Klasifikasi Topik Berita Berbahasa Indonesia Menggunakan K-nearest Neighbor

Andi Ahmad Irfa, Adiwijaya Adiwijaya, Mohamad Syahrul Mubarok

Abstract

Abstrak Masyarakat Indonesia kini mulai beralih dari konsumsi berita dalam bentuk surat kabar ke berita online. Persentase konsumsi berita melalui online mencapai 96 persen berdasarkan riset lembaga Global GFK. Angka tertinggi dibandingkan dengan konsumsi berita melalui televisi sebesar 91 persen, surat kabar 31 persen dan radio sebesar 15 persen. Akan tetapi begitu banyak berita bisa menyulitkan kerja editor dalam mengategorikan setiap berita yang ada, oleh karena itu dibutuhkan suatu sistem yang bisa mengategorikan berita sesuai dengan kategori masing-masing. Pada penelitian ini bertujuan untuk membuat suatu sistem yang mampu mengategorikan setiap berita berdasar dari topik berita tersebut. Metode yang digunakan dalam mengklasifikasi berita adalah k-Nearest Neighbor (K-NN) yang merupakan algoritma klasifikasi sederhana namu memiliki performa yang tinggi. Pada penelitian ini perancangan sistem dilakukan proses pengumpulan dataset, preprocessing data, klafikasifikasi dengan k-nn, dan terakhir dilakukan pengujian system. Dalam penelitian ini system yang dibangun mampu menghasilkan performa micro average f1-measure sebesar 69,9% dengan nilai k=16.
Kata Kunci: Klasifikasi Teks, Text Mining, K-Nearest Neighbors
Abstract Indonesian society is now starting to roll out from news consumption in the form of newspapers to online news. The percentage of online news consumption reached 96 percent based on Global GFK research institute. The percent number is the reverse of the number of news stories. It will be very much news to complicate the work of editors in categorizing every news that there is, therefore required a system that can categorize the news according to their respective categories. In this study is for a system that is able to categorize any news based on the news topic. The method used in classifying news is k-Nearest Neighbor (K-NN) which is a simple content algorithm namu has high performance. In this research the system design is done the process of completion of dataset, preprocessing data, klafikasifikasi with k-nn, and last done by testing system. In this research the built system is able to produce the average micro performance of f1measure equal to 69,9% with value k = 16. Keywords: Classification Text, Text Mining, K-Nearest Neighbors

Full Text:

PDF

Refbacks

  • There are currently no refbacks.
max_upload :0