Desain Troll Game Untuk Stimulasi Perubahan Brainwave Pada Kegiatan Observasi Stimulasi Audio Enhanced Alpha
Abstract
Gangguan kecemasan menjadi salah satu permasalahan utama kesehatan mental dunia, dengan prevalensi global mencapai 4,05% (Global Burden of Disease, 2019) dan peningkatan 6,8% di Indonesia selama pandemi COVID-19 (Riskesdas). Mengingat adanya risiko etis dan psikologis untuk menguji individu dengan kondisi kecemasan, penelitian ini menggunakan responden normal yang diberi stimulus guna memicu ketidaknyamanan secara terkontrol. Stimulus berupa game Turtle Trouble yang dirancang dengan elemen visual, audio, dan tantangan interaktif untuk meningkatkan beban kognitif pemain. Data EEG direkam menggunakan MUSE 2 dan dianalisis dengan MATLAB dan EEGLAB untuk memantau spektrum gelombang alpha (8–12 Hz), beta (12–30 Hz), dan gamma (>30 Hz) secara real-time. Hasil menunjukkan rata-rata kemunculan frekuensi tinggi meningkat dari 5 kali (Level 1), 6,5 kali (Level 2), hingga 9,5 kali (Level 3). Gelombang beta dan gamma mendominasi selama permainan, sedangkan alpha meningkat setelah stimulus audio. Skor subjektif ketidaknyamanan tercatat rata-rata 4,41/5, menunjukkan efektivitas Turtle Trouble sebagai media stimulus terukur dalam studi neuropsikologi.
Kata kunci : Brainwave, EEG, Enhanced Alpha, Turtle Trouble, Neurofeedback, Game Frustrasi
References
L. Kallabis, B. Baruque-Zanón, H. Klocke, A. M. Lara-Palma, and B. Naujoks, “Investigating the Effect of Color Stimuli on Player Emotions in Games,” in 2024 IEEE Conference on Games (CoG), IEEE, Aug. 2024, pp. 1–4. doi: 10.1109/CoG60054.2024.10645605.
A. Szczesna, J. Grudzinski, T. Grudzinski, R. Mikuszewski, and A. Debowski, “The psychology serious game prototype for preschool children,” 2011 IEEE 1st International Conference on Serious Games and Applications for Health, SeGAH 2011, 2011, doi: 10.1109/SeGAH.2011.6165435.
Z. Zainuddin and I. P. Ihsan, “Modelling of child psychology tests based game learning,” in Proceedings of 2013 IEEE International Conference on Teaching, Assessment and Learning for Engineering (TALE), IEEE, Aug. 2013, pp. 715–719. doi: 10.1109/TALE.2013.6654530.
M. S. De Vasconcellos and I. S. De Araujo, “Video games and participation in health: How online games can foster population’s participation in public health policies,” SeGAH 2014 - IEEE 3rd International Conference on Serious Games and Applications for Health, Books of Proceedings, 2014, doi: 10.1109/SeGAH.2014.7067095.
G. P. Tolentino, C. Battaglini, A. C. V. Pereira, R. J. De Oliveria, and M. G. M. De Paula, “Usability of serious games for health,” Proceedings - 2011 3rd International Conferenceon Games and Virtual Worlds for Serious Applications, VS-Games 2011, pp. 172–175, 2011, doi: 10.1109/VS-GAMES.2011.33.
G. Komac and K. Cagiltay, “An Overview of Trolling Behavior in Online Spaces and Gaming Context,” 1st International Informatics and Software Engineering Conference: Innovative Technologies for Digital Transformation, IISEC 2019 - Proceedings, pp. 1–4, 2019, doi: 10.1109/UBMYK48245.2019.8965625.
M. S. El-Nasr, H. Desurvire, B. Aghabeigi, and A. Drachen, “Game analytics for game user research, part 1: A workshop review and case study,” IEEE Comput Graph Appl, vol. 33, no. 2, pp. 6–11, 2013, doi: 10.1109/MCG.2013.26.
R. S. Iyer and R. Orji, “Cognitive load in Games for Health - A discussion,” 2020 IEEE 8th International Conference on Serious Games and Applications for Health, SeGAH 2020, 2020, doi: 10.1109/SeGAH49190.2020.9201767.
Z. Yin et al., “Local field potentials in Parkinson’s disease: A frequency-based review,” Neurobiol Dis, vol. 155, p. 105372, Jul. 2021, doi: 10.1016/j.nbd.2021.105372.
H. Marzbani, H. Marateb, and M. Mansourian, “Methodological Note: Neurofeedback: A Comprehensive Review on System Design, Methodology and Clinical Applications,” Basic and Clinical Neuroscience Journal, vol. 7, no. 2, 2016, doi: 10.15412/J.BCN.03070208.
