Deteksi Kualitas Dan Kesegaran Telur Berdasarkan Segmentasi Warna Dengan Metode Fuzzy Color Histogram (fch) Dan Discrete Cosine Transform Dengan Klasifikasi K-nearest Neighbor (k-nn)

Yeni Ernita Kusuma Wardani, Bambang Hidayat, Sjafril Darana

Abstract

Telur dikenal oleh banyak orang dengan kandungan protein dan gizi. Dengan harga yang murah, telur memiliki protein yang bermutu tinggi dan susunan asam amino essensial yang lengkap sehingga telur banyak dijadikan bahan untuk olahan makanan. Namun, kualitas dan kesegaran telur bisa dilihat dari berbagai aspek bentuk dan warna dari telur. Warna kuning telur memiliki tingkatan dari 1 sampai 15 grade. Biasanya untuk menentukan tingkat warna kuning telur menggunakan alat yang disebut Yolk Color Fan namun hasil yang didapat akan bersifat subjektif sehingga ada perbedaan perspektif yang disebabkan oleh beberapa faktor, seperti cahaya dan perbedaan kemampuan penglihatan seseorang. Hal inilah akan menjadi topik tugas akhir ini yaitu klasifikasi kuning telur. Seperti banyak orang ketahui bahwa perkembangan teknologi dibidang pengolahan citra digital sudah sangat pesat tepatnya dalam teknik pengenalan pola suatu citra digital sehingga digunakan pengolahan citra digital untuk mengklasifikasikan kuning telur pada ayam negeri

Dalam Tugas Akhir ini penulis dalam pengambilan data telur yang dilaksanakan kerja sama dengan Universitas Padjajaran, Jatinangor Jawa Barat dan penulis membahas mengenai cara mendeteksi kualitas dan kesegeran dari bagian albumen, dan mendeteksi kualitas kuning telur dari warna kuning telur ayam menggunakan pengolahan citra digital dengan metode Fuzzy Color Histogram (FCH), Discrete Cosine Transform (DCT) dan deteksi tepi dengan klasifikasi K-Nearest Neighbor (K-NN) yang diawali dengan proses prepocessing yang terdiri dari operasi cropping dan resizing, RGB to grayscale, RGB to CMYK, filling, deteksi tepi, dan deteksi jarak.

Kata Kunci : telur ayam negeri, DCT, FCH, RGB

Full Text:

PDF

Refbacks

  • There are currently no refbacks.
max_upload :0