Deteksi Kanker Berdasarkan Klasifikasi Microarray Data Menggunakan Principal Component Analysis Dan Backpropagation Termodifikasi Dengan Conjugate Gradient Powell-beale

Sugeng Hadi Wirasna, Adiwijaya Adiwijaya, Danang Triantoro Murdiansyah

Abstract

Kanker merupakan penyebab utama dalam kematian. Dalam setiap tahun diperkiran kanker akan terus meningkat karena tidak sehatnya gaya pola hidup. Pada beberapa dekade terakhir microarray berperan penting dalam diagnosis kanker. Microarray merupakan teknologi yang dapat menyimpan ribuan gen yang diambil dalam beberapa sel manusia sekaligus. Microarray memiliki dimensi data yang sangat besar oleh karena itu, untuk meningkatkan akurasi diagnosis kanker tersebut maka dibandingkan dengan teknik tradisional hal tersebut dilakukan dengan cara pengurangan dimensi dengan menggunakan Principal Component Analysis (PCA) dan Modified Back Propagation (MBP). MBP merupakan modifikasi dari Backpropagation Standart (BP)
ISSN : 2355-9365 e-Proceeding of Engineering : Vol.4, No.1 April 2017 | Page 1247


yang menerapkan metode Jaringan Syaraf Tiruan (JST) dengan algoritma Conjugate Gradient Powell-Beale untuk mempercepat proses pelatihan. Pada tugas akhir ini telah berhasil membuktikan bahwa Modifed Backpropagation (MBP) dan reduksi data menggunakan Principal Component Analisys (PCA) menunjukkan hasil lebah cepat dalam melakukan proses pelatihan. Hasil rata – rata dari pengujian menggunakan backpropagation termodifikasi dan PCA adalah performansi dari masing – masing dengan teknik linesearch Charalambous sebesar 72.38% dan Goldensection sebesar 79.33%. Metode ini juga bagus dalam hal waktu pelatihan, mengingat waktu rata – rata yang diperlukan 2.30 detik untuk linesearch Charalambous sedangkan Goldensection memerlukan 2.50 detik.

Kata Kunci : kanker, microarray, principal component analysis (PCA), modified back propagation (mbp), conjugate gradient Powell-Beale.

Full Text:

PDF

Refbacks

  • There are currently no refbacks.
max_upload :0