B. T. Denny, M. C. Inhoff, N. Zerubavel, L. Davachi, and K. N. Ochsner, “Amygdala Response,” Denny, B. T., Inhoff, M. C., Zerubavel, N., Davachi, L., & Ochsner, K. N. (2009). Amygdala Response, 26(9), 1377–1388. https://doi.org/10.1177/0956797615578863.Getting, vol. 26, no. 9, pp. 1377–1388, 2009, doi: 10.1177/0956797615578863.Getting.
A. Denisova and P. Cairns, “First Person vs. Third Person Perspective in Digital Games,” in Proceedings of the 33rd Annual ACM Conference on Human Factors in Computing Systems, New York, NY, USA: ACM, Apr. 2015, pp. 145–148. doi: 10.1145/2702123.2702256.
C. Cannard, H. Wahbeh, and A. Delorme, “Validating the wearable MUSE headset for EEG spectral analysis and Frontal Alpha Asymmetry,” in 2021 IEEE International Conference on Bioinformatics and Biomedicine (BIBM), IEEE, Dec. 2021, pp. 3603–3610. doi: 10.1109/BIBM52615.2021.9669778.
K. J. Blinowska and J. Żygierewicz, Practical Biomedical Signal Analysis Using MATLAB®. Boca Raton: CRC Press, 2021. doi: 10.1201/9780429431357.
L. B. Ray, D. Baena, and S. M. Fogel, “‘Counting sheep PSG’: EEGLAB-compatible open-source matlab software for signal processing, visualization, event marking and staging of polysomnographic data,” J Neurosci Methods, vol. 407, p. 110162, Jul. 2024, doi: 10.1016/j.jneumeth.2024.110162.
L. Tait and J. Zhang, “+microstate: A MATLAB toolbox for brain microstate analysis in sensor and cortical EEG/MEG,” Neuroimage, vol. 258, p. 119346, Sep. 2022, doi: 10.1016/j.neuroimage.2022.119346.
B. K. Mekonnen, W. Yang, T.-H. Hsieh, S.-K. Liaw, and F.-L. Yang, “Accurate prediction of glucose concentration and identification of major contributing features from hardly distinguishable near-infrared spectroscopy,” Biomed Signal Process Control, vol. 59, p. 101923, May 2020, doi: 10.1016/j.bspc.2020.101923.
M. Orenes-Vera, I. Sharapov, R. Schreiber, M. Jacquelin, P. Vandermersch, and S. Chetlur, “Wafer-Scale Fast Fourier Transforms,” in Proceedings of the 37th International Conference on Supercomputing, New York, NY, USA: ACM, Jun. 2023, pp. 180–191. doi: 10.1145/3577193.3593708.
R. Martinek et al., “Advanced Bioelectrical Signal Processing Methods: Past, Present and Future Approach—Part II: Brain Signals,” Sensors, vol. 21, no. 19, p. 6343, Sep. 2021, doi: 10.3390/s21196343.
P. T. Krishnan, A. N. Joseph Raj, and V. Rajangam, “Correction to: Emotion classification from speech signal based on empirical mode decomposition and non-linear features,” Complex & Intelligent Systems, vol. 8, no. 1, pp. 703–703, Feb. 2022, doi: 10.1007/s40747-021-00377-y.
A. Inan Nur, H. B. Santoso, and P. O. Hadi Putra, “The Method and Metric of User Experience Evaluation: A Systematic Literature Review,” in 2021 10th International Conference on Software and Computer Applications, New York, NY, USA: ACM, Feb. 2021, pp. 307–317. doi: 10.1145/3457784.3457832.
K. An and E. Tilevich, “Adaptive Redistribution and Replication to Improve the Responsiveness of Mobile Web Apps,” Journal of Web Engineering, Nov. 2022, doi: 10.13052/jwe1540-9589.2168.
S. Xu, S. Lai, and L. Pollacia, “Integrating Animation and Game-making in Teaching JavaScript,” in 2022 IEEE Integrated STEM Education Conference (ISEC), IEEE, Mar. 2022, pp. 318–323. doi: 10.1109/ISEC54952.2022.10025078.
A. Ehtemami, S. Bernadin, and S. Foo, “Analyzing and Clustering of baseline and non-baseline EEG signal using MATLAB toolboxes,” in 2019 SoutheastCon, IEEE, Apr. 2019, pp. 1–5. doi: 10.1109/SoutheastCon42311.2019.9020491.
H. Ghonchi, T. Foulsham, and S. Ferdowsi, “Assessing Neural Patterns of Anxiety Using Deep Learning: An EEG Study,” in 2024 32nd European Signal Processing Conference (EUSIPCO), IEEE, Aug. 2024, pp. 1596–1600. doi: 10.23919/EUSIPCO63174.2024.10715099
.



