Estimasi Bobot Karkas Sapi Berdasarkan Metode Gabor Wavelet Dan Klasifikasi Support Vector Machine Multiclass

Vallen Ariesandi, Bambang Hidayat, Sjafril Darana

Abstract

Hewan ternak dibagi menjadi dua berdasarkan ukurannya, yaitu kecil dan besar. Contoh dari ukuran ternak skala kecil terdiri dari ikan, unggas, kelinci dll. Dalam proses penimbangan, menimbang bobot badan hewan ternak dalam skala kecil bisa langsung dilakukan dengan mudah dibandingkan menimbang bobot badan hewan ternak dalam skala besar. Banyak metode yang digunakan dalam menimbang bobot ternak berskala besar seperti sapi potong. Salah satu metodenya adalah konvensional dan bobot sapi ini dinamakan karkas. Metode ini masih memiliki berbagai kendala. Berkembangnya Teknologi, Informasi dan Komunikasi memberi terobosan baru dalam membantu proses penimbangan sapi dengan menggunakan pengolahan citra digital. Pengolahan citra digital dapat dilakuakan dengan menggunakan algoritma tertentu yang dapat mengenali objek. Tugas akhir ini merancang dan menerapkan sistem dengan penggunaan teknik pengolahan citra digital yang dapat mempermudah prediksi dan klasifikasi dari bobot karkas, dengan langkah-langkah : akuisisi citra, pre-processing, ektraksi ciri dan klasifikasi. Metode ekstrasi ciri yang digunakan pada tugas akhir ini adalah Gabor Wavelet yang menghasilkan beberapa ciri (feature) berupa sebuah nilai. Ciri yang didapat diproses dalam klasifikasi Multiclass SVM. Jumlah data yang digunakan sebanyak 10 data latih dan 8 data uji. Pada tugas akhir ini mendapatkan akurasi terbaik dengan nilai 77.78% serta waktu komputasi sebesar 20,25608 detik. Sistem pada tugas akhir ini memiliki tingkat akurasi yang lebih baik dari penelitian sebelumnya yang menggunakan metode segmentasi K – Means Clustering yang mempunyai akurasi 74%, dan metode Regresi Linier dengan akurasi 71.4712%. Namun, penelitian ini masih kurang dibandingkan dengan penelitian sebelumnya yang menggunakan metode segmentasi Graph Partitioning dengan akurasi 82.19 % dan metode segmentasi Mean Shift dengan akurasi 89 %. Diharapkan kemampuan sistem ini dapat membantu memberikan manfaat untuk dunia peternakan khusus nya peternakan sapi di Indonesia Kata kunci : Bobot karkas, Ekstrasi Ciri, Gabor Wavelet, Multiclass SVM

Full Text:

PDF

Refbacks

  • There are currently no refbacks.
max_upload :0