Sistem Deteksi Nyamuk Berbasis IoT dan Machine Learning
Abstract
Abstrak — Penyakit yang ditularkan nyamuk, seperti demam berdarah dengue, malaria, dan Zika, terus menjadi masalah kesehatan global terutama di negara tropis. Upaya pengendalian konvensional sering kali menghadapi keterbatasan dalam efektivitas jangka panjang dan keamanan lingkungan. Penelitian ini mengembangkan sistem deteksi nyamuk berbasis Internet of Things (IoT) dan machine learning untuk mendeteksi serta memprediksi tren populasi secara realtime. Sistem memanfaatkan sensor suara, suhu, kelembapan, dan karbon dioksida yang terintegrasi dengan perangkap nyamuk elektrik dan mikrokontroler ESP32. Data dari sensor dikirim ke cloud dan dianalisis dengan algoritma machine learning untuk menghasilkan prediksi potensi lonjakan populasi. Hasil uji coba menunjukkan sistem mampu memberikan informasi akurat, cepat, dan dapat diakses dari jarak jauh melalui dashboard berbasis web. Dengan sifatnya yang portabel dan ramah lingkungan, sistem ini memiliki potensi besar untuk diterapkan di rumah tangga, fasilitas kesehatan, dan area publik sebagai alat mitigasi dini risiko wabah. Kata kunci— deteksi nyamuk, Internet of Things, machine learning, ESP32, prediksi wabah.
References
K. L. V. Ooi, L. M. Gubler, and C. C. Liu, “Dengue
prevention and 35 years of vector control in Singapore,”
Emerging Infectious Diseases, vol. 15, no. 8, pp. 1231–1236,
Aug. 2009.
S. Li, L. D. Xu, and S. Zhao, “The internet of things: a
survey,” Information Systems Frontiers, vol. 17, pp. 243–
, Apr. 2015.
M. A. Sayed, M. M. Rahman, and M. M. Hossain, “IoTbased mosquito monitoring system for controlling dengue
outbreak,” International Journal of Computer Applications,
vol. 180, no. 45, pp. 15–20, Apr. 2018.
P. Domingos, “A few useful things to know about
machine learning,” Communications of the ACM, vol. 55, no.
, pp. 78–87, Oct. 2012.
F. Kurniawan and A. S. Prabowo, “Implementation of
ESP32-based IoT devices for environmental monitoring,”
International Journal of Advanced Computer Science and
Applications (IJACSA), vol. 11, no. 5, pp. 432–438, 2020.
G. P. Joshi, S. B. Tripathi, and A. Shukla, “An intelligent
mosquito repellent and monitoring system using IoT,”
International Journal of Innovative Technology and
Exploring Engineering, vol. 9, no. 3, pp. 1064–1069, Jan.
M. A. Rahman, S. A. Hossain, and M. A. H. Chowdhury,
“Design and development of a smart mosquito control and
monitoring system,” International Journal of Computer
Applications, vol. 178, no. 32, pp. 20–25, Aug. 2019.
J. Aira, T. O. Montes, F. M. Delicado, and D. Vezzani,
“MosquIoT: A system based on IoT and machine learning for
the monitoring of Aedes aegypti (Diptera: Culicidae),” 2024.
S. K. Sharma, A. Singh, and M. Prasad, “IoT-based smart
mosquito trap with integrated environmental sensors for
vector surveillance,” Frontiers in Bioengineering and
Biotechnology, vol. 11, pp. 1–10, 2023.
M. S. Fernandes, W. Cordeiro, and M. RecamondeMendoza, “Detecting Aedes aegypti mosquitoes through
audio classification with convolutional neural networks,”
I. Kiskin, H. Li, K. Sinka, and S. Roberts, “Mosquito
detection with neural networks: The buzz of deep learning,”
K. O. Paim, L. R. Lima, and J. P. Almeida, “Acoustic
identification of Aedes aegypti mosquitoes using smartphone
apps and residual convolutional neural networks,” 2023.
A. Kumar and R. Singh, “Smart environmental
monitoring using ESP32 microcontroller,” IOSR Journal of
Electronics and Communication Engineering, vol. 19, no. 3,
pp. 7–12, 2023.
P. S. Gupta and M. K. Verma, “Air quality monitoring
and control system using ESP32 microcontroller,”
International Journal of Scientific Research in Science and
Technology, vol. 12, no. 3, pp. 224–231, 2025.
R. A. Khan, F. Ahmad, and N. Ali, “IoT-enabled
intelligent framework for real-time mosquito detection and
monitoring,” SN Computer Science, vol. 6, no. 2, pp. 1–12,



