Klasifikasi Jenis Batuan Sedimen Berdasarkan Tekstur Dengan Metode Gray Level Co-occurrence Matrix Dan K-nn

Authors

  • Devita Ba'diatan Fitri Telkom University
  • Bambang Hidayat Telkom University
  • Andri Slamet Subandrio Telkom University

Abstract

Batuan adalah benda padat yang terbuat secara alami dari mineral atau mineraloid. Secara umum terdapat tiga jenis batuan yang ada di permukaan bumi, yaitu batuan beku, batuan sedimen, dan batuan metamorf. Setiap jenis batuan berasal dari proses pembentukan yang berbeda-beda. Beragam jenis batuan sedimen dapat dilihat dari tekstur batuan dan hanya ahli geologi yang dapat mengklasifikasinya. Karena mata juga memiliki tingkat ketelitian dalam mengklasifikasi objek, maka perlu suatu alat pembanding tenaga ahli untuk memperkuat klasifikasi jenis batuan sedimen dengan waktu yang relatif singkat dan akurasi yang tinggi. Dalam tugas akhir ini penulis melakukan penelitian untuk merancang sistem klasifikasi jenis batuan sedimen berdasarkan tekstur. Tahapan yang dilakukan pada penelitian ini meliputi : akuisisi citra, preprocessing, ekstraksi ciri, dan klasifikasi. Metode ekstraksi ciri yang digunakan adalah Gray Level Cooccurrence Matrix (GLCM) dan metode klasifikasi K-Nearest Neighbor (KNN). Pada pengujian ini sebanyak 75 citra batuan sedimen megaskopis , yang terbagi masing-masing tiga kelas dengan komposisi 10 data latih dan 15 data uji tiap kelasnya. Dalam pengujian ini juga dilakukan terhadap 45 citra batuan sedimen mikroskopis yang terbagi masing-masing dalam tiga kelas dengan komposisi 5 data latih dan 10 data uji tiap kelasnya. Diperoleh akurasi sebesar 93,33% dengan waktu komputasi 8.3509s dengan menggunakan parameter : arah orientasi 45°, level kuantisasi 16, k=1, cosine distance. Sedangkan dengan menggunakan batuan sedimen mikroskopis diperoleh akurasi sebesar 73,33% dengan waktu komputasi 5.8204s dengan menggunakan parameter : arah orientasi 45°, level kuantisasi 16, k=1, cityblock distance. Kata kunci : Batu Sedimen, Gray Level Co-occurrence Matrix (GLCM), K-Nearest Neighbor (KNN).

Downloads

Published

2017-08-01

Issue

Section

Program Studi S1 Teknik Telekomunikasi