Implementasi Model Deep Learning Pada Sistem Deteksi dan Klasifikasi Kualitas Batang Tebu untuk Optimasi Penentuan Kualitas
Abstract
Industri gula nasional mengalami penurunan produksi sebesar 7,01% pada tahun 2023, salah satunya disebabkan oleh rendahnya efisiensi pascapanen akibat proses klasifikasi mutu batang tebu yang masih dilakukan secara manual. Proses ini menimbulkan inkonsistensi, potensi konflik antara petani dan petugas lapangan, serta peningkatan biaya operasional. Penelitian ini mengembangkan sistem klasifikasi mutu batang tebu berbasis deep learning menggunakan pendekatan dua tahap. Tahap pertama menggunakan YOLOv11 untuk mendeteksi batang tebu, sedangkan tahap kedua menggunakan arsitektur EfficientNet (B0–B3) untuk mengklasifikasikan mutu ke dalam lima kategori (A–E). Dataset citra diperoleh dari jalur produksi PT Sinergi Gula Nusantara dan diproses melalui tahapan Knowledge Discovery in Database (KDD), meliputi data preprocessing, augmentasi, resizing, dan splitting. Hasil evaluasi menunjukkan bahwa YOLOv11 mencapai akurasi 93,5%, precision 95,7%, recall 94,4%, [email protected] sebesar 97,8%, dan [email protected]:0.95 sebesar 89,4%. Sementara itu, EfficientNet-B2 menghasilkan akurasi klasifikasi tertinggi sebesar 88,57% setelah proses fine-tuning. Sistem yang dikembangkan mampu beroperasi pada kondisi visual yang kompleks dan dinamis, serta memberikan hasil klasifikasi yang konsisten. Studi ini menunjukkan potensi teknologi deep learning dalam mendukung otomasi dan peningkatan objektivitas proses penilaian mutu di industri agroindustri.
Kata kunci— Deep Learning, EfficientNet, KDD, Klasifikasi Kualitas Batang Tebu, YOLOv11
References
Ahmed, N. A. (2024, November 10). What is A Confusion Matrix in Machine Learning? The Model Evaluation Tool Explained. Retrieved from DataCamp: https://www.datacamp.com/tutorial/what-is-a-confusion-matrix-in-machine-learning?utm_source=google&utm_medium=paid_search&utm_campaignid=19589720824&utm_adgroupid=157156376071&utm_device=c&utm_keyword=&utm_matchtype=&utm_network=g&utm_adpostion=&utm_creat
Alif, M. A. R. (2024). YOLOv11 for Vehicle Detection: Advancements, Performance, and Applications in Intelligent Transportation Systems. arXiv preprint arXiv:2410.22898.
Cevallos, J. C., Villagomez, J. A., & Andryshchenko, I. S. (2019). Convolutional Neural Network in the recognition of spatial images of sugarcane crops in the Troncal region of the coast of Ecuador. Procedia Computer Science, 150, 757-763.
Chaganti, S. Y., Nanda, I., Pandi, K. R., Prudhvith, T. G., & Kumar, N. (2020, March). Image Classification using SVM and CNN. In 2020 International conference on computer science, engineering and applications (ICCSEA) (pp. 1-5). IEEE.
Chen, W., Ju, C., Li, Y., Hu, S., & Qiao, X. (2021). Sugarcane stem node recognition in field by deep learning combining data expansion. Applied Sciences, 11(18), 8663.
Dåderman, A., & Rosander, S. (2018). Evaluating frameworks for implementing machine learning in signal processing: A comparative study of CRISP-DM, SEMMA and KDD.
Daphal, S. D., & Koli, S. M. (2024). Enhanced deep learning technique for sugarcane leaf disease classification and mobile application integration. Heliyon, 10(8).
Hasan, N. F. (2023). Deteksi dan Klasifikasi Penyakit Pada Daun Kopi Menggunakan Yolov7. Jurnal Sisfokom (Sistem Informasi Dan Komputer), 12(1), 30-35.
He, Z., Wang, K., Fang, T., Su, L., Chen, R., & Fei, X. (2024). Comprehensive Performance Evaluation of YOLOv11, YOLOv10, YOLOv9, YOLOv8 and YOLOv5 on Object Detection of Power Equipment. arXiv preprint arXiv:2411.18871.
Hidayah, A. N., Radzi, S. A., Razak, N. A., Saad, W. H. M., Wong, Y. C., & Naja, A. A. (2022). Disease Detection of Solanaceous Crops Using Deep learning for Robot Vision. Journal of Robotics and Control (JRC), 3(6), 790-799.
