuk urutan nukleotida menjadi data numerik agar bisa diinputkan kedalam SVM. Pada metode ALE-index ini juga terdapat beberapa penangan karakter yang bukan merupakan empat unsur utama penyusun urutan nukleotida. Hasil pengujian menunjukkan kombinasi penanganan Random-Delete row dengan menggunakan kernel RBF pada SVM memperoleh akurasi yang lebih tinggi dibandingkan kombinasi penanganan dan parameter lainnya yaitu 77.46%. Dan dengan menggunakan keempat parameter, akurasi yang diperoleh lebih tinggi dibandingkan dengan mengilangkan salah satu fitur. Kata kunci : : HIV, Support Vector Machine, Nukleotida, ALE-index

Downloads

Published

2015-04-01

Issue

Section

Program Studi S1 Informatika