Klasifikasi Citra Jenis Pesawat Menggunakan Algoritma CNN Dengan Arsitektur ResNet
Abstract
Jenis pesawat terbang beragam berdasarkan bentuk, ukuran, dan tujuan penggunaannya, sehingga sulit untuk diklasifikasikan dan menjadikannya sebuah tantangan terutama dalam pengembangan teknologi citra. Dalam penelitian ini, algoritma CNN dengan arsitektur ResNet digunakan untuk mengembangkan sistem klasifikasi citra jenis pesawat. Model dibangun dan diuji pada dataset pribadi yang terdiri dari 4.520 citra dari delapan kelas jenis pesawat. Model dilatih dalam dua skenario (dengan dan tanpa augmentasi) dan dua ukuran batch (16, 32), tiga varian layer ResNet (50, 101, 152) menghasilkan dua belas model. Hasil evaluasi menunjukkan bahwa model terbaik dari ResNet-152 dengan augmentasi mampu mencapai f1-score hingga 0.954, membuktikan bahwa model CNN-ResNet yang dikembangkan dapat mengklasifikasikan citra pesawat secara efektif. Meski begitu, kesalahan masih terjadi pada kelas-kelas yang memiliki kemiripan visual, sehingga dibutuhkan eksperimen lanjutan dengan menguji kombinasi arsitektur dan parameter pelatihan yang lebih optimal untuk meningkatkan akurasi dan kemampuan generalisasi model yang lebih baik.
Kata kunci: Klasifikasi, Citra, Pesawat, CNN, ResNet, Augmentasi
References
M. M. Taye, “Theoretical understanding of convolutional neural network: Concepts, architectures, applications, future directions,” Computation, vol. 11, no. 3, p. 52, 2023.
R. Radikto, D. I. Mulyana, M. A. Rofik, and M. O. Z. Zakaria, “Klasifikasi Kendaraan pada Jalan Raya menggunakan Algoritma Convolutional Neural Network (CNN),” Jurnal Pendidikan Tambusai, vol. 6, no. 1, pp. 1668–1679, 2022.
S. Cong and Y. Zhou, “A review of convolutional neural network architectures and their optimizations,” Artif Intell Rev, vol. 56, no. 3, pp. 1905–1969, 2023.
K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning for image recognition,” in Proceedings of the IEEE conference on computer vision and pattern recognition, 2016, pp. 770–778.
F. Chen, R. Ren, W. Xu, and T. de Voorde, “Airplane recognition from remote sensing images with deep convolutional neural network,” in IGARSS 2020-2020 IEEE International Geoscience and Remote Sensing Symposium, 2020, pp. 264–267.
M. A. Butt et al., “Convolutional neural network based vehicle classification in adverse illuminous conditions for intelligent transportation systems,” Complexity, vol. 2021, no. 1, p. 6644861, 2021.
T. A. Sugiarto, M. A. Soeleman, and P. Pujiono, “Enhancing Augmentation-Based Resnet50 for Car Brand Classification,” Journal of Applied Intelligent System, vol. 8, no. 3, pp. 400–412, 2023.
L. Chen, S. Li, Q. Bai, J. Yang, S. Jiang, and Y. Miao, “Review of image classification algorithms based on convolutional neural networks,” Remote Sens (Basel), vol. 13, no. 22, p. 4712, 2021.
L. Xie, R. Hong, B. Zhang, and Q. Tian, “Image classification and retrieval are one,” in Proceedings of the 5th ACM on International Conference on Multimedia Retrieval, 2015, pp. 3–10.
R. I. Borman, I. Ahmad, and Y. Rahmanto, “Klasifikasi Citra Tanaman Perdu Liar Berkhasiat Obat Menggunakan Jaringan Syaraf Tiruan Radial Basis Function,” Bulletin of Informatics and Data Science, vol. 1, no. 1, pp. 6–13, 2022.
H. Mayatopani, R. I. Borman, W. T. Atmojo, and A. Arisantoso, “CLASSIFICATION OF VEHICLE TYPES USING BACKPROPAGATION NEURAL NETWORKS WITH METRIC AND ECCENTRICITY PARAMETERS,” Jurnal Riset Informatika, vol. 4, no. 1, pp. 65–70, 2021.
S. S. Nath, G. Mishra, J. Kar, S. Chakraborty, and N. Dey, “A survey of image classification methods and techniques,” in 2014 International conference on control, instrumentation, communication and computational technologies (ICCICCT), 2014, pp. 554–557.
A. T. Vo, H. S. Tran, and T. H. Le, “Advertisement image classification using convolutional neural network,” in 2017 9th International conference on knowledge and systems engineering (KSE), 2017, pp. 197–202.
A. Krizhevsky, I. Sutskever, and G. E. Hinton, “Imagenet classification with deep convolutional neural networks,” Adv Neural Inf Process Syst, vol. 25, 2012.
L. Yan, S. Wan, P. Jin, and C. Zou, “Airplane fine-grained classification in remote sensing images via transferred CNN-based models,” in International Conference on Geo-Spatial Knowledge and Intelligence, 2017, pp. 318–326.
S. Maji, E. Rahtu, J. Kannala, M. Blaschko, and A. Vedaldi, “Fine-grained visual classification of aircraft,” arXiv preprint arXiv:1306.5151, 2013.
Y. Xu, Z. Cui, W. Guo, Z. Zhang, and W. Yu, “Self-supervised auto-encoding multi-transformations for airplane classification,” in 2021 IEEE International Geoscience and Remote Sensing Symposium IGARSS, 2021, pp. 2365–2368.
K. Maharana, S. Mondal, and B. Nemade, “A review: Data pre-processing and data augmentation techniques,” Global Transitions Proceedings, vol. 3, no. 1, pp. 91–99, 2022.
M. Sokolova and G. Lapalme, “A systematic analysis of performance measures for classification tasks,” Inf Process Manag, vol. 45, no. 4, pp. 427–437, 2009.



