Klasifikasi Aritmia Pada Sinyal Elektrokardiogram Menggunakan Gated Recurrent Unit

Authors

  • Wina Nur Annisa
  • Tito Waluyo Purboyo
  • Dziban Naufal

Abstract

Deteksi aritmia jantung secara otomatis umumnya dilakukan melalui analisis sinyal elektrokardiogram (EKG) untuk meningkatkan akurasi dan efisiensi diagnosis. Penelitian ini mengevaluasi pengaruh variasi panjang window (3R, 5R, 10R) terhadap performa klasifikasi aritmia, membandingkan kinerja varian arsitektur Gated Recurrent Unit (GRU0–GRU4) dan Bidirectional GRU (BiGRU0–BiGRU4), serta menganalisis dampak konfigurasi hyperparameter. Dataset yang digunakan adalah MIT-BIH Arrhythmia, dengan segmentasi sinyal menggunakan metode sliding window berbasis jumlah puncak R. Model dilatih menggunakan fungsi loss categorical crossentropy dan optimizer Adam, dengan tuning pada jumlah unit (32, 64, 128), dropout (0.2, 0.5), dan learning rate (0.001, 0.0001). Evaluasi dilakukan menggunakan akurasi, ROC AUC, precision, recall, dan F1-score. Hasil menunjukkan bahwa window 3R dan model GRU0 dengan konfigurasi 128 unit, dropout 0.2, dan learning rate 0.001 menghasilkan performa terbaik, dengan akurasi 95.99%, F1-score 0.9599, dan akurasi validasi akhir 96.72%. Temuan ini membuktikan bahwa arsitektur GRU sederhana dengan konfigurasi optimal mampu memberikan klasifikasi aritmia berbasis EKG dengan performa tinggi.

Kata kunci— Aritmia, BiGRU, EKG, GRU, Hyperparameter Tuning, Sliding Window

References

“Arrhythmias - What Is an Arrhythmia? | NHLBI, NIH,” National Heart, Lung, and Blood Institute.

B. Azeem et al., “Unmasking Arrhythmia Mortality: A 25-Year Analysis of Trends and Disparities in the United States (1999–2023),” Clin Cardiol, vol. 48, no. 3, Mar. 2025, doi: 10.1002/clc.70109.

World Health Organization, “Cardiovascular diseases (CVDs),” WHO.

Marsha Anindita, “Peringatan Hari Jantung Sedunia 2021: Jaga Jantungmu untuk Hidup Lebih Sehat,” Ayo Sehat Kemenkes.

F. R. Muharram et al., “Adequacy and Distribution of the Health Workforce in Indonesia,” pp. 45–55, Jul. 2024, doi: 10.4103/WHO-SEAJPH.WHO-SEAJPH_28_24.

C. J. Breen, G. P. Kelly, and W. G. Kernohan, “ECG interpretation skill acquisition: A review of learning, teaching and assessment,” Jul. 01, 2022, Elsevier B.V. doi: 10.1016/j.jelectrocard.2019.03.010.

J. A. Joglar et al., “2023 ACC/AHA/ACCP/HRS Guideline for the Diagnosis and Management of Atrial Fibrillation: A Report of the American College of Cardiology/American Heart Association Joint Committee on Clinical Practice Guidelines,” Jan. 2024, Lippincott Williams and Wilkins. doi: 10.1161/CIR.0000000000001193.

P. Madan, V. Singh, D. P. Singh, M. Diwakar, B. Pant, and A. Kishor, “A Hybrid Deep Learning Approach for ECG-Based Arrhythmia Classification,” Bioengineering, vol. 9, no. 4, Apr. 2022, doi: 10.3390/bioengineering9040152.

X. Bai, X. Dong, Y. Li, R. Liu, and H. Zhang, “A hybrid deep learning network for automatic diagnosis of cardiac arrhythmia based on 12-lead ECG,” Sci Rep, vol. 14, no. 1, Dec. 2024, doi: 10.1038/s41598-024-75531-w.

Y. Ansari, O. Mourad, K. Qaraqe, and E. Serpedin, “Deep learning for ECG Arrhythmia detection and classification: an overview of progress for period 2017–2023,” 2023, Frontiers Media SA. doi: 10.3389/fphys.2023.1246746.

D. S. Desai and S. Hajouli, “Arrhythmias,” in https://www.ncbi.nlm.nih.gov/books/NBK558923/, vol. 4, Elsevier, 2023, p. V4:432-V4:468.

J. Grune, M. Yamazoe, and M. Nahrendorf, “Electroimmunology and cardiac arrhythmia,” Aug. 2021, Nature Research. doi: 10.1038/s41569-021-00520-9.

“Arrhythmias,” https://www.nhlbi.nih.gov/health/arrhythmias.

U. Kharad, M. Benayon, and L. Latchupatula, “ECG Basics,” ECG Esentials.

P. R. Kowey and D. Z. Kocovic, “Ambulatory Electrocardiographic Recording,” Circulation, vol. 108, no. 5, Aug. 2003, doi: 10.1161/01.CIR.0000082930.04238.8C.

C. W. Israel and S. Tribunyan, “Holter monitoring,” Herzschrittmachertherapie + Elektrophysiologie, vol. 35, pp. 234–249, Aug. 2024.

R. Dey and F. M. Salemt, “Gate-variants of Gated Recurrent Unit (GRU) neural networks,” in Midwest Symposium on Circuits and Systems, Institute of Electrical and Electronics Engineers Inc., Sep. 2017, pp. 1597–1600. doi: 10.1109/MWSCAS.2017.8053243.

F. M. Salem, “Gated RNN: The Gated Recurrent Unit (GRU) RNN,” in Recurrent Neural Networks, Springer International Publishing, 2022, pp. 85–100. doi: 10.1007/978-3-030-89929-5_5.

Y. Sun, J. Zhang, Z. Yu, Y. Zhang, and Z. Liu, “The Bidirectional Gated Recurrent Unit Network Based on the Inception Module (Inception-BiGRU) Predicts the Missing Data by Well Logging Data,” ACS Omega, vol. 8, pp. 27710–27724, Jul. 2023, doi: 10.1021/acsomega.3c03677.

G. Moody and R. Mark, “MIT-BIH Arrhythmia Database,” PhysioNet.

F. Ansari, “NOISE REDUCTION IN ECG BY IIR FILTERS: A COMPARATIVE STUDY.” [Online]. Available: https://www.researchgate.net/publication/344508453

S. Mandala et al., “An improved method to detect arrhythmia using ensemble learning-based model in multi lead electrocardiogram (ECG),” PLoS One, vol. 19, Apr. 2024, doi: 10.1371/journal.pone.0297551.

“tf.keras.layers.RNN | TensorFlow v2.16.1,” TensorFlow. Accessed: Jul. 14, 2025. [Online]. Available: https://www.tensorflow.org/api_docs/python/tf/keras/layers/RNN

N. Reimers and I. Gurevych, “Optimal Hyperparameters for Deep LSTM-Networks for Sequence Labeling Tasks,” Aug. 2017.

S. Merity, N. S. Keskar, and R. Socher, “An Analysis of Neural Language Modeling at Multiple Scales,” Mar. 2018.

Published

2025-12-04

Issue

Section

Prodi S1 Teknik Biomedis