Pengembangan Aplikasi Pengolahan Sinyal Eeg Untuk Menganalisis Perubahan Frekuensi Gelombang Otak Setelah Relaksasi Aromaterapi
Abstract
Penelitian ini mengembangkan aplikasi desktop berbasis Python untuk mempermudah analisis sinyal EEG sebelum dan sesudah terapi aromaterapi, khususnya bagi pengguna non-teknis. Aplikasi ini memiliki fitur pemuatan data .csv, pembersihan nilai NaN/Inf, filter bandpass 1–40 Hz, transformasi FFT, visualisasi power spectrum dan spektrogram, analisis ICA, serta perhitungan rasio frekuensi alpha/beta dan theta/beta. Pengujian dilakukan melalui QA oleh 15 teknisi dan UAT oleh 3 mahasiswa psikologi. Hasil menunjukkan aplikasi berjalan stabil, mudah digunakan, dan mampu mendeteksi perubahan gelombang otak yang mencerminkan relaksasi, ditandai oleh peningkatan rasio alpha/beta dan theta/beta. Sistem ini mendukung evaluasi objektif efektivitas terapi aromaterapi secara kuantitatif.
Kata kunci: Aromaterapi, EEG, FFT, ICA, Power Spectrum.
References
K. Sugimoto, H. Kurashiki, Y. Xu, M. Takemi, and K. Amano, “Electroencephalographic biomarkers of relaxation: A systematic review and meta-analysis,” bioRxiv, Mar. 2024. [Online]. Available: https://doi.org/10.1101/2024.03.27.586444
T. Ikeda, P. Sripian, Y. Nakagawa, C. Feng, T. Tazawa,
S. Sakai, and M. Sugaya, “Study on the psychological states of olfactory stimuli using electroencephalography and heart rate variability,” Sensors, vol. 23, no. 8, art. 4026, pp. 1–15, 2023. [Online]. Available: https://www.mdpi.com/1424- 8220/23/8/4026
J. Her and M.-K. Cho, “Effect of aromatherapy on sleep quality of adults and elderly people: A systematic literature review and meta-analysis,” Complement. Ther. Med., vol. 60, art. 102739, pp. 1–12, 2021. [Online]. Available:
https://doi.org/10.1016/j.ctim.2021.102739
M. E. Reven, E. J. Bowles, K. Ablard, M. Peppers- Citizen, A. May-Fitzgerald, D. Joswiak, and B. Unger, “Essential criteria for reporting of aromatherapy- focused research in humans: An international Delphi consensus study protocol,” PLoS One, vol. 20, no. 3, e0318379, Mar. 2025. [Online]. Available: https://doi.org/10.1371/journal.pone.0318379
K. H. Park, H. J. Kim, B. Oh, M. Seo, E. Lee, and J. Ha, “Evaluation of human electroencephalogram change for sensory effects of fragrance,” Skin Res. Technol., vol. 25, no. 4, pp. 526–531, Jul. 2019. [Online].
Available: https://doi.org/10.1111/srt.12682
Y. Zhang, F. Li, J. Wang, Y. Gao, Y. Liu, and J. Qin, “Applied principles of EEG/iEEG analysis methods in neuroscience: Requirements and challenges,” Military Med. Res., vol. 10, no. 1, art. 11, pp. 1–15, Jan. 2023. [Online]. Available: https://doi.org/10.1186/s40779- 023-00502-7
H.-L. Wei, Y. Guo, F. He, and Y. Zhao, “EEG signal processing techniques and applications—2nd edition,” Sensors, vol. 25, no. 3, art. 805, pp. 1–8, Jan.
[Online]. Available: https://doi.org/10.3390/s25030805
A. Chaddad, Y. Wu, R. Kateb, and A. Bouridane, “Electroencephalography signal processing: A comprehensive review and analysis of methods and techniques,” Front. Neurosci., vol. 17, art. 1178650,
pp. 1–20, 2023. [Online]. Available: https://www.mdpi.com/1424-8220/23/14/6434
A. Delorme and S. Makeig, “EEGLAB: an open‑source toolbox for analysis of single-trial EEG dynamics including independent component analysis,” J. Neurosci. Methods, vol. 134, no. 1, pp. 9–21, Mar.
[Online]. Available: https://doi.org/10.1016/j.jneumeth.2003.10.009
R. Katmah, F. Al‑Shargie, U. Tariq, F. Babiloni, F. Al‑Mughairbi, and H. Al‑Nashash, “A review on mental stress assessment methods using EEG signals,” Sensors, vol. 21, no. 15, art. 5043, pp. 1–18, Jul. 2021. [Online]. Available:
https://doi.org/10.3390/s21155043
A. J. Farrar and F. C. Farrar, “Clinical aromatherapy,” Nurs. Clin. North Am., vol. 55, no. 4, pp. 489–504, Dec. 2020. [Online]. Available: https://pubmed.ncbi.nlm.nih.gov/33131627/



