Prediksi Employee Attrition Menggunakan Metode Decision Tree dan XGBoost dengan Seleksi Fitur ChiSquare

Authors

  • Arla Sifhana Putri Telkom University
  • Kemas Muslim Lhaksmana Telkom University

Abstract

Employee attrition adalah peristiwa di mana suatu
perusahaan kehilangan karyawan karena berbagai alasan.
Employee attrition dapat berdampak negatif terhadap
produktivitas dan stabilitas perusahaan, sehingga
perusahaan perlu mengambil langkah pencegahan yang
tepat terhadap terjadinya hal tersebut. Dalam penelitian
ini, metode klasifikasi yang digunakan adalah Decision
Tree dan XGBoost, dengan menerapkan seleksi fitur Chisquare. Metode Decision Tree dipilih karena kemudahan
interpretasi dan implementasinya, sementara XGBoost
dipilih karena memiliki kinerja prediksi yang sangat baik.
Seleksi fitur Chi-square digunakan untuk
mengidentifikasi fitur-fitur yang memiliki hubungan
signifikan dengan fitur target. Evaluasi performa antara
kedua metode dilakukan menggunakan metrik seperti
accuracy, precision, recall, dan f1-score. Hasil penelitian
menunjukkan bahwa metode Decision Tree mencapai
akurasi tertinggi sebesar 93.58% dengan memanfaatkan
20 fitur dengan nilai Chi-square tertinggi. Sementara itu,
metode XGBoost berhasil mencapai akurasi terbaik
sebesar 98.65% dengan memanfaatkan 25 fitur dengan
nilai Chi-square tertinggi. Penggunaan seleksi fitur Chisquare secara signifikan meningkatkan performa model
prediksi. Hal ini menunjukkan bahwa model dengan
metode XGBoost lebih unggul dalam memprediksi
kemungkinan terjadinya employee attrition dibandingkan
dengan metode Decision Tree.

Kata kunci: employee attrition, prediksi, decision tree, xgboost, chi-square

References

S. M. Arqawi et al., “Predicting Employee

Attrition and Performance Using Deep Learning,” J Theor

Appl Inf Technol, vol. 100, no. 21, pp. 6526–6536, 2022.

I. Jayanto and Benisius, “Analisis Perbandingan

Algoritma Decision Tree untuk Prediksi Karyawan

dengan Potensi Atrisi di PT. XYZ,” Jurnal Informatika

Komputer, Bisnis dan Manajemen, vol. 22, no. 1, pp. 49–

, 2024, doi: 10.61805/fahma.v22i1.112.

S. Al-Darraji, D. G. Honi, F. Fallucchi, A. I.

Abdulsada, R. Giuliano, and H. A. Abdulmalik,

“Employee attrition prediction using deep neural

networks,” Computers, vol. 10, no. 11, pp. 1–11, 2021,

doi: 10.3390/computers10110141.

M. Atef, D. S. Elzanfaly, and S. Ouf, “Early

Prediction of Employee Turnover Using Machine

Learning Algorithms 135 Original Scientific Paper,”

International journal of electrical and computer

engineering systems , pp. 135–144, 2022.

A. Chourey, S. Phulre, and S. Mishra,

“Employee attrition prediction using various machine

learning techniques,” The International Journal of

Analytical and Experimental Modal Analysis, vol. XI, no.

, pp. 2718–2724, 2019.

A. Qutub, A. Al-Mehmadi, M. Al-Hssan, R.

Aljohani, and H. S. Alghamdi, “Prediction of Employee

Attrition Using Machine Learning and Ensemble

Methods,” Int J Mach Learn Comput, vol. 11, no. 2, pp.

–114, 2021, doi: 10.18178/ijmlc.2021.11.2.1022.

N. Ben Yahia, J. Hlel, and R. Colomo-Palacios,

“From Big Data to Deep Data to Support People

Analytics for Employee Attrition Prediction,” IEEE

Access, vol. 9, pp. 60447–60458, 2021, doi:

1109/ACCESS.2021.3074559.

