Prediksi Employee Attrition Menggunakan Metode Decision Tree dan XGBoost dengan Seleksi Fitur ChiSquare
Abstract
Employee attrition adalah peristiwa di mana suatu
perusahaan kehilangan karyawan karena berbagai alasan.
Employee attrition dapat berdampak negatif terhadap
produktivitas dan stabilitas perusahaan, sehingga
perusahaan perlu mengambil langkah pencegahan yang
tepat terhadap terjadinya hal tersebut. Dalam penelitian
ini, metode klasifikasi yang digunakan adalah Decision
Tree dan XGBoost, dengan menerapkan seleksi fitur Chisquare. Metode Decision Tree dipilih karena kemudahan
interpretasi dan implementasinya, sementara XGBoost
dipilih karena memiliki kinerja prediksi yang sangat baik.
Seleksi fitur Chi-square digunakan untuk
mengidentifikasi fitur-fitur yang memiliki hubungan
signifikan dengan fitur target. Evaluasi performa antara
kedua metode dilakukan menggunakan metrik seperti
accuracy, precision, recall, dan f1-score. Hasil penelitian
menunjukkan bahwa metode Decision Tree mencapai
akurasi tertinggi sebesar 93.58% dengan memanfaatkan
20 fitur dengan nilai Chi-square tertinggi. Sementara itu,
metode XGBoost berhasil mencapai akurasi terbaik
sebesar 98.65% dengan memanfaatkan 25 fitur dengan
nilai Chi-square tertinggi. Penggunaan seleksi fitur Chisquare secara signifikan meningkatkan performa model
prediksi. Hal ini menunjukkan bahwa model dengan
metode XGBoost lebih unggul dalam memprediksi
kemungkinan terjadinya employee attrition dibandingkan
dengan metode Decision Tree.
Kata kunci: employee attrition, prediksi, decision tree, xgboost, chi-square
References
S. M. Arqawi et al., “Predicting Employee
Attrition and Performance Using Deep Learning,” J Theor
Appl Inf Technol, vol. 100, no. 21, pp. 6526–6536, 2022.
I. Jayanto and Benisius, “Analisis Perbandingan
Algoritma Decision Tree untuk Prediksi Karyawan
dengan Potensi Atrisi di PT. XYZ,” Jurnal Informatika
Komputer, Bisnis dan Manajemen, vol. 22, no. 1, pp. 49–
, 2024, doi: 10.61805/fahma.v22i1.112.
S. Al-Darraji, D. G. Honi, F. Fallucchi, A. I.
Abdulsada, R. Giuliano, and H. A. Abdulmalik,
“Employee attrition prediction using deep neural
networks,” Computers, vol. 10, no. 11, pp. 1–11, 2021,
doi: 10.3390/computers10110141.
M. Atef, D. S. Elzanfaly, and S. Ouf, “Early
Prediction of Employee Turnover Using Machine
Learning Algorithms 135 Original Scientific Paper,”
International journal of electrical and computer
engineering systems , pp. 135–144, 2022.
A. Chourey, S. Phulre, and S. Mishra,
“Employee attrition prediction using various machine
learning techniques,” The International Journal of
Analytical and Experimental Modal Analysis, vol. XI, no.
, pp. 2718–2724, 2019.
A. Qutub, A. Al-Mehmadi, M. Al-Hssan, R.
Aljohani, and H. S. Alghamdi, “Prediction of Employee
Attrition Using Machine Learning and Ensemble
Methods,” Int J Mach Learn Comput, vol. 11, no. 2, pp.
–114, 2021, doi: 10.18178/ijmlc.2021.11.2.1022.
N. Ben Yahia, J. Hlel, and R. Colomo-Palacios,
“From Big Data to Deep Data to Support People
Analytics for Employee Attrition Prediction,” IEEE
Access, vol. 9, pp. 60447–60458, 2021, doi:
1109/ACCESS.2021.3074559.
S. K. Setianto and D. Jatikusumo, “Employee
Turnover Analysis Using Comparison of Decision Tree
and Naive Bayes Prediction Algorithms on K-Means
Clustering Algorithms at PT. AT,” Jurnal Mantik, vol. 4,
no. 3, pp. 1573–1581, 2020, [Online]. Available:
https://iocscience.org/ejournal/index.php/mantik
B. Prihanto, C. O. Sereati, M. A. Kartawidjaja,
and M. Siregar, “Atrition Analysis using XG Boost and
Support Vector Machine Algorithm,” Int J Innov Sci Res
Technol, vol. 8, no. 6, pp. 2096–2112, 2023.
M. Chaudhary, L. Gaur, N. Z. Jhanjhi, M.
Masud, and S. Aljahdali, “Envisaging Employee Churn
Using MCDM and Machine Learning,” Intelligent
Automation and Soft Computing, vol. 33, no. 2, pp. 1009–
, 2022, doi: 10.32604/iasc.2022.023417.
M. Subhashini and R. Gopinath, “Employee
Attrition Prediction in Industry Using Machine Learning
Techniques,” International Journal of Advanced Research
in Engineering and Technology, vol. 11, no. 12, pp. 3329–
, 2020, doi: 10.34218/IJARET.11.12.2020.313.
K. Naz, I. F. Siddiqui, J. Koo, M. A. Khan, and
N. M. F. Qureshi, “Predictive Modeling of Employee
Churn Analysis for IoT-Enabled Software Industry,”
Applied Sciences (Switzerland), vol. 12, no. 20, 2022, doi:
3390/app122010495.
A. Raza, K. Munir, M. Almutairi, F. Younas, and
M. M. S. Fareed, “Predicting Employee Attrition Using
Machine Learning Approaches,” Applied Sciences
(Switzerland), vol. 12, no. 13, 2022, doi:
3390/app12136424.
R. Punnoose and P. Ajit, “Prediction of
Employee Turnover in Organizations using Machine
Learning Algorithms,” International Journal of Advanced
Research in Artificial Intelligence, vol. 5, no. 9, pp. 22–
, 2016, doi: 10.14569/ijarai.2016.050904.
M. Nandal, V. Grover, D. Sahu, and M. Dogra,
“Employee Attrition: Analysis of Data Driven Models,”
EAI Endorsed Transactions on Internet of Things, vol. 10,
pp. 1–10, 2024, doi: 10.4108/eetiot.4762.
C. Jin, F. Li, S. Ma, and Y. Wang, “Sampling
scheme-based classification rule mining method using
decision tree in big data environment,” Knowl Based Syst,
vol. 244, p. 108522, 2022, doi:
https://doi.org/10.1016/j.knosys.2022.108522.
K. Bhuva and K. Srivastava, “Comparative
Study of The Machine Learning Techniques for
Predicting The Employee Attrition,” Ijrar, vol. 5, no. 3,
pp. 568–577, 2018, [Online]. Available: www.ijrar.org
G. A. Mursianto, I. M. Falih, M. Irfan, T.
Sakinah, and D. S. Prasvita, “Perbandingan Metode
Klasifikasi Random Forest dan XGBoost Serta
Implementasi Teknik SMOTE pada Kasus Prediksi
Hujan,” Jurnal Senamika, vol. 2, no. 2, pp. 41–50, 2021.
G. Chandrashekar and F. Sahin, “A survey on
feature selection methods,” Computers and Electrical
Engineering, vol. 40, no. 1, pp. 16–28, 2014, doi:
1016/j.compeleceng.2013.11.024.
S. Kilic, “Chi-square Test,” MEDSURG Nursing,
vol. 28, no. 2, p. 127, 2019, doi:
5455/jmood.20160803110534.