Analysis Sinyal Alpha Dan Beta Eeg Brainwave Terhadap Perbandingan Konsentrasi Seseorang Pada Kondisi Mendengarkan Musik Dan Merokok

Yoza Radyaputra, Inung Wijayanto, Sugondo Hadiyoso

Abstract

Abstrak Konsentrasi merupakan kemampuan memusatkan perhatian setiap individu orang pada suatu objek kegiatan tertentu. Setiap individu manusia memiliki tahap tingkatan konsentrasi yang berbeda–beda sesuai dengan beberapa faktornya, oleh sebab itu dibutuhkan pemicu rangsangan dari luar untuk meningkatkan serta memaksimalkan tingkat konsentrasi otak di kondisi seperti mendengarkan musik klasik dan merokok. Metode yang digunakan dalam penelitian ini ialah Principal Component Analysis (PCA) sebagai metode Ekstraksi ciri dengan mengekstraksi sinyal terhadap gelombang alpha dan beta untuk mendapatlan suatu ciri yang dibutuhkan pada tahap selanjutnya dalam menjalankan proses klasifikasi menggunakan metode K-Nearest Neighbor (K-NN) Pada penelitian ini digunakan jumlah sebanyak 18 data dengan pembagian 9 sebagai data latih dan 9 sebagai data uji untuk 2 stimulus berbeda. Hasil dari tingkat akurasi menunjukan bahwa berdasarkan pengujian pada pemberian stimulus mendengarkan musik terdapat pada kanal TP9 yang merupakan kanal terbaik mencapai angka sebesar 77.78% untuk sinyal alfa dan 88.89% untuk sinyal beta, sedangkan pengujian pada pemberian stimulus merokok terdapat pada kanal AF7 yang merupakan kanal terbaik mencapai angka sebesar 88.89% untuk sinyal alfa dan 77.78% untuk sinyal beta Kata Kunci: Elektroensephalogram, Principal Component Analysis , K-Nearest Neighbor, Gelombang Alpha, Gelombang Beta. Abstract Concentration is the ability to focus on a specific object. Every people have a different concentration level based on some factors. Therefore, a stimulus is needed to maximize the concentration in a form of condition. Such as listening to classic music and smoking cigarettes. The method that is used in this research is Principal Component Analysis (PCA) as the feature extraction by extracting the signal to alpha and beta waves to obtain a feature which is needed on the next step. Which is classification step using K-Nearest Neighbor (K-NN). This research’s used amount of 18 data with 9 training data and 9 testing data for both 2 different stimulus . The accuracy result is shown based on testing with TP9 channel while listening music is 77.78% for alpha signal and 88.89% for beta signal, then based on testing with AF7 channel while inhaling cigarettes is 88.89% for alpha signal and 77.78 for beta signal. Keywords: EEG, alpha, beta, Principal Component Analysis, KNN

Full Text:

PDF

Refbacks

  • There are currently no refbacks.
max_upload :0