Komparasi Hasil Prediksi Dengan Menggunakan Hyperparameter Tuning Antara Random Search dan Grid Search

Authors

  • Ibnu Fazril Telkom University
  • Anggunmeka Luhur Prasasti Telkom University
  • Marisa W. Paryasto Telkom University

Abstract

Abstrak — Peningkatan yang signifikan pada transaksi
keuangan mencurigakan yang berpotensi merugikan lembaga
keuangan dan masyarakat semakin luas. Pencucian uang dan
penipuan finansial merupakan ancaman serius yang sulit
dideteksi oleh sistem tradisional, yang sering kali tidak mampu
mengimbangi kompleksitas metode kriminal yang semakin
canggih. Masalah utama penelitian ini adalah bagaimana
meningkatkan akurasi dan efisiensi dalam mendeteksi
transaksi mencurigakan menggunakan teknologi Machine
Learning. Penelitian ini dilakukan dengan mengembangkan
model pendeteksi transaksi mencurigakan menggunakan
algoritma XGBoost, Decision Tree, dan Logistic Regression
dengan membandingkan pencarian parameter terbaik untuk
Hyperparameter Tuning antara Random Search dan Grid
Search dalam menghasilkan prediksi yang bernilai tinggi.
Kata kunci— fraud, xgboost, decision tree, logistic
regression, random search, grid search, hyperparameter tuning

References

J. Yao, J. Zhang and L. Wang, “A financial statement

fraud detection model based on hybrid data mining

methods,” 2018 International Conference on Artificial

Intelligence and Big Data (ICAIBD), pp. 57-61, 2018,

doi: 10.1109/ICAIBD.2018.8396167.

R. Frumerie, “Money Laundering Detection using Tree

Boosting and Graph Learning Algorithms,” M.S. thesis,

Dept. Mathematics., KTH., Stockholm, Sweden, 2021.

[Online].

Available

:

https://www.diva-portal.org/smash/record.jsf?pid=diva2

%3A1663255&dswid=6464

N. Alfa, S. Mawar, N. H. Siahaan, R. Putri,

“Memahami Transaksi Keuangan Mencurigakan,”

ppatk.go.id. Accessed: Oct. 10, 2023. [Online.]

Available:

https://www.ppatk.go.id/siaran_pers/read/953/memaha

mi-transaksi-keuangan-mencurigakan.html

W. Nugraha and A. Sasongko, “Hyperparameter

Tuning on Classification Algorithm with Grid

Search,” SISTEMASI, vol. 11, no. 2, p. 391, May 2022,

doi: https://doi.org/10.32520/stmsi.v11i2.1750.

Y. Özüpak, “Machine learning-based fault detection in

transmission lines: A comparative study with random

search optimization,” Bulletin of the Polish Academy

of Sciences Technical Sciences, pp. 153229–153229,

, doi:

https://doi.org/10.24425/bpasts.2025.153229.

A. F. D. Putra, M. N. Azmi, H. Wijayanto, S. Utama,

and I. G. P. W. Wedashwara Wirawan, “Optimizing

Rain Prediction Model Using Random Forest and Grid

Search Cross-Validation for Agriculture

Sector”, MATRIK, vol. 23, no. 3, pp. 519–530, Jul.

, doi: 10.30812/matrik.v23i3.3891.

M. Arifin and S. Adiyono, “Hyperparameter Tuning in

Machine Learning to Predicting Student Academic

Achievement,” International Journal of Artificial

Intelligence Research, vol. 8, no. 1.1, 2024, doi:

https://doi.org/10.29099/ijair.v8i1.1.1214.

D. A. Anggoro and S. S. Mukti, “Performance

Comparison of Grid Search and Random Search

Methods for Hyperparameter Tuning in Extreme

Gradient Boosting Algorithm to Predict Chronic

Kidney Failure,” International Journal of Intelligent

Engineering and Systems, vol. 14, no. 6, pp. 198–207,

Aug. 2021, doi:

https://doi.org/10.22266/ijies2021.1231.19.

M. B. Prayoga, N. Cahyono, Subektiningsih, and

Kamarudin, “PENERAPAN GRID SEARCH UNTUK

OPTIMASI MODEL MACHINE LEARNING

DALAM KLASIFIKASI SENTIMEN KOMENTAR

YOUTUBE,” JATI (Jurnal Mahasiswa Teknik

Informatika), vol. 9, no. 3, pp. 3817–3824, June 2025,

doi: https://doi.org/10.36040/jati.v9i3.13375.

M. Gusarov, “Do I need to tune logistic regression

hyperparameters?” Medium.com. Accessed: Aug. 11,

[Online.] Available:

https://medium.com/codex/do-i-need-to-tune-logisticregression-hyperparameters-1cb2b81fc a69

L. Owen, “Understanding the Hyperparameters of

Popular Algorithms” in Hyperparameter Tuning with

Python. Birmingham, UK: Packt Publishing Ltd., 2022,

ch. 11, pp. 219–225.

S. F. N. Islam, A. Sholahuddin, and A. S. Abdullah,

“Extreme gradient boosting (XGBoost) method in

making forecasting application and analysis of USD

exchange rates against rupiah,” in Journal of Physics:

Conference Series, vol. 1722, no. 1, pp. 12-16, Jan.

, doi: 10.1088/1742-6596/1722/1/012016.

Published

2025-12-04

Issue

Section

Prodi S1 Teknik Komputer