Prediksi Diagnosis Hepatitis B Virus Menggunakan Gated Graph Neural Network

Authors

  • Fadhil Wisnu Ramadhan Telkom University
  • Kemas Rahmat Saleh Wiharja Telkom University

Abstract

Abstrak— Hepatitis merupakan infeksi virus pada hati dan dapat menyebabkan komplikasi terhadap penyakit lain yang dialami oleh pasien. Diagnosis dini dan penanganan yang tepat sangat penting untuk mencegah progresi penyakit dan komplikasi lebih lanjut.Diperlukan sebuah sistem prediksi diagnosis hepatitis yang akurat untuk menangani dan mengatasi kemungkinan terjangkitnya seseorang akan hepatitis. Penelitian ini melakukan prediksi model Gated Graph Neural Network terhadap pilihan data Hepatitis UCI Machine Learning Repository. Pada penelitian ini dilakukan pemodelan dan penelitian model dengan dua model graph neural network lainnya dan menghasilkan evaluasi yang baik pada prediksi klasifikasi node Hepatitis, dengan menggunakan Gated Graph Neural Network model menunjukan nilai yang superior terhadap 2 metode lain yaitu GAT dan GCN. Dimana GGNN mendapatkan nilai Accuracy, Precision, dan Recall diatas 90%.

Kata Kunci: Hepatitis, Gated Graph Neural Network, Prediksi.

References

Who.int(2024).Hepatitis. Acessed 4 September 2024, from https://www.who.int/health-topics/hepatitis

promkes.kemkes.go.id.(2016, Oktober 17). Hepatitis B. Accesed 18 Mei 2023, from https://promkes.kemkes.go.id/?p=7381

cdc.gov.(2021, April 7). Know Hepatitis B. Accesed 18 Mei 2023, from https://www.cdc.gov/hepatitis/hbv/bfaq.htm

Antonio Marino, Claudio Pacchierotti, Paolo Robuffo Giordano. On the Stability of Gated Graph Neural Networks. 2023. ïhal-04110671v1ð

Obaido, G., Ogbuokiri, B., Swart, T. G., Ayawei, N., Kasongo, S. M., Aruleba, K., Mienye, I. D., Aruleba, I., Chukwu, W., Osaye, F., Egbelowo, O. F., Simphiwe, S., & Esenogho, E. (2022). An Interpretable Machine Learning Approach for Hepatitis B Diagnosis. Applied Sciences, 12(21), 11127. https://doi.org/10.3390/app122111127

Edeh, M. O., Dalal, S., Dhaou, I. B., Agubosim, C. C., Umoke, C. C., Richard-Nnabu, N. E., & Dahiya, N. (2022). Artificial Intelligence-Based Ensemble Learning Model for Prediction of Hepatitis C Disease. Frontiers in public health, 10, 892371. https://doi.org/10.3389/fpubh.2022.892371

Wang Y, Li Y, Chen X, Zhao L. HIV-1/HBV Coinfection Accurate Multitarget Prediction Using a Graph Neural Network-Based Ensemble Predicting Model. International Journal of Molecular Sciences. 2023; 24(8):7139. https://doi.org/10.3390/ijms24087139

Z. Sun, H. Yin, H. Chen, T. Chen, L. Cui and F. Yang, "Disease Prediction via Graph Neural Networks," in IEEE Journal of Biomedical and Health Informatics, vol. 25, no. 3, pp. 818-826, March 2021, doi: 10.1109/JBHI.2020.3004143.

Pattyn, J., Hendrickx, G., Vorsters, A., & Van Damme, P. (2021). Hepatitis B Vaccines. The Journal of infectious diseases, 224(12 Suppl 2), S343–S351. https://doi.org/10.1093/infdis/jiaa668

Zhou, J., Cui, G., Hu, S., Zhang, Z., Yang, C., Liu, Z., ... & Sun, M. (2020). Graph neural networks: A review of methods and applications. AI open, 1, 57-81.

Ruiz, L., Gama, F., & Ribeiro, A. (2020). Gated graph recurrent neural networks. IEEE Transactions on Signal Processing, 68, 6303-6318.

Ghorbani, M., Kazi, A., Baghshah, M. S., Rabiee, H. R., & Navab, N. (2022). RA-GCN: Graph convolutional network for disease prediction problems with imbalanced data. Medical image analysis, 75, 102272.

Y. Wang, Z. Xiao, and G. Cao, https://doi.org/10.21595/jve.2022.22271

Ibrahim, D., Ahmadu, A. S., Malgwi, Y. M., & Ahmad, B. M. (2021). THE PREDICTION OF HEPATITIS B VIRUS (HBV) USING ARTIFICIAL NEURAL NETWORK (ANN) AND GENETIC ALGORITHM (GA). Computer Science & IT Research Journal, 2(1), 16-32.

Chen, F., Wang, Y. C., Wang, B., & Kuo, C. C. J. (2020). Graph representation learning: a survey. APSIPA Transactions on Signal and Information Processing, 9, e15.

Xu, Y., & Zhang, H. (2024). Convergence of deep ReLU networks. Neurocomputing, 571, 127174.

Published

2025-04-10

Issue

Section

Program Studi S1 Informatika