Prediksi Dividen Payout dengan menggunakan Metode Regresi Linear Berganda
Abstract
Dividen merupakan distribusi laba perusahaan
kepada investor dan mengukur kinerja keuangan perusahaan.
Penelitian ini bertujuan memprediksi dividen payout
menggunakan metode Regresi Linear Berganda dengan
variabel fundamental keuangan, yaitu Earning per Share
(EPS), Debt to Equity Ratio (DER), Return on Assets (ROA),
Return on Equity (ROE), Current Ratio (CR), dan Firm Size.
Evaluasi dilakukan dengan membandingkan performa model
Regresi Linear Sederhana, yang hanya menggunakan waktu
(tahun) sebagai variabel independen, dengan model Regresi
Linear Berganda menambahkan variabel fundamental
keuangan. Hasil penelitian menunjukkan bahwa model Regresi
Linear Sederhana memperoleh nilai rata-rata R-squared
sebesar 0.296. Penambahan EPS sebagai variabel independen
meningkatkan nilai rata-rata R-squared secara signifikan
menjadi 0.722. Dengan menambahkan variabel fundamental
lainnya, seperti DER, ROA, ROE, CR, dan Firm Size nilai ratarata R-squared meningkat menjadi 0.797. Berdasarkan
pengujian statistik, nilai rata-rata R-squared untuk Regresi
Linear Berganda meningkat dengan penambahan variabel
fundamental lainnya. Namun, peningkatan variansi model
tersebut tidak signifikan dan lebih kecil. Kesimpulannya, model
Regresi Linear Berganda meningkatkan akurasi prediksi
dividen payout dibandingkan model Regresi Linear Sederhana.
Penggunaan data fundamental keuangan terbukti memberikan
hasil prediksi yang lebih akurat dan dapat menjadi alat yang
bermanfaat bagi investor dalam pengambilan keputusan
Kata kunci— Regresi Linear Berganda, Prediksi Dividen Payout, Saham
References
L. Mahmoud, Y. A. Siam, M. Nassar, and M. H.
Sharairi, “The impact of firm characteristics on dividends in
Jordan: Institutional ownership as moderating variable,”
Uncertain Supply Chain Management, vol. 12, no. 2, pp.
–920, 2024, doi: 10.5267/j.uscm.2023.12.015.
A. Kumar, Z. Lei, and C. Zhang, “Dividend
sentiment, catering incentives, and return predictability,”
Journal of Corporate Finance, vol. 72, p. 102128, Feb. 2022,
doi: 10.1016/j.jcorpfin.2021.102128.
P. Bilinski and M. T. Bradshaw, “Analyst Dividend
Forecasts and Their Usefulness to Investors,” The
Accounting Review, vol. 97, no. 4, pp. 75–104, Jul. 2022,
doi: 10.2308/TAR-2018-0518.
M. Kheirandish and M. M. Khyareh, “The
relationship between cash dividend and earnings growth of
listed companies in Tehran stock exchange,” JANUS NET ejournal of International Relation, vol. 13, no. 1, 2022, doi:
26619/1647-7251.13.1.13.
S. Mazengo and H. Mwaifyusi, “THE EFFECT OF
LIQUIDITY, PROFITABILITY AND COMPANY SIZE
ON DIVIDEND PAYOUT: EVIDENCE FROM
FINANCIAL INSTITUTIONS LISTED IN DAR ES
SALAAM STOCK EXCHANGE,” Business Education
Journal, vol. 10, no. 1, pp. 1–12, Aug. 2021, doi:
54156/cbe.bej.10.1.242.
D. Yu, D. Huang, L. Chen, and L. Li, “Forecasting
dividend growth: The role of adjusted earnings yield,” Econ
Model, vol. 120, p. 106188, Mar. 2023, doi:
1016/j.econmod.2022.106188.
L. C. Laoh, “Dividend Payout Forecast : Multiple
Linear Regression vs Genetic Algorithm-Neural Network,”
CogITo Smart Journal, vol. 5, no. 2, pp. 252–265, Dec. 2019,
doi: 10.31154/cogito.v5i2.210.252-265.
Z. Puspitaningtyas, “Assessment of financial
performance and the effect on dividend policy of the banking
companies listed on the Indonesia Stock Exchange,” Banks
and Bank Systems, vol. 14, no. 2, pp. 24–39, May 2019, doi:
21511/bbs.14(2).2019.03.
R. KANAKRIYAH, “Dividend Policy and
Companies’ Financial Performance,” The Journal of Asian
Finance, Economics and Business, vol. 7, no. 10, pp. 531–
, Oct. 2020, doi: 10.13106/jafeb.2020.vol7.no10.531.
A. Kumar and P. Sinha, “Changing dividend payout
behavior and predicting dividend policy in emerging markets:
Evidence from India,” Investment Management and
Financial Innovations, vol. 21, no. 1, pp. 259–274, Feb. 2024,
doi: 10.21511/imfi.21(1).2024.20.
H. TEKİN, “FIRM SIZE AND DIVIDEND
POLICY OF EUROPEAN FIRMS: EVIDENCE FROM
FINANCIAL CRISES,” Marmara Üniversitesi Avrupa
Topluluğu Enstitüsü Avrupa Araştırmaları Dergisi, vol. 28,
no. 1, pp. 109–121, 2020, doi: 10.29228/mjes.11.
A. G. Dufera, T. Liu, and J. Xu, “Regression models
of Pearson correlation coefficient,” Stat Theory Relat Fields,
vol. 7, no. 2, pp. 97–106, Apr. 2023, doi:
1080/24754269.2023.2164970.
N. Shrestha, “Detecting Multicollinearity in
Regression Analysis,” Am J Appl Math Stat, vol. 8, no. 2, pp.
–42, Jun. 2020, doi: 10.12691/ajams-8-2-1.
G. James, D. Witten, T. Hastie, R. Tibshirani, and J.
Taylor, “Linear Regression,” 2023, pp. 69–134. doi:
1007/978-3-031-38747-0_3.
D. Maulud and A. M. Abdulazeez, “A Review on
Linear Regression Comprehensive in Machine Learning,”
Journal of Applied Science and Technology Trends, vol. 1,
no. 2, pp. 140–147, Dec. 2020, doi: 10.38094/jastt1457.
H. N. Rochmah and A. Ardianto, “Catering
dividend: Dividend premium and free cash flow on dividend
policy,” Cogent Business & Management, vol. 7, no. 1, p.
, Jan. 2020, doi: 10.1080/23311975.2020.1812927.
D. Chicco, M. J. Warrens, and G. Jurman, “The
coefficient of determination R-squared is more informative
than SMAPE, MAE, MAPE, MSE and RMSE in regression
analysis evaluation,” PeerJ Comput Sci, vol. 7, p. e623, Jul.
, doi: 10.7717/peerj-cs.623.
F. J. Gravetter and L. B. Wallnau, Statistics for the
Behavioral Sciences, 10th Edition. 2016.
R. E. Walpole, R. H. Myers, S. L. Myers, and K. Ye,
Probability and Statistics for Engineers and Scientists (9th
Edition). 2011.