Identifikasi Pengguna Berbasiskan Biometrik Keystroke Menggunakan MVMCNN

Authors

  • Muhammad Abdullah Azzam Telkom University
  • Prasti Eko Yunanto Telkom University
  • Mahmud Dwi Sulistiyo Telkom University

Abstract

Keamanan akses pengguna daring menjadi isu
krusial di era digital. Identifikasi berbasis biometrik, seperti
keystroke dynamics, dianggap lebih aman dibandingkan
metode konvensional. Penelitian ini mengimplementasikan
Multi-Voter Multi-Commission Nearest Neighbor Classifier
(MVMCNN) untuk identifikasi pengguna melalui keystroke
dynamics. MVMCNN dipilih karena kemampuannya mengatasi
kelemahan KNN dengan skema multi-voter dan pendekatan
Local Mean Probabilistic Neural Network (LMPNN). Dataset
keystroke dari Universitas Telkom digunakan dengan fitur UD,
DD, DU, UU, dan Duration. Eksperimen meliputi tiga skenario:
(1) menentukan panjang vektor optimal (N=4, 8, 12, 16, 20, 24),
(2) penyederhanaan fitur menjadi rata-rata dan median, serta
(3) seleksi fitur menggunakan Variance Threshold (0.1).
Evaluasi menggunakan F1-Score. Hasil menunjukkan skenario
pertama dengan N=20 menghasilkan F1-Score tertinggi
(0.6911). Penyederhanaan fitur menurunkan performa, dengan
F1-Score terbaik 0.3031 (mean, k=9) dan 0.3257 (median, k=3),
menandakan pentingnya kekayaan informasi dalam fitur.
Seleksi fitur menggunakan Variance Threshold tidak banyak
mengubah performa, menunjukkan distribusi data sudah
optimal. Temuan ini menegaskan bahwa granularitas data
berperan penting dalam akurasi sistem identifikasi berbasis
keystroke dynamics.

Kata kunci— biometrik, keystroke, identifikasi, mvmcnn, f1-
score.

References

A. Tarter, “Importance of Cyber Security,” in

Community Policing - A European Perspective: Strategies,

Best Practices and Guidelines, R. and A. B. and M. G. Bayerl

P. Saskia and Karlović, Ed., Cham: Springer International

Publishing, 2017, pp. 213–230. doi: 10.1007/978-3-319-

-4_15.

F. Monrose and A. D. Rubin, “Keystroke dynamics

as a biometric for authentication,” Future Generation

Computer Systems, vol. 16, no. 4, pp. 351–359, 2000, doi:

https://doi.org/10.1016/S0167-739X(99)00059- X.

T. Sendjaja, Irwandi, E. Prastiawan, Y. Suryani, and

E. Fatmawati, “Cybersecurity In The Digital Age:

Developing Robust Strategies To Protect Against Evolving

Global Digital Threats And Cyber Attacks,” International

Journal of Science and Society, vol. 6, pp. 1008–1019, Jan.

, doi: 10.54783/ijsoc.v6i1.1098.

R. Verma, “CYBERSECURITY CHALLENGES IN

THE ERA OF DIGITAL TRANSFORMATION,” 2024, p.

doi: 10.25215/9392917848.20.

D. Gunetti and C. Picardi, “Keystroke analysis of free

text,” ACM Trans. Inf. Syst. Secur., vol. 8, no. 3, pp. 312–

, Aug. 2005, doi: 10.1145/1085126.1085129.

A. Jain, P. Flynn, and A. Ross, Handbook of

Biometrics. 2008. doi: 10.1007/978-0-387-71041-9.

I. Tsimperidis, O.-D. Asvesta, E. Vrochidou, and G.

A. Papakostas, “IKDD: A Keystroke Dynamics Dataset for

User Classification,” Information, vol. 15, no. 9, 2024, doi:

3390/info15090511.

B. R. Krishna and M. S. Varma, “Enhancing UserLevel Security: Performance Analysis of Machine Learning

Algorithms for Dynamic Keystroke Analysis,” J Theor Appl

Inf Technol, vol. 101, no. 13, pp. 5313– 5323, 2023, [Online].

Available: http://www.jatit.org

S. Suyanto, P. E. Yunanto, T. Wahyuningrum, and S.

Khomsah, “A multivoter multi-commission nearest neighbor

classifier,” Journal of King Saud University - Computer and

Information Sciences, vol. 34, no. 8, Part B, pp. 6292–6302,

, doi: https://doi.org/10.1016/j.jksuci.2022.01.018.

S. Zhang, “Challenges in KNN Classification,”

IEEE Trans Knowl Data Eng, vol. 34, no. 10, pp. 4663–4675,

Oct. 2022, doi: 10.1109/TKDE.2021.3049250.

Y. Muliono, H. Ham, and D. Darmawan,

“Keystroke Dynamic Classification using Machine Learning

for Password Authorization,” 39 Procedia Comput Sci, vol.

, pp. 564–569, 2018, doi:

https://doi.org/10.1016/j.procs.2018.08.209.

S. Simske, “Dynamic biometrics: The case for a

real-time solution to the problem of access control, privacy

and security,” in 2009 1st IEEE International Conference on

Biometrics, Identity and Security, BIdS 2009, Jan. 2009, pp.

–10. doi: 10.1109/BIDS.2009.5507535.

J. Kim and P. Kang, “Freely typed keystroke

dynamics-based user authentication for mobile devices based

on heterogeneous features,” Pattern Recognit, vol. 108, p.

, 2020, doi:

https://doi.org/10.1016/j.patcog.2020.107556.

S. Uellenbeck, M. Dürmuth, C. Wolf, and T. Holz,

“Quantifying the security of graphical passwords: The case

of Android unlock patterns,” in Proceedings of the ACM

Conference on Computer and Communications Security, Jan.

, pp. 161–172. doi: 10.1145/2508859.2516700.

S. Rane, Y. Wang, S. C. Draper, and P. Ishwar,

“Secure Biometrics: Concepts, Authentication Architectures,

and Challenges,” IEEE Signal Process Mag, vol. 30, no. 5,

pp. 51–64, Sep. 2013, doi: 10.1109/msp.2013.2261691.

Published

2025-06-23

Issue

Section

Prodi S1 Informatika