Prediksi Dividen Payout dengan menggunakan Metode Regresi Linear Berganda

Authors

  • Felicia Dina Widyasari Telkom University
  • Deni Saepudin Telkom University

Abstract

Dividen merupakan distribusi laba perusahaan
kepada investor dan mengukur kinerja keuangan perusahaan.
Penelitian ini bertujuan memprediksi dividen payout
menggunakan metode Regresi Linear Berganda dengan
variabel fundamental keuangan, yaitu Earning per Share
(EPS), Debt to Equity Ratio (DER), Return on Assets (ROA),
Return on Equity (ROE), Current Ratio (CR), dan Firm Size.
Evaluasi dilakukan dengan membandingkan performa model
Regresi Linear Sederhana, yang hanya menggunakan waktu
(tahun) sebagai variabel independen, dengan model Regresi
Linear Berganda menambahkan variabel fundamental
keuangan. Hasil penelitian menunjukkan bahwa model Regresi
Linear Sederhana memperoleh nilai rata-rata R-squared
sebesar 0.296. Penambahan EPS sebagai variabel independen
meningkatkan nilai rata-rata R-squared secara signifikan
menjadi 0.722. Dengan menambahkan variabel fundamental
lainnya, seperti DER, ROA, ROE, CR, dan Firm Size nilai ratarata R-squared meningkat menjadi 0.797. Berdasarkan
pengujian statistik, nilai rata-rata R-squared untuk Regresi
Linear Berganda meningkat dengan penambahan variabel
fundamental lainnya. Namun, peningkatan variansi model
tersebut tidak signifikan dan lebih kecil. Kesimpulannya, model
Regresi Linear Berganda meningkatkan akurasi prediksi
dividen payout dibandingkan model Regresi Linear Sederhana.
Penggunaan data fundamental keuangan terbukti memberikan
hasil prediksi yang lebih akurat dan dapat menjadi alat yang
bermanfaat bagi investor dalam pengambilan keputusan

Kata kunci— Regresi Linear Berganda, Prediksi Dividen Payout, Saham

References

L. Mahmoud, Y. A. Siam, M. Nassar, and M. H.

Sharairi, “The impact of firm characteristics on dividends in

Jordan: Institutional ownership as moderating variable,”

Uncertain Supply Chain Management, vol. 12, no. 2, pp.

–920, 2024, doi: 10.5267/j.uscm.2023.12.015.

A. Kumar, Z. Lei, and C. Zhang, “Dividend

sentiment, catering incentives, and return predictability,”

Journal of Corporate Finance, vol. 72, p. 102128, Feb. 2022,

doi: 10.1016/j.jcorpfin.2021.102128.

P. Bilinski and M. T. Bradshaw, “Analyst Dividend

Forecasts and Their Usefulness to Investors,” The

Accounting Review, vol. 97, no. 4, pp. 75–104, Jul. 2022,

doi: 10.2308/TAR-2018-0518.

M. Kheirandish and M. M. Khyareh, “The

relationship between cash dividend and earnings growth of

listed companies in Tehran stock exchange,” JANUS NET ejournal of International Relation, vol. 13, no. 1, 2022, doi:

26619/1647-7251.13.1.13.

S. Mazengo and H. Mwaifyusi, “THE EFFECT OF

LIQUIDITY, PROFITABILITY AND COMPANY SIZE

ON DIVIDEND PAYOUT: EVIDENCE FROM

FINANCIAL INSTITUTIONS LISTED IN DAR ES

SALAAM STOCK EXCHANGE,” Business Education

Journal, vol. 10, no. 1, pp. 1–12, Aug. 2021, doi:

54156/cbe.bej.10.1.242.

D. Yu, D. Huang, L. Chen, and L. Li, “Forecasting

dividend growth: The role of adjusted earnings yield,” Econ

Model, vol. 120, p. 106188, Mar. 2023, doi:

1016/j.econmod.2022.106188.

L. C. Laoh, “Dividend Payout Forecast : Multiple

Linear Regression vs Genetic Algorithm-Neural Network,”

CogITo Smart Journal, vol. 5, no. 2, pp. 252–265, Dec. 2019,

doi: 10.31154/cogito.v5i2.210.252-265.

Z. Puspitaningtyas, “Assessment of financial

performance and the effect on dividend policy of the banking

companies listed on the Indonesia Stock Exchange,” Banks

and Bank Systems, vol. 14, no. 2, pp. 24–39, May 2019, doi:

21511/bbs.14(2).2019.03.

R. KANAKRIYAH, “Dividend Policy and

Companies’ Financial Performance,” The Journal of Asian

Finance, Economics and Business, vol. 7, no. 10, pp. 531–

, Oct. 2020, doi: 10.13106/jafeb.2020.vol7.no10.531.

A. Kumar and P. Sinha, “Changing dividend payout

behavior and predicting dividend policy in emerging markets:

Evidence from India,” Investment Management and

Financial Innovations, vol. 21, no. 1, pp. 259–274, Feb. 2024,

doi: 10.21511/imfi.21(1).2024.20.

H. TEKİN, “FIRM SIZE AND DIVIDEND

POLICY OF EUROPEAN FIRMS: EVIDENCE FROM

FINANCIAL CRISES,” Marmara Üniversitesi Avrupa

Topluluğu Enstitüsü Avrupa Araştırmaları Dergisi, vol. 28,

no. 1, pp. 109–121, 2020, doi: 10.29228/mjes.11.

A. G. Dufera, T. Liu, and J. Xu, “Regression models

of Pearson correlation coefficient,” Stat Theory Relat Fields,

vol. 7, no. 2, pp. 97–106, Apr. 2023, doi:

1080/24754269.2023.2164970.

N. Shrestha, “Detecting Multicollinearity in

Regression Analysis,” Am J Appl Math Stat, vol. 8, no. 2, pp.

–42, Jun. 2020, doi: 10.12691/ajams-8-2-1.

G. James, D. Witten, T. Hastie, R. Tibshirani, and J.

Taylor, “Linear Regression,” 2023, pp. 69–134. doi:

1007/978-3-031-38747-0_3.

D. Maulud and A. M. Abdulazeez, “A Review on

Linear Regression Comprehensive in Machine Learning,”

Journal of Applied Science and Technology Trends, vol. 1,

no. 2, pp. 140–147, Dec. 2020, doi: 10.38094/jastt1457.

H. N. Rochmah and A. Ardianto, “Catering

dividend: Dividend premium and free cash flow on dividend

policy,” Cogent Business & Management, vol. 7, no. 1, p.

, Jan. 2020, doi: 10.1080/23311975.2020.1812927.

D. Chicco, M. J. Warrens, and G. Jurman, “The

coefficient of determination R-squared is more informative

than SMAPE, MAE, MAPE, MSE and RMSE in regression

analysis evaluation,” PeerJ Comput Sci, vol. 7, p. e623, Jul.

, doi: 10.7717/peerj-cs.623.

F. J. Gravetter and L. B. Wallnau, Statistics for the

Behavioral Sciences, 10th Edition. 2016.

R. E. Walpole, R. H. Myers, S. L. Myers, and K. Ye,

Probability and Statistics for Engineers and Scientists (9th

Edition). 2011.

Published

2025-06-23

Issue

Section

Prodi S1 Sains Data