Sistem Question Answering pada Data Kesehatan Menggunakan Model pre-trained BERT
Abstract
Setelah pandemi covid-19, kesehatan menjadi hal
yang harus diperhatikan. Sebagian besar masyarakat
menggunakan search engine sebagai alat untuk mencari
informasi tentang kesehatan. Namun informasi yang
didapatkan berupa query hasil search engine yang masih
umum. Sistem Question Answering adalah sistem yang
memberikan informasi sesuai informasi yang dibutuhkan oleh
pengguna secara spesifik. Pada penelitian ini dibangun sistem
Question Answering menggunakan metode Bidirectional
Encoder Representations from Transformer (BERT). BERT
merupakan sebuah pre-trained model yang menggunakan
arsitektur transformer. BERT dapat menyelesaikan tugas
sistem Question Answering. Dengan pre-trained model, sistem
tidak perlu melakukan training model dari awal. Sistem hanya
perlu menggunakan train model yang telah dibuat oleh orang
lain sesuai tugas yang dibutuhkan untuk menghemat waktu dan
sumber daya. Untuk mengukur performansi, digunakan metode
Exact Match (EM) dan F1-score. Hasil dari penelitian ini skor
terbaik yang didapat yaitu Exact Match 75% dan F1-score
76%.
Kata kunci— question answering, BERT, pre-trained model,
kesehatan
References
K. A. Rizqo, "Resmi! Jokowi Umumkan Status
Pandemi COVID-19 Dicabut," detikNews, 21 Juni
[Online]. Available:
https://news.detik.com/berita/d-6784804/resmijokowi-umumkan-status-pandemi-covid-19-dicabut.
[Accessed 6 Januari 2025].
L. N. Hakim, "DAMPAK PANDEMI WABAH
CORONAVIRUS DISEASE (COVID) 19 DAN
LOCKDOWN TERHADAP KESEHATAN
MENTAL: KAJIAN PSIKOLOGI DAN AGAMA,"
Kajian, vol. 25, no. 2, pp. 161-177, 2020.
A. Sixsmith, B. R. Horst, D. Simeonov and A.
Mihailidis, "Older People’s Use of Digital
Technology During the COVID-19 Pandemic,"
Bulletin of Science, Technology & Society, vol. 42,
no. 1-2, pp. 19-24, 2022.
D. Vargo, L. Zhu, B. Benwell and Z. Yan, "Digital
technology use during COVID-19 pandemic: A
rapid review," Human Behavior and Emerging
Technologies, vol. 3, no. 3, pp. 13-24, 2020.
J. Moudy and R. A. Syakurah, "Pengetahuan terkait
Usaha Pencegahan Coronavirus Disease (COVID19) di Indonesia," HIGEIA JOURNAL OF PUBLIC
HEALTH RESEARCH AND DEVELOPMENT, vol.
, no. 2, pp. 333-346, 2020.
F. Zhu, W. Lei, J. Zheng, S. Poria and T.-S. Chua,
"Retrieving and Reading: A Comprehensive Survey
on Open-domain Question Answering," arXiv,
J. Devlin, M.-W. Chang, K. Lee and K. Toutanova,
"BERT: Pre-training of Deep Bidirectional
Transformers for Language Understanding," 2018.
F. Koto, A. Rahimi, J. H. Lau and T. Baldwin,
"IndoLEM and IndoBERT: A Benchmark Dataset
and Pre-trained Language Model for Indonesian
NLP," in COLING 2020 - The 28th International
Conference on Computational Linguistics, 2020.
F. Dartiko, M. Yusa, A. Erlansari and S. A. Basha,
"Comparative Analysis of Transformer-Based
Method In A Question Answering System for Campus Orientation Guides," INTENSIF: Jurnal
Ilmiah Penelitian dan Penerapan Teknologi Sistem
Informasi, vol. 8, no. 1, pp. 126-143, 2024.
S. P. Widodo, "Comparative Analysis of Retriever
and Reader for Open Domain Questions Answering
on BPS Knowledge in Indonesian," Proceedings of
The International Conference on Data Science and
Official Statistics, vol. 2023, no. 1, pp. 337-343,
J. Bulian, C. Buck, W. Gajewski, B. Boerschinger
and T. Schuster, "Tomayto, Tomahto. Beyond
Token-level Answer Equivalence for Question
Answering Evaluation," 2022.
R. Alqifari, "Question Answering Systems
Approaches and Challenges," in Proceedings of the
Student Research Workshop Associated with
RANLP 2019, 2019.
B. S. Bhatt and H. A. Pandya, "Question Answering
Survey: Directions, Challenges, Datasets,
Evaluation," 2021.
A. Rogers, O. Kovalera and A. Rumshisky, "A
Primer in BERTology: What We Know About How
BERT Works," Transactions of the Association for
Computational Linguistics, vol. 8, pp. 842-866,
D. Grießhaber, J. Maucher and N. T. Vu, "Finetuning BERT for Low-Resource Natural Language
Understanding," in Proceedings of the 28th
International Conference on Computational
Linguistics (COLING 2020), Barcelona, 2020.