S. K. Setianto and D. Jatikusumo, “Employee

Turnover Analysis Using Comparison of Decision Tree

and Naive Bayes Prediction Algorithms on K-Means

Clustering Algorithms at PT. AT,” Jurnal Mantik, vol. 4,

no. 3, pp. 1573–1581, 2020, [Online]. Available:

https://iocscience.org/ejournal/index.php/mantik

B. Prihanto, C. O. Sereati, M. A. Kartawidjaja,

and M. Siregar, “Atrition Analysis using XG Boost and

Support Vector Machine Algorithm,” Int J Innov Sci Res

Technol, vol. 8, no. 6, pp. 2096–2112, 2023.

M. Chaudhary, L. Gaur, N. Z. Jhanjhi, M.

Masud, and S. Aljahdali, “Envisaging Employee Churn

Using MCDM and Machine Learning,” Intelligent

Automation and Soft Computing, vol. 33, no. 2, pp. 1009–

, 2022, doi: 10.32604/iasc.2022.023417.

M. Subhashini and R. Gopinath, “Employee

Attrition Prediction in Industry Using Machine Learning

Techniques,” International Journal of Advanced Research

in Engineering and Technology, vol. 11, no. 12, pp. 3329–

, 2020, doi: 10.34218/IJARET.11.12.2020.313.

K. Naz, I. F. Siddiqui, J. Koo, M. A. Khan, and

N. M. F. Qureshi, “Predictive Modeling of Employee

Churn Analysis for IoT-Enabled Software Industry,”

Applied Sciences (Switzerland), vol. 12, no. 20, 2022, doi:

3390/app122010495.

A. Raza, K. Munir, M. Almutairi, F. Younas, and

M. M. S. Fareed, “Predicting Employee Attrition Using

Machine Learning Approaches,” Applied Sciences

(Switzerland), vol. 12, no. 13, 2022, doi:

3390/app12136424.

R. Punnoose and P. Ajit, “Prediction of

Employee Turnover in Organizations using Machine

Learning Algorithms,” International Journal of Advanced

Research in Artificial Intelligence, vol. 5, no. 9, pp. 22–

, 2016, doi: 10.14569/ijarai.2016.050904.

M. Nandal, V. Grover, D. Sahu, and M. Dogra,

“Employee Attrition: Analysis of Data Driven Models,”

EAI Endorsed Transactions on Internet of Things, vol. 10,

pp. 1–10, 2024, doi: 10.4108/eetiot.4762.

C. Jin, F. Li, S. Ma, and Y. Wang, “Sampling

scheme-based classification rule mining method using

decision tree in big data environment,” Knowl Based Syst,

vol. 244, p. 108522, 2022, doi:

https://doi.org/10.1016/j.knosys.2022.108522.

K. Bhuva and K. Srivastava, “Comparative

Study of The Machine Learning Techniques for

Predicting The Employee Attrition,” Ijrar, vol. 5, no. 3,

pp. 568–577, 2018, [Online]. Available: www.ijrar.org

G. A. Mursianto, I. M. Falih, M. Irfan, T.

Sakinah, and D. S. Prasvita, “Perbandingan Metode

Klasifikasi Random Forest dan XGBoost Serta

Implementasi Teknik SMOTE pada Kasus Prediksi

Hujan,” Jurnal Senamika, vol. 2, no. 2, pp. 41–50, 2021.

G. Chandrashekar and F. Sahin, “A survey on

feature selection methods,” Computers and Electrical

Engineering, vol. 40, no. 1, pp. 16–28, 2014, doi:

1016/j.compeleceng.2013.11.024.

S. Kilic, “Chi-square Test,” MEDSURG Nursing,

vol. 28, no. 2, p. 127, 2019, doi:

5455/jmood.20160803110534.

Published

2025-06-23

Issue

Section

Prodi S1 Informatika