Kai, P. M., de Oliveira, B. M., & da Costa, R. M. (2022). Deep learning-based method for classification of sugarcane varieties. Agronomy, 12(11), 2722.
Khan, A. A., Laghari, A. A., & Awan, S. A. (2021). Machine learning in computer vision: A review. EAI Endorsed Transactions on Scalable Information Systems, 8(32).
Khanam, R., & Hussain, M. (2024). YOLOv11: An overview of the key architectural enhancements. arXiv preprint arXiv:2410.17725.
Kisantal, M. (2019). Augmentation for Small Object Detection. arXiv preprint arXiv:1902.07296.
Kunduracıoğlu, İ., & Paçal, İ. (2024). Deep learning-Based Disease Detection in Sugarcane Leaves: Evaluating EfficientNet Models. Journal of Operations Intelligence, 2(1), 321-235.
Magfiroh, I. S., Intan, K. S., & Rudi, W. (2021). Mutu tebu industri gula di Indonesia. In Prosiding Seminar Nasional Sosial Ekonomi Fakultas Pertanian.
[Mohammed, A., & Kora, R. (2023). A comprehensive review on ensemble deep learning: Opportunities and challenges. Journal of King Saud University-Computer and Information Sciences, 35(2), 757-774.
Paliwang, A. A. A., Septian, M. R. D., Cahyanti, M., & Swedia, E. R. (2020). Klasifikasi Penyakit Tanaman Apel Dari Citra Daun Dengan Convolutional Neural Network. Sebatik, 24(2), 207-212.
Pratitis, W. L., Kurniasari, K., & Al Fata, H. (2023). Classification of Spotted Disease on Sugarcane Leaf Image Using Convolutional Neural Network Algorithm. Jurnal Sistem Telekomunikasi Elektronika Sistem Kontrol Power Sistem dan Komputer, 3(2), 117-128.
Raschka, S., Patterson, J., & Nolet, C. (2020). Machine learning in python: Main developments and technology trends in data science, machine learning, and artificial intelligence. Information, 11(4), 193.
Shorten, C., & Khoshgoftaar, T. M. (2019). A survey on image data augmentation for deep learning. Journal of big data, 6(1), 1-48.
Sivakoti, K. (2024). Vehicle Detection and Classification for Toll collection using YOLOv11 and Ensemble OCR. arXiv preprint arXiv:2412.12191.
Srinivasan, S., Prabin, S. M., Mathivanan, S. K., Rajadurai, H., Kulandaivelu, S., & Shah, M. A. (2025). Sugarcane leaf disease classification using deep neural network approach. BMC Plant Biology, 25(1), 282.
Suwitono, Y. A., & Kaunang, F. J. (2022). Implementasi Algoritma Convolutional Neural Network (CNN) Untuk Klasifikasi Daun Dengan Metode Data Mining SEMMA Menggunakan Keras. Jurnal Komtika (Komputasi dan Informatika), 6(2), 10
Tan, M., & Le, Q. (2019, May). EfficientNet: Rethinking model scaling for convolutional neural networks. In International conference on machine learning (pp. 6105-6114). PMLR.
Thite, S., Suryawanshi, Y., Patil, K., & Chumchu, P. (2024). Sugarcane leaf dataset: A dataset for disease detection and classification for machine learning applications. Data in Brief, 53, 110268.
Upadhye, S. A., Dhanvijay, M. R., & Patil, S. M. (2023). Sugarcane disease detection Using CNN-deep learning method: An Indian perspective. Universal Journal of Agricultural Research, 11(1), 80-97.
Wang, P., Fan, E., & Wang, P. (2021). Comparative analysis of image classification algorithms based on traditional machine learning and deep learning. Pattern recognition letters, 141, 61-67.
Wu, X., Sahoo, D., & Hoi, S. C. (2020). Recent advances in deep learning for object detection. Neurocomputing, 396, 39-64.
Yang, Z., Sinnott, R. O., Bailey, J., & Ke, Q. (2023). A survey of automated data augmentation algorithms for deep learning-based image classification tasks. Knowledge and Information Systems, 65(7), 2805-2861.
Yepes, J., Oré, G., Alcântara, M. S., Hernandez-Figueroa, H. E., & Teruel, B. (2022). Classification of sugarcane yields according to soil fertility properties using supervised machine learning methods. Engenharia Agrícola, 42(5), e2021023



