Sistem Deteksi Nyamuk Berbasis IoT dan Machine Learning

Authors

  • Kavilla Zota Qurzian Tekom University
  • Roswan Latuconsina Tekom University
  • Randy Efra Saputra Tekom University

Abstract

Abstrak — Penyakit yang ditularkan nyamuk, seperti demam berdarah dengue, malaria, dan Zika, terus menjadi masalah kesehatan global terutama di negara tropis. Upaya pengendalian konvensional sering kali menghadapi keterbatasan dalam efektivitas jangka panjang dan keamanan lingkungan. Penelitian ini mengembangkan sistem deteksi nyamuk berbasis Internet of Things (IoT) dan machine learning untuk mendeteksi serta memprediksi tren populasi secara realtime. Sistem memanfaatkan sensor suara, suhu, kelembapan, dan karbon dioksida yang terintegrasi dengan perangkap nyamuk elektrik dan mikrokontroler ESP32. Data dari sensor dikirim ke cloud dan dianalisis dengan algoritma machine learning untuk menghasilkan prediksi potensi lonjakan populasi. Hasil uji coba menunjukkan sistem mampu memberikan informasi akurat, cepat, dan dapat diakses dari jarak jauh melalui dashboard berbasis web. Dengan sifatnya yang portabel dan ramah lingkungan, sistem ini memiliki potensi besar untuk diterapkan di rumah tangga, fasilitas kesehatan, dan area publik sebagai alat mitigasi dini risiko wabah. Kata kunci— deteksi nyamuk, Internet of Things, machine learning, ESP32, prediksi wabah.

References

K. L. V. Ooi, L. M. Gubler, and C. C. Liu, “Dengue

prevention and 35 years of vector control in Singapore,”

Emerging Infectious Diseases, vol. 15, no. 8, pp. 1231–1236,

Aug. 2009.

S. Li, L. D. Xu, and S. Zhao, “The internet of things: a

survey,” Information Systems Frontiers, vol. 17, pp. 243–

, Apr. 2015.

M. A. Sayed, M. M. Rahman, and M. M. Hossain, “IoTbased mosquito monitoring system for controlling dengue

outbreak,” International Journal of Computer Applications,

vol. 180, no. 45, pp. 15–20, Apr. 2018.

P. Domingos, “A few useful things to know about

machine learning,” Communications of the ACM, vol. 55, no.

, pp. 78–87, Oct. 2012.

F. Kurniawan and A. S. Prabowo, “Implementation of

ESP32-based IoT devices for environmental monitoring,”

International Journal of Advanced Computer Science and

Applications (IJACSA), vol. 11, no. 5, pp. 432–438, 2020.

G. P. Joshi, S. B. Tripathi, and A. Shukla, “An intelligent

mosquito repellent and monitoring system using IoT,”

International Journal of Innovative Technology and

Exploring Engineering, vol. 9, no. 3, pp. 1064–1069, Jan.

M. A. Rahman, S. A. Hossain, and M. A. H. Chowdhury,

“Design and development of a smart mosquito control and

monitoring system,” International Journal of Computer

Applications, vol. 178, no. 32, pp. 20–25, Aug. 2019.

J. Aira, T. O. Montes, F. M. Delicado, and D. Vezzani,

“MosquIoT: A system based on IoT and machine learning for

the monitoring of Aedes aegypti (Diptera: Culicidae),” 2024.

S. K. Sharma, A. Singh, and M. Prasad, “IoT-based smart

mosquito trap with integrated environmental sensors for

vector surveillance,” Frontiers in Bioengineering and

Biotechnology, vol. 11, pp. 1–10, 2023.

M. S. Fernandes, W. Cordeiro, and M. RecamondeMendoza, “Detecting Aedes aegypti mosquitoes through

audio classification with convolutional neural networks,”

I. Kiskin, H. Li, K. Sinka, and S. Roberts, “Mosquito

detection with neural networks: The buzz of deep learning,”

K. O. Paim, L. R. Lima, and J. P. Almeida, “Acoustic

identification of Aedes aegypti mosquitoes using smartphone

apps and residual convolutional neural networks,” 2023.

A. Kumar and R. Singh, “Smart environmental

monitoring using ESP32 microcontroller,” IOSR Journal of

Electronics and Communication Engineering, vol. 19, no. 3,

pp. 7–12, 2023.

P. S. Gupta and M. K. Verma, “Air quality monitoring

and control system using ESP32 microcontroller,”

International Journal of Scientific Research in Science and

Technology, vol. 12, no. 3, pp. 224–231, 2025.

R. A. Khan, F. Ahmad, and N. Ali, “IoT-enabled

intelligent framework for real-time mosquito detection and

monitoring,” SN Computer Science, vol. 6, no. 2, pp. 1–12,

Published

2025-12-04

Issue

Section

Prodi S1 Teknik Komputer