Implementasi YOLOV11 untuk Deteksi Multi-Objek Kesegaran Ikan Cakalang Beku
Abstract
Memastikan kesegaran ikan merupakan tantangan penting dalam industri perikanan modern, terutama untuk komoditas bernilai tinggi seperti Cakalang. Makalah ini mengusulkan sistem deteksi multi-objek secara real-time menggunakan model YOLOv11 khusus untuk secara otomatis mengklasifikasikan kualitas kesegaran ikan Cakalang (Katsuwonus pelamis) beku dan tidak beku. Tiga varian YOLOv11, yaitu YOLOv11S, YOLOv11M, dan YOLOv11L, dilatih dan divalidasi pada set data gambar yang telah dianotasi. YOLOv11S mencapai akurasi pengujian sebesar 88,4%, akurasi validasi sebesar 90,1%, dan akurasi pelatihan sebesar 88,4%. YOLOV11M mencapai kinerja yang lebih tinggi, dengan akurasi pengujian 92,9%, akurasi validasi 94,8%, dan akurasi pelatihan 85,7%. Hasil terbaik diperoleh dari YOLOv11L, yang mencapai akurasi pengujian sebesar 91,5%, akurasi validasi 94,9%, dan akurasi pelatihan 83,7% Temuan ini menunjukkan bahwa YOLOv11L menawarkan kinerja tertinggi, sementara YOLOv11M dan YOLOv11S juga menunjukkan hasil yang kompetitif. Pendekatan berbasis YOLOv11 yang diusulkan menunjukkan potensi deteksi kesegaran ikan secara real-time dalam sistem kontrol kualitas otomatis, yang bertujuan untuk mengurangi kerugian pascapanen dan meningkatkan daya saing produk makanan laut Indonesia di tingkat global.
Kata Kunci-YOLOv11, pembelajaran mendalam, deteksi objek, waktu nyata, kesegaran ikan
References
R. Dwi and M. Ibrahim, “An Image Processing Study: Image Enhancement, Image Segmentation, and Image Classification using Milkfish Freshness Images,” International Journal of Engineering Computing Advanced Research, vol. 1, no. 1, pp. 11–22, Jul. 2024.
W. A. Tonapa, P. Manembu and F. D. Kambey, “Fish Classification of Skipjack and Mackerel Tuna Using Convolutional Neural Network,” Jurnal Teknik Informatika, vol. 19, no. 01, pp. 31–36, 2024.
R. Archana and P. E. Jeevaraj, "Deep learning models for digital image processing: a review," Artif. Intell. Rev., vol. 57, no. 1, p. 11, 2024.
F. Akhyar, L. Novamizanti, T. Putra, E. N. Furqon, M.-C. Chang, and C.-Y. Lin, "Lightning YOLOv4 for a surface defect detection system for sawn lumber," in Proc. 2022 IEEE 5th Int. Conf. Multimedia Inf. Process. Retrieval (MIPR), 2022, pp. 184–189.
A. Kuswantori and D. J. Suroso, “Fish Detection and Classification using YOLOv8 for Automated Sorting Systems,” Indonesian Journal of Artificial Intelligence and Data Mining, vol. 7, no. 2, p. 447, Jul. 2024.
K. Aziz, M. D. Maulana, R. F. Adawiyah, R. F. Firdaus, L. Novamizanti, and F. Ramdhon, "Comparative analysis of YOLOv8 models in skipjack fish quality assessment system," in Proc. 2023 3rd
F. Akhyar, L. Novamizanti, K. Usman, G. M. Aditya, F. N. Hakim, M. Z. Ilman, F. Ramdhon, and C.-Y. Lin, "A comparative analysis of the YOLO models for intelligent lobster surveillance camera," in Proc. 2023 Asia Pacific Signal Inf. Process. Assoc. Annu. Summit Conf. (APSIPA ASC), 2023, pp. 2131–2136.
S. Azizah, M. Padang, L. Novamizanti, and S. Sa'idah, "Identifying the ripeness and quality level of strawberries based on YOLOv7 EfficientNet," in Proc. 2024 Int. Conf. Data Sci. Its Appl. (ICoDSA), 2024, pp. 451–456.
F. A. Talmees and A. M. Affandi, “Enhancing Epileptic Seizure Detection Accuracy Using YOLOV11 Classification,” Journal of Advances in Mathematics and Computer Science, vol. 40, no. 5, pp. 1 27, Apr. 2025.
T. Kumar, R. Brennan, A. Mileo, and M. Bendechache, “Image Data Augmentation Approaches: A Comprehensive Survey and Future Directions,” IEEE Access, pp. 1–1, 2024
U. Sirisha, S. Praveen, P. N. Srinivasu, P. Barsocchi, and A. K. Bhoi, “Statistical Analysis of Design Aspects of Various YOLO-Based Deep Learning Models for Object Detection,” International Journal of Computational Intelligence Systems, vol. 16, no. 1, Aug. 2023.
J. Yang, T. Tian, Y. Liu, C. Li, D. Wu and L. Wang, “A Rainy Day Object Detection Method Based on YOLOV11 Combined with FFT and MF Model Fusion,” in 2024 International Conference on Advanced Control Systems and Automation Technologies (ACSAT), pp. 246–250, Nov. 2024.
N. W. Kurniawan, Aliyah Kurniasih, and A. Ghani, “Real or Deepfake Face Detection in Images and Video Data using YOLO11 Algorithm,” Journal of Artificial Intelligence and Engineering Applications (JAIEA), vol. 4, no. 2, pp. 1514–1521, Feb. 2025.
T. Ahmad, Y. Ma, M. Yahya, B. Ahmad, S. Nazir, and A. ul Haq, “Object Detection through Modified YOLO Neural Network,” Scientific Programming, vol. 2020, pp. 1–10, Jun. 2020.
S. Saputra, A. Yudhana, and R. Umar, “Implementation of Naïve Bayes for Fish Freshness Identification Based on Image Processing,” RESTI Journal (System Engineering and Information Technology), vol. 6, no. 3, pp. 412–420, Jun. 2022.
M. Mao and M. Hong, “YOLO Object Detection for Real-Time Fabric Defect Inspection in the Textile Industry: A Review of YOLOv1 to YOLOV11,” Sensors (Basel, Switzerland), vol. 25, no. 7, p. 2270, Apr. 2025.
R. Padilla, S. L. Netto, and E. A. B. da Silva, “A Survey on Performance Metrics for Object-Detection Algorithms,” in 2020 International Conference on Systems, Signals and Image Processing (IWSSIP), vol. 1, no. 1, Jul. 2020.
L.-H. He, Y.-Z. Zhou, L. Liu, W. Cao, and J.-H. Ma, “Research on object detection and recognition in remote sensing images based on YOLOV11,” Scientific Reports, vol. 15, no. 1, Apr. 2025.
J. He, Y. Ren, W. Li, and W. Fu, “YOLOV11-RCDWD: A New Efficient Model for Detecting Maize Leaf Diseases Based on the Improved YOLOV11,” Applied Sciences, vol. 15, no. 8, p. 4535, Apr. 2025.
D. F. Anas, I. Jaya, and Nurjanah, “Design and implementation of fish freshness detection algorithm using deep learning,” in IOP Conference Series: Earth and Environmental



