Deteksi Cacat Biji Kopi Berdasarkan Spesifikasi Specialty Coffee Association dengan YOLOv8

Authors

  • Ibadurrahman Syahid Telkom University
  • Ema Rachmawati Telkom University

Abstract

Produksi kopi diprediksi akan menambah
sebanyak 5,8% pada tahun 2024. Kopi dapat dibagi menjadi
berbagai kualitas berdasarkan kecacatan yang ditemukan.
Pemeriksaan kualitas kopi biasanya dilakukan melalui inspeksi
visual, yang memakan waktu dan subjektif. Penelitian lain yang
telah dilakukan menerapkan metode yang hanya mendeteksi
adanya cacat, atau menggunakan tekstur untuk penilaian
kualitas kopi. Penelitian ini menggunakan pendekatan yang
berbeda, dengan metode You Only Look Once versi 8
(YOLOv8) untuk mendeteksi cacat berdasarkan standar
Specialty Coffee Association (SCA). Dataset yang disusun
adalah kumpulan 204 citra yang menampilkan 300 gram biji
kopi hijau arabika mandheling. Dengan menggunakan
pendekatan di mana model akan mendeteksi dan
mengklasifikasikan cacat berdasarkan standar SCA, model
dapat memberikan hasil yang lebih akurat dalam mendeteksi
cacat biji kopi hijau dan mempermudah inspeksi kualitas kopi.
Kontribusi utama dari penelitian ini adalah model yang dapat
mendeteksi biji kopi yang memiliki cacat berdasarkan standar
SCA. Model yang dibuat memiliki mean average precision
sebesar 0,14.

Kata kunci— biji kopi, deteksi objek, computer vision,
kualitas kopi.

References

International Coffee Organization. Coffee report and

outlook. Technical report, International Coffee

Organization, 2023.

SCAA green coffee beans classification,.

http://www.coffeeresearch. org/coffee/scaaclass.htm,

Accessed: 2024-04-01.

James Kosalos, Rob Stephen, Steven Diaz, Paul

Songer, Man´e Alves, Marty Curtis, and Steven SungYong Kil. Arabica Green Coffee Defect Handbook.

Specialty Coffee Association of America, 2013.

Nen-Fu Huang, Dong-Lin Chou, Chia-An Lee, FengPing Wu, An-Chi Chuang, Yi-Hsien Chen, and YinChun Tsai. Smart agriculture: real-time classification of

green coffee beans by using a convolutional neural

network. IET Smart Cities, 2, 10 2020.

Serawork Wallelign, Mihai Polceanu, Towfik Jemal,

and C´edric Buche. Coffee grading with convolutional

neural networks using small datasets with high variance.

Edwin R Arboleda, Arnel C Fajardo, and Ruji P

Medina. Classification of coffee bean species using

image processing, artificial neural network and k

nearest neighbors. In 2018 IEEE international

conference on innovative research and development

(ICIRD), pages 1–5. IEEE, 2018.

JR Arunkumar and Tagele berihun Mengist.

Developing ethiopian yirga-cheffe coffee grading

model using a deep learning classifier. International

Journal of Innovative Technology and Exploring

Engineering, 9(4):3303–3309, 2020.

Muhammad NS Akbar, Ema Rachmawati, and

Febryanti Sthevanie. Visual feature and machine

learning approach for arabica green coffee beans grade

determination. In Proceedings of the 6th International

Conference on Communication and Information

Processing, pages 97–104, 2020.

Edwin R. Arboleda, Arnel C. Fajardo, and Ruji P.

Medina. An image processing technique for coffee

black beans identification. In 2018 IEEE International

Conference on Innovative Research and Development

(ICI-RD), pages 1–5, 2018.

Shih-Yu Chen, Chuan-Yu Chang, Cheng-Syue Ou, and

Chou-Tien Lien. Detection of insect damage in green

coffee beans using vis-nir hyperspe-ctral imaging.

Remote Sensing, 12(15), 2020.

Carlito Pinto, Junya Furukawa, Hidekazu Fukai, and

Satoshi Tamura. Classification of green coffee bean

images basec on defect types using convolutional neural

network (cnn). In 2017 International Conference on

Advanced Informatics, Concepts, Theory, and

Applications (ICAICTA), pages 1–5, 2017.

Glenn Jocher, Ayush Chaurasia, and Jing Qiu.

Ultralytics YOLO. https:

//github.com/ultralytics/ultralytics, 2023. Accessed:

-04-11.

Juan Terven, Diana-Margarita C´ordova-Esparza, and

Julio-Alejandro Romero-Gonz´alez. A comprehensive

review of yolo architectures in com-puter vision: From

yolov1 to yolov8 and yolo-nas. Machine Learning and

Knowledge Extraction, 5(4):1680–1716, 2023.

Palmiro Poltronieri and Franca Rossi. Challenges in

specialty coffee pro-cessing and quality assurance.

Challenges, 7(2), 2016.

Amanda R Hale, Paul M Ruegger, Philippe Rolshausen,

James Borneman, and Jiue-in Yang. Fungi associated

with the potato taste defect in coffee beans from rwanda.

Botanical studies, 63(1):17, 2022.

Rafael Carlos Eloy Dias, Sebastian Ed Wieland Opitz,

and Chahan Ye-retzian. Bioactive compounds in blends

Published

2025-06-23

Issue

Section

Prodi S1 Informatika